Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

2. ENGINEERING AND TECHNOLOGY

Publication Details

IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, Dublin, Ireland, August 28-30.

Abstract

Most recent unsupervised learning methods explore alternative objectives, often referred to as self-supervised tasks, to train convolutional neural networks without the supervision of human annotated labels. This paper explores the generation of surrogate classes as a self-supervised alternative to learn discriminative features, and proposes a clustering algorithm to overcome one of the main limitations of this kind of approach. Our clustering technique improves the initial implementation and achieves 76.4% accuracy in the STL-10 test set, surpassing the current state-ofthe- art for the STL-10 unsupervised benchmark. We also explore several issues with the unlabeled set from STL-10 that should be considered in future research using this dataset.

DOI

http://doi.org10.21427/9mp9-0t26

Included in

Engineering Commons

Share

COinS