Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

1.3 PHYSICAL SCIENCES, Atomic, Molecular and Chemical Physics, Fluids and plasma physics, Nano-materials

Publication Details

Applied Physics Letters 98, 051503 (2011); http://dx.doi.org/10.1063/1.3543838

Abstract

Low-k materials such as silicon dioxide (SiO2) play an important role in the semiconductor industry. Plasma has become indispensable for advanced materials processing. In this work a treatment of SiO2single crystal by direct current plasma discharge is studied in detail. Offline metrology is conducted for silicon dioxide wafers by Raman scattering, energy-dispersive x-ray spectroscopy, and ellipsometry. Broad Raman peak at around 2800 cm−1 is observed for the treatedSiO2 wafers. Effects of plasma treatment on position of this peak are reported in the paper. An analysis of this correlation could be a framework for creating virtual etch rate sensors, which might be of importance in managing plasma etching processes.

DOI

10.1063/1.3543838

Share

COinS