Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Applied mathematics

Publication Details

Romanian Astron. J. , Vol. 24, No. 1, p. 37–48, Bucharest, 2014

Abstract

We are analyzing several types of dynamical systems which are both integrable and important for physical applications. The first type are the so-called peakon systems that appear in the singular solutions of the Camassa-Holm equation describing special types of water waves. The second type are Toda chain systems, that describe molecule interactions. Their complexifications model soliton interactions in the adiabatic approximation. We analyze the algebraic aspects of the Toda chains and describe their real Hamiltonian forms.

Share

COinS