Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

1.1 MATHMATICS, Applied mathematics

Publication Details

Accepted for publication in "Continuum mechanics and thermodynamics", June 2016. Springer.

http://link.springer.com/article/10.1007/s00161-016-0512-3

Abstract

It is assumed that any free energy funcuon exhibits strict periodic benav10r tor histories that have been periodic for all past times. This is not the case for the work function, which, however, has the usual defining properties of a free energy. Fonns given m fairly recent years for the minimum and related free energies of linear materials with memory have this property. Materials for which the minimal states are all singletons are those for which at least some of the singularities of the Fourier transfonn of the relaxation function are not isolated. For such materials, the maximum free energy is the work function, and free energies intermediate between the minimum free energy and the work function should be given by a linear relation involving these two quantities. All such functionals, except the minimum free energy, therefore do not have strict periodic behavior for periodic histories, which contradicts our assumption. A way out of the difficulty is explored which involves approximating the relaxation function by a form for which the minimal states arc no longer singletons. A representation can then be given of an arbitrary free energy as a linear combination of the minimum, maximum and intennediate free energies derived in earlier work. This representation obeys our periodicity assumption. Numerical data are presented, supporting the consistency of this approach.

DOI

10.1007/s00161-016-0512-3

Included in

Mathematics Commons

Share

COinS