Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Computer Sciences, Information Science, Linguistics

Publication Details

Published in journal: Open Computer Science

Published by: De Gruyter

Year: 2019

You can access the journal here: https://www.degruyter.com/view/j/comp.2019.9.issue-1/comp-2019-0009/comp-2019-0009.xml

Abstract

Word embeddings trained on natural corpora (e.g., newspaper collections, Wikipedia or the Web) excel in capturing thematic similarity (“topical relatedness”) on word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’. However, they are less successful on pairs showing taxonomic similarity, like ‘cup’ and ‘mug’ (near synonyms) or ‘bus’ and ‘train’ (types of public transport). Moreover, purely taxonomy-based embeddings (e.g. those trained on a random-walk of WordNet’s structure) outperform natural-corpus embeddings in taxonomic similarity but underperform them in thematic similarity. Previous work suggests that performance gains in both types of similarity can be achieved by enriching natural-corpus embeddings with taxonomic information from taxonomies like WordNet. This taxonomic enrichment can be done by combining natural-corpus embeddings with taxonomic embeddings (e.g. those trained on a random-walk of WordNet’s structure). This paper conducts a deep analysis of this assumption and shows that both the size of the natural corpus and of the random-walk coverage of the WordNet structure play a crucial role in the performance of combined (enriched) vectors in both similarity tasks. Specifically, we show that embeddings trained on medium-sized natural corpora benefit the most from taxonomic enrichment whilst embeddings trained on large natural corpora only benefit from this enrichment when evaluated on taxonomic similarity tasks. The implication of this is that care has to be taken in controlling the size of the natural corpus and the size of the random-walk used to train vectors. In addition, we find that, whilst the WordNet structure is finite and it is possible to fully traverse it in a single pass, the repetition of well-connected WordNet concepts in extended random-walks effectively reinforces taxonomic relations in the learned embeddings.

DOI

https://doi.org/10.1515/comp-2019-0009

Share

COinS