Document Type

Theses, Ph.D

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

2.3 MECHANICAL ENGINEERING

Publication Details

Experimental and Numerical Investigation of Therapeutic Ultrasound Angioplasty, PhD, Dublin City University, Dublin, Ireland, 2005

Abstract

Therapeutic ultrasound angioplasty is an emerging minimally invasive cardiovascular surgical procedure that involves the delivery of ultrasonic displacements to the distal-tip of small diameter wire waveguides. The ultrasonic distal-tip displacements affect atherosclerotic plaque and thrombus by direct contact ablation, pressure wave components and cavitation, in addition to an acoustic streaming event around the distal-tip. This study uses experimental and numerical methods to investigate ultrasonic displacements in wire waveguides and the effect the distal-tip displacements have on the surrounding fluid. An experimental therapeutic ultrasound wire waveguide apparatus is described that delivers displacements to the distal-tip of 1.0 mm and tapered 0.35 mm diameter nickel-titanium (NiTi) waveguides. The operating frequency of the apparatus has been experimentally determined to be 23.5 kHz and for the power settings tested delivers displacements of up to 85 µm peak-to-peak (p-p) to the distal-tip of 1.0 mm diameter waveguides. The apparatus has been shown to directly ablate calcified materials with a stiffer response when compared with atherosclerotic plaques and to generate cavitation and acoustic streaming. A coupled fluid-structure numerical model of the waveguide and fluid surrounding the distal-tip has been developed that predicts the waveguide displacements and stresses along the entire length of the wire waveguide. The structural results of the model have been validated against experimental measurements of the displacements of the waveguide with the inclusion of a constant damping value of 4.5%. The fluid results of the model predict the pressure amplitudes developed in the surrounding fluid and compare closely with values reported in literature. The model predicts the distal-tip displacements required to cause cavitation, a major disruptive event, and has been compared with experimental observations made with the ultrasonic wire waveguide apparatus. The waveguide numerical model will prove a valuable design tool in the further development and improvement of this emerging cardiovascular technology.

Share

COinS