2009

Development of an Enhanced Generic Data Mining Life Cycle (DMLC)

Markus Hofmann
Brendan Tierney

Follow this and additional works at: http://arrow.dit.ie/itbj

Part of the Computer Engineering Commons

Recommended Citation
Available at: http://arrow.dit.ie/itbj/vol10/iss1/4
Abstract

Data mining projects are complex and have a high failure rate. In order to improve project management and success rates of such projects a life cycle is vital to the overall success of the project. This paper reports on a research project that was concerned with the life cycle development for large scale data mining projects. The paper provides a detailed view of the design and development of a generic data mining life cycle called DMLC. The life cycle aims to support all members of data mining project teams as well as IT managers and academic researchers and may improve project success rates and strategic decision support.

An extensive analysis of eight existing life cycles leads to a list of advantages, disadvantages, and characteristics of the life cycles. This is extended and generates a conglomerate of several guidelines which serve as the foundation for the development of a new generic data mining life cycle. The new life cycle is further developed to incorporate process, people and data aspects. A detailed study of the human resources involved in a data mining project enhances the DMLC.

Keywords: Data mining life cycle, DMLC, life cycle analysis, data mining, knowledge discovery

1 Introduction

Data mining is an interdisciplinary field (Simoudis, 1998), incorporating many different approaches, technologies, and methodologies to be able to generate and discover previously unknown knowledge. Data Mining is a non-trivial process (Fayyad et al., 1996b) which has to be manageable in order to achieve the anticipated success in any data mining or knowledge discovery project. Due to the interdisciplinary nature and complexity of stages, processes, data and process flows during the progress of any data mining project the necessity for a comprehensive and complete data mining life cycle has been identified. The aim of the research project on which this paper reports is to provide a complete development report of a new generic data mining life cycle called DMLC. The life cycle is a model that should assist all members of the data mining project team to succeed in their work and to deliver on time results that are within the predetermined budget.

The paper briefly describes the analyses of various academic as well as commercial data mining life cycles and defines, based on critical analysis, all the advantages and disadvantages of each life cycle. This is followed by the life cycle analysis section which describes the structured approach that was taken throughout the development of the DMLC. A list of guidelines will form the foundation of the main part of this paper.
which will describe the actual life cycle, its stages, processes, features, and all other parts that contribute to the comprehensiveness and integrity of the life cycle. The final section concludes and summarizes the needs of a data mining life cycle and its functionality.

2 Background

The following life cycles have been chosen as they represent the most authoritative, most cited, and most applied life cycles in both academia and industry:

- Knowledge Discovery in Databases (KDD) Process (Fayyad et al. 1996a; Collier et al., 1998; Feldens, 1998)
- Refined KDD Paradigm (Collier et al., 1998)
- Knowledge Discovery Life Cycle (KDLC) Model (Lee and Kerschberg, 1998)
- Information Flow in a Data Mining Life Cycle (Ganesh et al., 1996, Kopanakis and Theodoulidis, 1999)

The life cycles and their structure were explored, and the data or information flows were identified. The aim of the investigation stage of the project was to identify the advantages of stages or tasks within the life cycles, which would enhance the data mining project outcome. The authors indicated the disadvantages of stages and tasks within the life cycle, which could affect the data mining project negatively. Some of the life cycles only differ marginally whereas others differ considerably in structure and comprehensiveness. All but the CRISP-DM life cycle have been developed by academia. Although data mining has been a very evolving research area in recent years, there is still a need for a comprehensive and complete life cycle. The CRISP-DM reference model is the most complete and also the most widely accepted and applied data mining life cycle. The extensive analysis has been summarized in Table 1 and Table 2.

3 Life Cycle Analysis

The life cycles mentioned in the background section have been critically analyzed and compared with each other. Table 1 maps various characteristics of the life cycles discussed and represents some of the results of the analysis. The list of characteristics is an accumulation and summarization of all features identified throughout the discussion of the life cycles. The matrix will aid to recognize important and critical features every data mining life cycle should consist of and will, in relation to this paper, help to create a new and improved data mining life cycle. The assessment column on the far right of the table indicates the importance of the characteristics with regard to the DMLC development. The letter ‘C’ stands for Critical, ‘D’ stands for Desirable and ‘ND’ stands for Not Desirable. The authors will refer to this table throughout this paper to verify and justify the importance of some of the features in the newly created DMLC.
Table 1: Characteristic matrix of data mining life cycles

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Processes</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>6/7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>>5</td>
</tr>
<tr>
<td>Level of Authority</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Data Centric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Process Centric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People Centric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Definite Start</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Definite End</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Categorised Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Data Understanding</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Define Objective/Hypotheses</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Selecting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Data Processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Transforming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Data Mining/Modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Evaluation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Deployment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Post processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge Engineer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Domain Experts</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Data Miner/Analyst</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>D</td>
<td>ND</td>
</tr>
<tr>
<td>Information Repository</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Other Sources</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Iteration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-directional Flow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Forward skipping</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Cycle Iteration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Inner Circle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Sequential Flow</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Symbol

- **C**: Critical
- **D**: Desirable
- **ND**: Not Desirable
- **N/A**: Not Applicable
- **H**: High
- **M**: Medium

Meaning

- Critical: Indispensable, essential — a critical element of the life cycle
- Desirable: This is an element or a feature of the life cycle which is worth having or doing and will be useful or advantageous. It is advisable
- Not Desirable: This is an element or a feature of the life cycle which is not worth having or doing and will not be useful or advantageous and might even decrease the likelihood of the project's success.

