2012-01-25

Economic Case for Early Adoption of Facilities Management - Presentation

Barry McAuley

Technological University Dublin, barrymcauley@gmail.com

Follow this and additional works at: https://arrow.dit.ie/beschrecon

Part of the Construction Engineering Commons

Recommended Citation

McAuley, B. Economic Case for Early Adoption of Facilities Management. Joint CIB W070, W092 & Tg72 International Conference on Delivering Value to the Community, 2012.

This Presentation is brought to you for free and open access by the School of Surveying and Construction Management at ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie, brian.widdis@dit.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
The Economic Case for Early Adoption of Facilities Management

By

Barry McAuley MSc, BSc (H), Dip.Eng
Dr. Alan V. Hore
Dr Roger West
Dr John Wall

Joint CIB W070, W092 & TG72
International Conference on Facilities Management, Procurement Systems and Public Private Partnership

Dublin Institute of Technology
THE IRISH ECONOMY

- €38.4 billion in 2007 / €10.5 billion by the end of 2011
- €300 million a year through simple actions - SEI
- State contracts worth up to €16 billion a year – Irish Government
- Reduce greenhouse gas emissions by up to 20% by the year 2020 – EU
- Traditional method of construction needs to be re-engineered
Mixed Methodology

Case Study
Interviews
Questionnaire
CASE STUDY

- Opened in 2007 and was constructed for an initial €60 million

- Financial plan proposed saving initiatives in the region of €1.2 million over three years

- Better Energy Management Plan totaling €182,000 that generated savings of up to € 360,363 over the three year period

- Interviews with Current Facilities Management Team and former Construction Management Team
BETTER ENERGY MANAGEMENT PLAN

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Initial Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The changing of all current lights in the downstairs car park to PIRS. This will result in a microwave signal being emitted and in turn will optimize the efficiency of the lighting, as it will only be used on a needs basis.</td>
<td>€9,141</td>
<td>€27,215</td>
</tr>
<tr>
<td>2</td>
<td>Replace all 50watt A.R. 11type lamps with 35Watt energy efficient type.</td>
<td>€6,873</td>
<td>€10,039</td>
</tr>
<tr>
<td>3</td>
<td>Replacement of 120 x 35 Watt capsule halogen downlighter fittings in Consultant suites and throughout the building to 2 Watt LED downlight with equal Lux level performance.</td>
<td>€8,591</td>
<td>€10,479</td>
</tr>
<tr>
<td>4</td>
<td>Modification of all corridor and back house light fittings to incorporate 2 tube electronic start T5 tubes in place of 4 tube T8 type. This will reduce the power consumption by approximately 50% and increase the lifespan of the fittings and components by approximately 50%.</td>
<td>€13,233</td>
<td>€41,454</td>
</tr>
<tr>
<td>5</td>
<td>Installing key switches throughout the building that will prevent the staff and patients from leaving unnecessary lights on. This will enable reduction of electrical waste.</td>
<td>€7,900</td>
<td>€31,971</td>
</tr>
<tr>
<td>6</td>
<td>Reconfiguration of the boiler plant to incorporate a combined Heat and Power system. The proposed installation of a CHP system will eliminate the three boilers which have no connection between the domestic hot water calorifiers and the main headers, resulting in significant savings in gas.</td>
<td>€32,905</td>
<td>€47,916</td>
</tr>
<tr>
<td>7</td>
<td>Installation of two port valves on the existing LTHW and their associating controllers. This will prevent boilers becoming heat sinks.</td>
<td>€10,590</td>
<td>€29,040</td>
</tr>
<tr>
<td>8</td>
<td>Updating the microprocessors in the BMS to encompass a complete re-programming of the existing BMS and include every item of plant in the facility. Also the installation of additional BMS control instruments and the associated I/O cards and programming. This will allow closer control and interaction between the user and the system on the Plant and Equipment set points.</td>
<td>€29,755</td>
<td>€57,692</td>
</tr>
<tr>
<td>9</td>
<td>Design and installation of a new control system for the compressors that will create an “on demand” scenario ensuring the compressors only operate when needed.</td>
<td>€16,790</td>
<td>€15,700</td>
</tr>
<tr>
<td>10</td>
<td>Advanced training on critical equipment i.e. BMS, Medical Equipment, wheel chairs.</td>
<td>€14,500</td>
<td>€24,100</td>
</tr>
<tr>
<td>11</td>
<td>Medical Air Compressor re-design and re-build.</td>
<td>€16,790</td>
<td>€15,700</td>
</tr>
</tbody>
</table>

