Document Type

Dissertation

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Computer Sciences

Publication Details

A dissertation submitted in partial fulfilment of the requirements of Dublin Institute of Technology for the degree of M.Sc. in Computing (Data Analytics) 2018.

Abstract

In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy.

Share

COinS