Description

- This is an element or a feature of the life cycle which is worth having or doing and will be useful or advantageous. It is advisable
- This is an element or a feature of the life cycle which is not worth having or doing and will not be useful or advantageous and might even decrease the likelihood of the project's success.
The results of this analysis have been displayed in two tables. One consists of the characteristic matrix of all life cycles (see Table 1) whereas the second table (see Table 2) addresses the various advantages and disadvantages. Both tables assisted in creating and developing a new and improved life cycle, incorporating all the findings that this analysis revealed. The final deliverable of this section is a list of shortened guidelines the DMLC is based on:

- The number of processes is important to provide a comprehensive and detailed life cycle and should be above six;

Table 2: Summary of life cycle advantages and disadvantages

<table>
<thead>
<tr>
<th>Life Cycle</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fayyad et al. (1996a)</td>
<td>- Provides user with main stages</td>
<td>- Data source is not specified and simply labelled ‘Data’</td>
</tr>
<tr>
<td></td>
<td>- Detailed data pre-processing processes</td>
<td>- No deployment process and therefore difficult to verify and justify the results</td>
</tr>
<tr>
<td></td>
<td>- Iterative life cycle</td>
<td>- Newly generated knowledge is not stored in a repository</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Inner circles can only be started after completion of the evaluation process</td>
</tr>
<tr>
<td>Collier et al. (1998a)</td>
<td>- Provides user with main stages</td>
<td>- No deployment process and therefore difficult to verify and justify the results</td>
</tr>
<tr>
<td></td>
<td>- Detailed data pre-processing processes</td>
<td>- Newly generated knowledge is not stored in a repository</td>
</tr>
<tr>
<td></td>
<td>- Data warehouse as data source</td>
<td>- Processes can be skipped (forward skipping)</td>
</tr>
<tr>
<td></td>
<td>- Inner circles/iteration is supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Iterative life cycle</td>
<td></td>
</tr>
<tr>
<td>Feldens et al. (1998)</td>
<td>- Good iteration between the process</td>
<td>- only 3 phases</td>
</tr>
<tr>
<td></td>
<td>- Post-processing phase</td>
<td>- entire life cycle is not detailed enough</td>
</tr>
<tr>
<td>Collier et al. (1998b)</td>
<td>- Iterative life cycle</td>
<td>- Inner circles or iteration of processes is not possible unless entire cycle is iterated</td>
</tr>
<tr>
<td></td>
<td>- definition of data mining objective(s)</td>
<td>- Newly generated knowledge is not stored in a repository</td>
</tr>
<tr>
<td></td>
<td>- Deployment process</td>
<td>- No clearly identified data source</td>
</tr>
<tr>
<td>Lee et al. (1998)</td>
<td>- Newly generated information and knowledge are stored in information repository</td>
<td>- Very poor data and process flow which leads to confusion and misinterpretation</td>
</tr>
<tr>
<td></td>
<td>- Definition of hypotheses</td>
<td>- No deployment process</td>
</tr>
<tr>
<td></td>
<td>- Focused on knowledge relevancy, validation, and knowledge evolution</td>
<td>- No sequential flow</td>
</tr>
<tr>
<td></td>
<td>- Involvement of experts</td>
<td>- Confusion where to set objective or hypotheses</td>
</tr>
<tr>
<td>Ganesh et al. (1996)</td>
<td>- Involvement of experts</td>
<td>- Poor data pre-processing phase</td>
</tr>
<tr>
<td></td>
<td>- Verification and evaluation process of the data mining model</td>
<td>- No deployment process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No overall verification and evaluation phase</td>
</tr>
<tr>
<td>Kopanakis et al. (1999)</td>
<td>- Involvement of experts</td>
<td>- Poor data pre-processing phase</td>
</tr>
<tr>
<td></td>
<td>- Subdivided processes</td>
<td>- No deployment process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No overall verification and evaluation process</td>
</tr>
<tr>
<td>CRISP-DM (2000)</td>
<td>- Initial processes are ‘business understanding’ and ‘data understanding’</td>
<td>- Poor detail in data preparation phase</td>
</tr>
<tr>
<td></td>
<td>- Simple but comprehensive</td>
<td>- Data source is not specified and simply labelled ‘Data’</td>
</tr>
<tr>
<td></td>
<td>- Inner circle/iteration is supported but limited</td>
<td>- Deployment process seems to be a dead end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Newly generated information or knowledge are not stored permanently in some sort of information repository</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Involvement of the various experts is not mentioned</td>
</tr>
</tbody>
</table>
• The life cycle should incorporate process, people and data issues in order to become equally process, people and data centric since all these aspects are considered to be important throughout data mining projects;

• A definite starting point is as important as a definite ending point of an individual cycle as well as numerous sub-cycles;

• Categorized processes add to the comprehensibility and task co-operation as well as distribution;

• The following processes have been identified as critical and are necessary to build a comprehensive life cycle: business understanding, data understanding, objective or hypotheses definition, selecting, sampling, data processing, transforming, data mining/modelling, evaluation, deployment, and post processing. The naming of the processes will be discussed in the development section;

• In order to address the aforementioned feature of being people centric, personnel involved throughout the data mining project have to be identified and included in the new life cycle;

• The data sources have to be clearly identified;

• The issue of storing space and technology where newly gained information and knowledge will be kept is one of the most important issues of the data mining life cycle;

• The iteration of the life cycle should include the option to iterate through inner loops as well as to iterate the entire life cycle;

4 Data Mining Life Cycle (DMLC)

The life cycle shown in Figure 1 represents a comprehensive approach to managing and optimizing data mining projects. The DMLC consists of 9 different processes which are part of 3 stages. The hypotheses/objectives preparation stage consists of the three processes: business understanding, data understanding and hypotheses/objectives definition. The second stage is called data preparation stage and represents the processes select/sample, pre-process and transformation. The final stage consists of the data mining process, the evaluation process and the deployment process. Two data stores build the foundation of the life cycle: data warehouse/data mart and the information and knowledge repository (IKR). Different data and process flows allow the project team to work within a flexible environment in order to maximize the project outcome. The outer circle of the diagram shows all the human resources or skill groups that have to be present throughout a large scale data mining project. This brief description of the life cycle will help to understand the following sections about human resource involvement in data mining projects. The placement of the symbols representing the human resources in the outer circle has no specific meaning.

