Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

2. ENGINEERING AND TECHNOLOGY

Publication Details

Optics Express Vol. 25, Issue 26, pp. 33439-33450 (2017).

Abstract

On chip high quality and high degree pulse compression is desirable in the realization of integrated ultrashort pulse sources, which are important for nonlinear photonics and spectroscopy. In this paper, we design a simple inversely tapered silicon ridge waveguide with exponentially decreasing dispersion profile along the propagation direction, and numerically investigate self-similar pulse compression of the fundamental soliton within the mid-infrared spectral region. When higher-order dispersion (HOD), higher-order nonlinearity (HON), losses (α), and variation of the Kerr nonlinear coefficient γ(z) are considered in the extended nonlinear Schrödinger equation, a 1 ps input pulse at the wavelength of 2490 nm is successfully compressed to 57.29 fs in only 5.1-cm of propagation, along with a compression factor Fc of 17.46. We demonstrated that the impacts of HOD and HON are minor on the pulse compression process, compared with that of α and variation of γ(z). Our research results provide a promising solution to realize integrated mid-infrared ultrashort pulse sources.

DOI

10.1364/OE.25.033439

Included in

Engineering Commons

Share

COinS