The paper will focus on how this life cycle evolved and along what guidelines it was developed. Many features of the DMLC have been identified as advantages in other life cycles. It should be noted that this paper describes and focuses on the development phases and the foundation of the life cycle segments and does not deal with the actual elements that have been implemented and displayed in Figure 1.
This core part of the paper deals with the development phases of the DMLC based upon features identified or not identified in the life cycles analysed. Throughout the development phases this section will explain the various features, processes, or stages that will be introduced in detail. The section begins with the detailed foundations and guidelines of such a life cycle and is based on the list of guidelines identified and compiled in the section above.

Three different reasonings lead to the guidelines which ultimately form the new and enhanced data mining life cycle:

1. A feature, process, or stage has been identified as a strength or positive influence of a life cycle and therefore adds to the overall life cycle output. The emphasis of such an event would therefore be important and critical to incorporate into the new life cycle development;

2. The feature, process, or stage that has been defined as weakness or negative influence of a life cycle and therefore detracts from the overall life cycle output. This event needs to either improve the detraction in such a way that it becomes a strength or has to be left out entirely in order to improve the feature, process, or stage and therefore the overall life cycle;
3. The life cycle was lacking in one area and the authors identified a missing feature, process, or stage, which also detracts from the overall life cycle output. This event leads to the necessity of adding the missing feature, process, or stage in order to improve the overall life cycle output.

The following sections will address the guidelines in greater detail.

5.1 Scope of the life cycle processes

After analysing the existing life cycles it became obvious that the new life cycle has to have at least six processes in order to be detailed enough and to qualify as comprehensive and complete. The life cycles from Feldens (1998) and Simoff and Maher (1998) show the lack of completeness by only producing 3 phases. For example Feldens (1998) introduces a process called ‘post-processing’. The user is unable to determine what post-processing means and includes. It is not mentioned that any processes or tasks should be included in the post-processing process such as evaluation, deployment or storage of the results.

The KDD Process (Collier et al., 1998) on the other hand introduces eight processes and produced in fact one of the more coherent life cycles. The amount of processes should be manageable and add to the project planning and execution rather than causing confusion and deflection. After limiting the lower borderline to 6 processes, the upper borderline is limited to approximately ten processes in order to keep the life cycle manageable and straightforward. This will not allow the life cycle to become too complex and also emphasises the necessity to concentrate on processes rather than on activities. For example Collier et al. (1998) include the process ‘Clean data’ in their life cycle, which is an activity rather than a process. The process should be named with a noun and not with an active verb since the final deliverable will be a life cycle and not a methodology. Once a process is named with a noun it cannot be seen as a task or activity but rather as a milestone, which can be reached by carrying out various tasks and activities. This will contribute to the ease of understanding and also to the integrity of the life cycle.

5.2 Process, people and data issues

There were three orientations detected after analyzing the life cycles. Some of the life cycles were data centric, some process centric and others tried to incorporate the people issues and requirements. Only Ganesh et al. (1996) and Kopanakis and Theodoulidis (1999) used all three aspects to improve their life cycle. Using all three aspects of the data mining project will enhance the life cycle due to greater comprehensiveness and completeness. Therefore the life cycle should incorporate process, people and data issues in order to become equally process, people and data orientated. Fayyad et al. (1996b), Ganesh et al. (1996) and Kopanakis and Theodoulidis (1999) mention human resources as critical source in their models and only the latter two authors cover all three issues, even if only marginally. The new life cycle has to identify clearly what data sources are used, what data flows exist, what processes are necessary to generate the data flow, and furthermore, who are the people responsible for carrying out these processes. The life cycle has to consider all three factors equally in order to provide a platform for successful data mining project planning and implementation. This will result and reflect on the following three factors:
• Defining the exact data sources (where the data has originated) and destinations (where the data will be finally stored) extended by the data flows throughout the life cycle;
• Defining in detail all processes involved extended by the process flows throughout the life cycle;
• Defining the human resources who will more than likely be involved in any data mining project to ensure success.

5.3 The Processes

This section will describe the various processes defined for the DMLC. The processes are split into three stages each containing three processes:
• Objectives/Hypotheses preparation stage;
• Data preparation stage;
• Discovery and validation stage.

Business Understanding, Data Understanding and Objectives/Hypothesis build the ‘Objectives/Hypotheses preparation stage’ which should be seen as a whole. It is, for example, not possible to carry out the business understanding analysis if no initial thought or draft of a hypothesis or objective is in place. And, vice versa, it is not possible to define the final objectives or hypotheses without carrying out the business understanding or data understanding process. It is therefore important that these three processes are approached simultaneously, going back and forth until the objectives or the hypotheses are set. It is further noteworthy to mention that the first two stages take up to 80 percent of the effort (Feldens et al., 1998). Feldens et al. (1998) recommend to “...make analysis and pre-processing the most critical issue, as proper focusing and data preparation are considered 80% of the effort to successful discovery...”. Although Inmon (2002) and Turban et al. (2001) do not give a percentage, both agree that the first two stages take up most of the workload in order to obtain a valid and beneficial data mining result.

The various processes and their integration into the life cycle as well as the human resources that are responsible to create the process deliverable are described in the following paragraphs. Again, this is not a methodology and therefore the deliverable of this paper is not a complete list of activities or tasks that have to be carried out but rather a guideline for what role the process plays in the overall life cycle.

5.3.1 Business Understanding

This process is one of two fundamental processes of the DMLC. Not only because it is the starting point but also because of its influence and importance with regard to the overall data mining project. This process is necessary to set an objective or to formulate the hypothesis. In order to do so, the user has to understand how the business works, what the overall objectives of the business are and of course, what the rules of the business are. The following activities are necessary to cover the business understanding process:
• Determine the Business Objectives – Research the background, the business objectives, and business success criteria (CRISP-DM, 2000).
• Assess the overall situation – research the requirements, assumptions, and constraints, estimate the risk and contingencies and based on that research create a cost and benefit analysis (CRISP-DM, 2000).

• Determine basic business rules that are necessary for the data mining project and store them in the Information and Knowledge Repository (IKR).

The sharing of knowledge is important to achieve consistency and correctness in the anticipated data mining results (Turban et al., 2001). It is also important to mention that there should be a distinct difference between the IKR and any metadata related to the semantics of the data kept in the data warehouse/mart. The IKR is simply responsible for holding business rules and previously achieved data mining results (Lee et al., 1998) whereas the usual metadata is focused on the semantics of the data (Kimball et al., 1998). This differentiation is necessary to ensure integrity and reduce redundancy of these two storage devices.

The business analyst holds the main responsibility of this process. However, the data analyst, domain expert, and the strategic manager assist throughout this process. The IKR is used to access previously defined business rules or previously gained information or knowledge.

5.3.2 Data Understanding

Business understanding is the second of two fundamental processes in the DMLC. Data understanding is necessary to create a good platform for the data mining project. The following issues have to be addressed to fulfill the requirements of this process, assuming that the initial data collection has already taken place:

• Describe data (CRISP-DM, 2000) and store this information in the metadata repository of the data source (data warehouse or data mart) (Kimball et al., 1998). This contributes to the general data understanding and the semantics of the individual attributes themselves as well as their values and restrictions. It is, according to Inmon (2002), important to describe tables and their relation to each other. Without metadata the workload of the data mining project increases considerably (Inmon, 2002).

• The second important activity is to explore data (CRISP-DM, 2000) in order to more completely understand the contents of the data source and the data itself. Missing values, outliers, or skewed distributions can affect the data mining model and distort its results considerably (Fayyad et al., 1996a; Kimball et al., 1998; SAS, 2002). This is usually carried out with a small sample and not with the entire data set (Fayyad et al., 1996a).

• To know the volume of the data such as number of records or number of attributes is helpful to find the right sample size for the later processes (Fayyad et al. 1996a). Information about the initial data type is also necessary.

• Verification of the data quality is vital (Inmon, 2002) to determine what steps have to be carried out in the data preparation stage. If there is an issue with quality the user has to analyse how distorting this error is in order to take the appropriate action and whether this error can be removed or not.

The data analyst holds the main responsibility of this process. However, the business analyst and the data engineer assist throughout this process. The data warehouse/mart is used to access data and metadata. Again, this process should be carried out in
concurrence with the remaining two phases of this stage. Input from and to the business understanding processes is vital.

5.3.3 Objectives or Hypotheses Definition

The last process of this stage is the objectives/hypotheses definition process where the knowledge and outputs from the two previous processes are brought together and the final objectives or hypotheses of the data mining project can be defined. CRISP-DM (2000) warns of the confusion between business objectives and data mining objectives. A data mining result can lead towards the business objective, but cannot be the same.

For example:
- Business objective: e.g. To better co-ordinate linked bus journeys
- Data mining objective: e.g. Predict how many passengers will be in need of linked bus journeys of a certain route, considering journey behaviours and patterns over the last 4 years and demographic information (age, salary, and route).
- Data mining hypothesis: e.g. Knowing the number of required linked trips on a certain route would improve planning and scheduling processes.

This process can be further improved by stating the data mining success criteria (CRISP-DM, 2000). A success criterion could contain, for example, the level of predictive accuracy, the level of significance, the p-value or the power of the results. It is believed that an estimation of the result prior to the data mining execution could eliminate or identify impossible results and therefore decrease mistakes within or throughout the data mining life cycle.

To define an objective or a hypothesis is only mentioned by Collier et al. (1998b) and Lee et al. (1998). CRISP-DM (2000) mentions that determining the data mining goals as part of their business understanding process. The determination of, what CRISP-DM (2000) call ‘data mining goals’ is before the data understanding process and also not an individual process. To set the definition of the objectives or hypotheses as an individual process is considered critical and vital. Lee et al. (1998) states that the generation of a hypothesis is important but this gets lost in the unstructured way the life cycle is presented. Only Collier et al. (1998b) add the process of defining an objective to the life cycle. They further say that the objectives used in conjunction with the business understanding, can successfully reveal and discover new business insights. This was also confirmed by Turban et al. (2001).

This process concludes the cooperation of the following human resources: business analyst, data analyst, domain expert, data engineer, and strategic manager. Both data stores are accessed to increase data, information, and/or knowledge transparency.

5.3.4 Select and Sample

The goal and final deliverable of this process is to identify and select the target data, which is the data needed to carry out the data mining algorithm (Fayyad et al., 1996a). Selection and sampling data from a larger data source such as data warehouse or data mart is responsible for creating the required target data. Data selection includes manual and automatic selection of records, selection of attributes or features, as well as reducing the number of values, for example, by applying discretisation techniques (CRISP-DM, 2000; Klösgen, 2002b; Reinartz, 2002). The focus has to be on a subset of variables or data samples (Fayyad et al., 1996a). The discovery is then performed on
the data sample. According to Collier et al. (1998a) this process of data extraction does help to streamline and speed up the project life cycle. The selection and sampling process often has to be iterated numerous times in order to finally select a suitable and correct data sample (Kopanakis et al., 1999). The selected data set/sample will then be further processed and finally used for modelling and the main analysis work. Reimartz (2002) warns that the selection criterion not only includes relevance to the data mining goal, but also technical constraints, such as limits on data volume or data types.

The selection process covers the selection of attributes as well as records from one or more tables (Date, 2000). The decision on what data is used for the analysis is based on a number of criteria, including relevance to the data mining objective/hypotheses, data quality, and technical constraints (CRISP-DM, 2000).

5.3.5 Pre-Process Data

After selecting and sampling the suitable data set further steps are necessary to adjust the data to comply with the general and specific needs of the data mining model or algorithm. Although the data obtained from the data warehouse (or similar) has already undergone steps such as data migration, data scrubbing, and/or data auditing (Feldens et al., 1998), it still needs to be further processed to guarantee the most suitable and error free data set (Ganesh et al., 1996; Collier et al., 1998a; Feldens et al., 1998; Kopanakis et al., 1998). To improve the quality of the data it has to be cleansed from noise and outliers. Outliers are attribute values that did not come from the assumed population of data (Turban et al., 2001). This can include a non-numeric value when the user is only expecting numeric values or data items that fall outside the boundaries set by most of the other data items in the data set (Two Crows, 2002). Data can be referred to as noisy when it includes errors such as many missing or incorrect values or when there are irrelevant attributes (Collier et al., 1998a).

These constraints have to be removed in order to maximise the data quality and therefore the quality of the result. More ambitious techniques such as the estimation of missing data by modelling can further contribute to the improvement of data quality (Bloom, 2002; Reimartz, 2002). A strategy or proceedings for handling missing data items has to be created (Fayyad et al., 1996a). Many more filters exist to enhance the suitability of the data set.

5.3.6 Transform Data

In the transformation process, which follows the pre-processing phase, the data is constructed, integrated and formatted (CRISP-DM, 2000; Reimartz, 2002) to finally comply with all data mining model requirements. It has to be transformed to fit the essential rules implied by the model (Collier et al., 1998b). Transformation is the data reduction and projection – using dimensionality reduction or transformation techniques to condense the effective number of variables under consideration or to discover invariant representations of the data (Fayyad et al., 1996a). This could simply mean to eliminate unwanted or highly correlated fields so the results will be valid.

The last three processes are usually carried out by the data engineer and data miner who obtains assistance from the data analyst. The required data is accessed from the data warehouse/mart.
5.3.7 Data Mining

“...Today, data mining can make the difference in every industry and organisation throughout the world. You can mine your data and use the results to determine not only what your customers want, but to also predict what they will do...” (Noonan, 2000).

After all the data preparation has been concluded, the appropriate data mining model can be applied. During this process the information or knowledge is extracted from the main data set. The following list includes the most common types of information obtained by data mining algorithms:

- **Classification**: gather the significant characteristics of a certain entity or group (e.g. customers who changed their route of travelling)
- **Clustering**: recognises entities or groups that share a particular characteristic (This differs from classification in the sense that no predefined characteristic is given)
- **Association**: identifies relationships between events that occur at one time
- **Sequencing**: similar to association, except that the relationship is present over a period of time

Although the type of information that is aimed for is already known from a very early stage of the life cycle, it becomes crucial in supporting the decision what data mining model (e.g. decision trees, neural networks, memory based reasoning, etc.) should be used to carry out the analysis task. Most problem types can be solved by applying different or a combination of data mining models (Fayyad *et al.*, 1996b; Kimball *et al.*, 1998; Turban *et al.*, 2001).

The data miner’s main responsibility is to generate a data mining model and to run this model in order to produce the anticipated analysis result. The expertise of the domain expert supports this task.

5.3.8 Evaluation

The evaluation process is aimed at validating the result and putting it into context of the initial objectives or hypotheses. Many authors claim that the data mining process can produce an unlimited number of patterns hidden in the data and the evaluation process is solely responsible for selecting the useful results (Fayyad *et al.*, 1996a; Hsu *et al.*, 1998; Collier *et al.*, 1998a). Due to the fact that the DMLC has a clearly defined objective or hypothesis, it should not be necessary to choose from different results since the entire data mining algorithm is based on the objective or hypothesis. CRISP-DM (2000) and Shearer (2000) say that the evaluation process is mainly responsible for validation of the model and the results. Obviously one must keep the business rules and data mining objective or hypothesis in mind. This process also includes the overall review process and determines further steps such as reiteration (inner loop) or deployment. Each correct result is stored in the IKR, regardless of whether the outcome is relevant to the current business situation or not. If it is a correct result and therefore reflects a business rule, limitation, or boundary, it has to be stored in order to include it in any future data mining project. CRISP-DM (2000) states that the evaluation should include the search for incidentally generated results which could be beneficial for the business understanding process or could trigger another data mining project. It is important that the data mining result is understood.
The domain expert, the business analyst, and the strategic manager ensure that the evaluation of the results are carried out. The knowledge engineer assisted by the domain expert is responsible for the storage of the data mining and evaluation results.

5.3.9 Deployment

The deployment process covers the deployment activities in the event that the data mining result added to the business understanding and discovered new knowledge. Only Collier et al. (1998b) and CRISP-DM (2000) cite the deployment stage as a necessity of a data mining life cycle. Noonan (2000) and Battaglia (2001) say that Return on Investment (ROI) of data warehouses cannot be achieved without data mining and successful data mining cannot be attained without correct deployment. To get the information to the place where it is needed is the key (Noonan, 2000) but this can also become a difficult task. Data mining deployment enables communication about the knowledge and experience gained from data mining projects to the human resources interested in the new findings. Deployment of data mining results provides employees with the information they need, in a form they can use, where they need it and exactly when they need it (Battaglia, 2001).

After deploying the results it is important to analyse the impact of the deployment. Only Collier et al. (1998b) indicated this aspect in their life cycle. The meaning of the result could lead to deployment of a small sample – a test run. The analysis of that deployment would give an indication whether to introduce the findings of the data mining result on a larger scale or whether to abort the deployment. An example of this is the typical beer and nappies scenario. The result is that every Friday many customers tend to buy beer along with nappies. What the analyst does not know is what to do with that result. Should the beer be stocked beside the nappies or should it be kept on the opposite side of the supermarket hoping that the customer purchases more goods on the way to the beer or the nappies? Looking at the beer/nappies example, two possibilities arise. One, knowledge about a similar situation already exists and can be used to apply the necessary changes or, two, the result has to be deployed and the life cycle has to be repeated comprising the changes provoked by the impact of the deployment. By deploying the data mining results in a selective distribution, further knowledge can be gained which is filtered and analysed through a new data mining project. If for example 10 supermarkets locate the beer and nappies next to each other and a further 10 stores locate them as far from each other as possible the result generated through a new data mining project will reveal which of the options was more profitable and therefore will be deployed on a larger scale.

The deployment process is usually under the control and supervision of the strategic manager and the domain expert.

5.4 Human Resources

Only three (Ganesh et al., 1996; Lee et al., 1998; Kopanakis et al., 1999) of eight analysed life cycles consider human resources as vital and include or mention them in their life cycle description or diagrams. The following human resources were mentioned:

- Data Miner (Ganesh et al., 1996)
- Data Analyst (Ganesh et al., 1996)
- Knowledge Engineer (Kopanakis et al., 1999)
- Domain Experts (Lee et al., 1998)
After consulting various general systems development literatures (Hoffer et al., 2001; Whitten et al., 2001), indications that data mining projects require more qualified and specialised personnel covering the various aspects and skill requirements arising during a data mining project became more obvious. The following human resources have been identified as necessary to approach and implement a data mining project successfully. All identified human resources have been taken from Ganesh et al. (1996), Lee et al. (1998), Kopanakis et al. (1999), Berry et al. (1997), Hoffer et al. (2001), and Whitten et al. (2001):

- Business Analyst
- Data Analyst
- Data Engineer
- Domain Expert
- Data Miner
- Knowledge Engineer
- Strategic Manager
- Project Manager

The following paragraph will describe why these skill groups are considered as crucial for the success of a data mining project and what their tasks throughout the project are:

- The business analyst is responsible to understand the business aspects and plays the major role in generating the hypotheses or objectives in cooperation with the data analyst, domain expert, and the strategic manager. Whitten et al. (2001) defines the business analyst as “...a business analyst is a systems analyst that specialises in business problem analysis and technology-independent requirements analysis...”. The business analyst also evaluates the data mining result and qualifies its relevance to and impacts on the current or future business situation.

- A data analyst is someone who analyses database requirements and designs and constructs corresponding databases (Whitten et al., 2001). The data analyst is responsible for the data understanding process and plays the other major role in building the hypotheses or objectives in cooperation with the business analyst, domain expert, and strategic manager.

- Data engineers are computer professionals trained to elicit knowledge from domain experts (Hoffer et al., 1996) and their responsibilities are based on a specialised body of knowledge (Whitten et al., 2001). They are responsible for the entire data preparation stage. The inputs to the hypotheses or objectives. The data analyst will help and guide the data engineer through this task.

- A domain expert is a subject matter expert with relevant background, experience, or expertise in specific subjects. These can include individuals in research, academia, government, industry, or non-profit institutions (Wong, 1999). In many cases these 'experts' will be locally active individuals with indigenous knowledge of their communities, environment and cultures (Wong, 1999; Knublauch, 2002). Knublauch (2002) further says that the domain expert works closely with the knowledge engineer.

- The data miner is responsible for the generation of the data mining algorithm or model. It is also necessary to forward all requirements to the data engineer. Briefly, a data miner needs to know more than just database technology or statistics to perform efficiently. Data mining requires knowledge in the areas such as
database/data warehousing, domain expertise, statistics, and business processes (Luan, 2002; Mitkas, 2002).

- The knowledge engineer plays a critical role in ensuring that knowledge is not only obtained, but also represented and structured for optimal use and re-use (Brasza, 2000). The knowledge engineer is further responsible for storing, extracting and maintaining information and knowledge kept on the IKR. He/she contributes indirectly to the hypotheses or objectives generation and to the evaluation process.

- The strategic manager or planner is mostly concerned with crystallising the strategic issues that ought to be addressed (Thompson et al., 2001). Thompson et al. (2001) further add the responsibilities of providing data, conducting studies of industry and competitive conditions and to developing assessments of strategic performance. The strategic manager is mainly concerned with the evaluation and deployment of the results but also plays a minor role during the definition stage of the hypotheses or objectives. Knowing the business and its parameters extensively, the impact of the results and their deployment has to be evaluated by the strategic manager or planner.

- The project manager’s responsibility is to define, plan, direct, monitor, organise, staff, and control a project to develop an acceptable system (Hoffer et al., 1996; Whiten et al., 2001) and to execute a data mining project within the prearranged budget and time. He/she also supervises and controls all processes and interactions between the other human resources. The tasks comply with the general tasks of a project manager.

The human resource involvement diagram shown in Figure 3 has been developed as an aid to understand the involvement of the various human resources throughout a data mining project. It uses the following four symbols which are also shown in the associated legend:

Oval circle represents an entity and in this case the human resource that contributes to the tasks that have to be carried out throughout a process. There are seven different human resources shown in the diagram. The project manager is not included in the diagram as he/she supervises the entire project and is involved at least indirectly in every process execution. The subdivided squares represent a process. There are only 6 processes in this diagram summarising the 9 processes identified in the DMLC. The arrows indicate the involvement of the human resources and the data or information flows. The two parallel lines symbolise the data stores. Two different data stores are used throughout the diagram.

5.4.1 Human resource interaction and process matrices

Table 3 is an indirect deliverable from the diagram shown in Figure 3. It shows the interaction between the various human resources required throughout the data mining project. The two-dimensional matrix shows these human resources on the vertical as well as on the horizontal axis. The tick simply indicates that there is an interaction throughout the project, whereas no tick means the opposite – there is no direct or important interaction between the human resources. The matrix should assist in managing the project and also to ensure correct communication between the according parties.
Figure 2: Human Resource Involvement Diagram
Table 3: Human resource interaction Matrix

<table>
<thead>
<tr>
<th>Human Resources</th>
<th>Business Analyst</th>
<th>Data Analyst</th>
<th>Data Engineer</th>
<th>Domain Expert</th>
<th>Data Miner</th>
<th>Knowledge engineer</th>
<th>Strategic Manager</th>
<th>Project manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Analyst</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analyst</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Engineer</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Domain Expert</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Miner</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Manager</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 shows a matrix mapping the various human resources to the processes used in the data mining life cycle. This table should be seen as an addition to Figure 2.

After analysing the human resources involved and going through the steps of the data mining life cycle the following matrix emerged. The matrix (Table 4) maps the involvement of the human resources to the life cycle processes.

Table 4: Life Cycle Process – Human Resource Matrix

<table>
<thead>
<tr>
<th>Life Cycle Processes</th>
<th>Human Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business Analyst</td>
</tr>
<tr>
<td>Business Understanding</td>
<td>✓</td>
</tr>
<tr>
<td>Data Understanding</td>
<td>✓</td>
</tr>
<tr>
<td>Hypotheses/Objectives</td>
<td>✓</td>
</tr>
<tr>
<td>Select/Sample</td>
<td>✓</td>
</tr>
<tr>
<td>Pre-process</td>
<td>✓</td>
</tr>
<tr>
<td>Transformation</td>
<td>✓</td>
</tr>
<tr>
<td>Data Mining</td>
<td>✓</td>
</tr>
<tr>
<td>Evaluation</td>
<td>✓</td>
</tr>
<tr>
<td>Deployment</td>
<td>✓</td>
</tr>
</tbody>
</table>
5.5 Data Source

The data source has to be clearly identified. Many authors are unclear what the actual data source for a data mining project should be. Some say that any data store is sufficient to carry out the analysis (Fayyad et al., 1996a; Lee and Kerschberg, 1998), others do not even mention this issue throughout their life cycle (Collier et al, 1998b; CRISP-DM, 2000). On the other hand, many authors explicitly state the necessity to have a data warehouse (Ganesh et al., 1996; Feldens, 1998; Kopanakis and Theodoulidis, 1999).

We believe that any semi-structured source of data is more or less sufficient to carry out data mining operations (Hofmann et al., 2003). However, to ensure and enhance the level of quality in the anticipated results the data should be pre-processed and put into structured form, which usually complies with the characteristics of at least a small data mart or a data warehouse (Hofmann et al., 2003). Data warehouses and data marts are inevitable data sources for larger data mining projects (Inmon, 1996; Kimball et al., 1998; Turban and Aronson, 2001).

The issue of storing space and technology where newly gained information and knowledge will be kept is one of the most important issues of the data mining life cycle. An information knowledge repository (IKR) is a collection of both internal and external knowledge and is generally stored on a relational database in a way that enables efficient storing (Turban and Aronson, 2001). Turban and Aronson (2001) further state that the scope of the knowledge repository mainly depends on the type of knowledge that has to be stored. A brief overview will describe the three basic types of repositories found in practice (Davenport et al., 1998):

- External knowledge, such as competitive intelligence, which generally needs explanations and interpretation.
- Structured internal knowledge, such as research reports, presentations, and marketing materials, which is mostly explicit knowledge with some tacit knowledge.
- Informal internal knowledge, such as discussion databases, help desk repositories, and shared information databases.

The importance of creating and maintaining an information or knowledge repository has been identified. The term metadata for the repository is purposely circumvented since metadata is already present and used in relation to the data source. In practice both logical data stores can of course be kept in the same data warehouse (Lee and Kerschberg, 1998). Metadata is according to Kimball et al. (1998) all of the information in the data warehouse environment that is not the actual data itself. Metadata describes the data being investigated on the semantic, structural, statistical, and physical level in order to support tasks such as data validation and imputation, selection and application of data mining methods, and interpretation of the results (Klösgen, 2002b). Only Lee and Kerschberg (1998) mention the usage of an information and knowledge repository and insist on storing the newly gained information and knowledge.

5.6 Starting and Ending Point

A definite starting point is as important as a definite ending point of an individual cycle as well as numerous cycles (when iteration becomes necessary). Although most of the
analysed life cycles have a starting point as well as an ending point, it is often not clear where the cycle actually begins and even more importantly when and where the end of the cycle has been reached. Lee and Kerschberg (1998) have neither, which leads to more confusion than actual guidance throughout the data mining project. The only three life cycles where the ending point is chosen are Collier et al. (1998), CRISP-DM (2000) and Feldens (1998). However, in all three cases the ending point is defined as a process, which automatically means that data, information, or knowledge are getting lost. The authors believe that the ending point has to be a data store in order to store the outcome of the last process and to build an improved platform for the processes that access this data store throughout the life cycle. More important than simply having a starting and ending point is the placement of the two such important milestones. Where should the project begin and where does the life cycle finally end or lead back into the starting point? This is a very important question. Two different ways have been analysed:

- The life cycle starts with the data source which then has to be further processed (Fayyad et al., 1996a; Ganesh et al., 1996; Feldens, 1998; Kopanakis and Theodoulidis, 1999)
- The starting point is equivalent to the first process of the life cycle (Collier et al, 1998b; CRISP-DM, 2000)

The authors believe that the first process should indicate the starting point since the data source (as the word source indicates) should only be used as the basis of the life cycle – the initial input. The data source should therefore be in a stage where data can be extracted, fulfilling the requirements of the initial data mining processes. After determining the starting point (the first process), the life cycle has to clearly indicate where the loop is closed or where the life cycle finally ends.

5.7 Categorisation of Processes into Stages

Categorised processes add to the understandability and task cooperation as well as distribution. Kopanakis and Theodoulidis (1999) were the only authors who subcategorised their processes. The authors believe that this helps to understand the life cycle significantly since individual categorisations can be analysed separately. Feldens (1998) says that every data mining life cycle consists of 3 separate stages which are ‘pre-processing’, ‘data mining’, and ‘post-processing’. The authors agree with that statement, but disagree with the terminology. The separation will also help in setting milestones and assigning human resources to various tasks within the process or categorisation. In larger data mining projects different managers can be assigned to be responsible for the various processes in one subcategory.

5.8 Iteration

The iteration of the life cycle should include the option to iterate through inner loops as well as to iterate the entire life cycle. Inner loops are necessary to get a data mining result correct without going through processes that remain unchanged. For example the data selection or data mining algorithm may change throughout a project whereas the hypothesis or objective remain the same. Often more than one iteration is necessary to achieve the anticipated result and to prove or disprove the hypothesis or objective (Klösgen, 2002a). The feature ‘forward skipping’ is when certain processes can be skipped throughout the data mining projects. This has been defined by the authors as a disadvantage and will therefore not be supported in the new DMLC. A sequential flow
will be present at any given time in order to contribute to the transparency and comprehensiveness of the life cycle.

5.9 Quality

The quality of the life cycle and its outcome is seen as one of the most important objectives. Most authors forget about quality assurance and therefore minimise the usefulness of the result or outcome. According to Fitzpatrick (1996) quality is the “...extent to which an industry-defined set of desirable features are incorporated into a product...”. To introduce quality into a life cycle is rather difficult since the quality of the outcome is determined by the handling of the activities within the processes. However, a good data and process flow between the various processes controlled by the suitable skill group can considerably improve the quality of the outcome. Since all processes are dependent on their deliverables, the quality of these deliverables is crucial to the quality and therefore the success of the project. In order to ensure the quality of the deliverables a methodology was introduced that ensures the successful completion of each process and thus the complete data mining life cycle. The methodology is a variation of the Plan Do Check Act cycle (PDCA Cycle) which is also known as the Deming Cycle (Deming, 2000). Although this control circle is usually used on a larger scope such as entire projects rather than individual processes, the PDCA methodology is very suitable to control each of the processes. The methodology is also used by ISO 12207 which is the industry standard for software development life cycles (ISO, 2000). Other overall objectives in creating the life cycle are to fulfil the following characteristics:

- Industry neutral (CRISP-DM, 2000): The aim is to develop a generic life cycle that applies to all industries. This is seen as an advantage since the life cycle has to incorporate issues applying to all industries whereas an industry specific life cycle might not include aspects necessary for data mining projects of neighbouring industries.

- Application neutral (CRISP-DM, 2000): The aim is to create a generic life cycle that applies to all applications used for the execution of the data mining project. The same advantage applies as mentioned above: since the life cycle aims to be application neutral, it has to incorporate all issues no matter what application(s) are used to carry out the project.

- Tool neutral (CRISP-DM, 2000): The aim is to create a tool neutral life cycle that incorporates all issues irrespective of the tools used to execute the data mining project.

- Easy to comprehend: The comprehensibility of the life cycle is vital. The user should be able to apply the life cycle to the data mining problem type without having to do much background reading. Again, the life cycle must not be seen as a methodology and does not act as a detailed step-by-step guide to carry out a data mining project. It is rather to set the cornerstones and the data or process flows between these. Even users who have a general IT understanding but not a specific knowledge about data mining should be able to comprehend the life cycle.

This section examined the guidelines determined in the life cycle analysis and gave a detailed description of what the DMLC has been based on.
6 Conclusions

The exploration and classification of eight life cycles built the foundation of the Data Mining Life Cycle (DMLC). The life cycles have been qualified for their usage and suitability for implementing data mining projects. This analysis led to the guidelines for the design and development of the DMLC. The advantages, disadvantages and characteristics of each life cycle contributed significantly to the overall outcome.

The definition and visualisation of the involvement of human resources and their skill groups in a data mining project contributed to the completeness and comprehensiveness of the DMLC. The DMLC aims to be process, people and data focused. The development phases of a generic data mining life cycle were the core part of this paper. The final version of the DMLC was built on various guidelines that were derived from an extensive life cycle analysis. Characteristics, advantages and disadvantages were the foundations of these guidelines.

The data aspect introduced the Information and Knowledge Repository (IKR) which stores all analysis findings as well as business rules and requirements. The data flow as well as the data content is different to that seen by other authors. Only Lee and Kerschberg (1998) introduced a repository which is, however, mainly focused on database and data warehouse information and not on the actual discovered knowledge and therefore the business knowledge. The life cycle is built and based on data warehouses or data marts, which ensure better data integrity and quality than OLTP systems.

The processes as well as the process flows are more comprehensive and complete than generally displayed in other life cycles as identified throughout the paper. This is in accordance with the PDCA methodology, which ensures the quality of each process and therefore the overall quality from a process point of view.

To see the data mining life cycle from a human resource point of view contributes considerably to the DMLC as well as to the present body of knowledge. The listing of all skill groups involved in a general data mining project indicates the multidisciplinary nature of such projects.

The main contribution however is the product of these three aspects – the complete life cycle, which shows the interactions of the three aspects as well as all other features. The DMLC consists of nine different processes, various iteration possibilities, two different data sources, eight different skill groups, and a methodology that ensures the successful completion of each life cycle (PDCA).

It is believed that the life cycle can contribute significantly to data mining projects when applied correctly. Project management is a key success factor to ensure the expected outcome with a predefined budget. The DMLC and its underlying methodology focuses on all areas arising throughout a data mining project and can contribute to managing complexity, is able to improve project outcome and is therefore an information technology tool that can be used successfully to improve strategic management.
References

Collier, K. et al. (1998a) ‘A Perspective on Data Mining’, Centre for Data Insight, Northern Arizona University, USA, pp 2-4.

Collier, K. et al. (1998b) ‘A Perspective on Data Mining’, Centre for Data Insight, Northern Arizona University, USA, pp 4-5.

Fayyad, U., Piatesky-Shapiro, G. and Smyth, P. (1996b) ‘From Data Mining to Knowledge Discovery: An Overview’, Advances in Knowledge Discovery and Data Mining, AAAI Press, USA.