Installation / Cost Breakdown

- **Consultancy Design**: €100
- **Ballast Change 320 fittings**: €5,009.60
- **Electronics starters for each fitting 320 x €1.99**: €637
- **Removal of WEEE disposal of existing ballast 320 x €2.50**: €800
- **Purchase new T5 Tubes 640 x €3.95**: €2,997.60
- **Replace T8 Lamp Holders with T5 Lamp Holders (duals x 320 fittings) =1280 x €1.99**: €254.20
- **Testing and Commissioning**: €950

Total Installation Costs: €13,233

Savings Breakdown

Original cost to power T4 tube to T8 Modular tubing (Get cost Below)

- 320 fittings x 122 watts (4 x 28w tubes) = 35.84 kw
- 35.84 KW x 12 hours/day = 430kw so 35.84kw x 0.17ct = €73.10 per day

Cost year 1: 73.10 x 182 (days) = €13,530.42
Cost year 2: 73.10 x 365 (days) = €21,281.90
Cost year 3: 73.10 x 365 (days) = €21,281.90

Total original cost over 2.5 years: €38,843

Modified to T5 Electronic Fittings to reduce power consumption to 52 Watts per fitting resulting in a net saving in approx 50% of running costs

Savings year 1: €6,652.10
Savings year 2: €13,340
Savings year 3: €13,340

New approximate cost saving on power over 2.5 years: €53,332

Saving on relamping is 50% approx per annum

Original Cost 320 x 4 - 1280 lamps per year @ $3.20 each = $6096

Lamps Year 1: €2048
Lamps Year 2: €4096
Lamps Year 3: €4096

New Cost year 1: €1024
New Cost year 2: €2048
New Cost year 3: €2048

New Calculated savings on lamp changes over 2.5 years: €5,120

New installed ballast fittings will reduce the placement rate over the next 2.5 year period

- Estimated 40% of ballast fitting = 128 new ballasts @ 15.62 per unit = €1,999.36
- Total ballast replacement cost = 320 ballasts @ 15.62 per unit = €5,001
- Hence total saved on ballast expenditure over 2.5 years = €5,001 - €1,999.36 = €3,001.64

New calculated savings on ballast changes over 2.5 years: €3,001.64

New savings benefits achieved from modification of fittings: €41,453.54
CASE STUDY RESULTS

- Poor design choices and inadequate planning

- Energy Management Scheme could have been realised during construction

- Early collaboration between the Facilities Manager and the design team, would have been reduced life cycle costs.

- The practical approach by the Facilities Manager, could have helped to avoid counterproductive design details

- Facilities Manager suffering from a managerial identity crisis having been confined to the lower levels of Management
QUESTIONNAIRE

- Online Survey through Survey Monkey

- Target Audience
 - Facility Managers
 - Project Managers
 - Architects

- 5 Different Sections
 - Life Cycle Cost
 - Best Environmental Practice
 - A More Innovative Approach
 - Role in the Construction Process
 - Business Function

- A total of 51 Replies
QUESTIONNAIRE RESULTS

- All of the respondents agreed in some form that the Facility Manager should be introduced into the construction management stage at an early level.

- 98% agreement the Facilities Manager if introduced at the design and construction stage can help highlight best environmental practices.

- 92% agreed that a better approach would be the partnering of the Project and Facilities Manager along with the Design Team

- Facilities Manager would best serve if they were integrated into the design stage in a consultant role.

- 86% of the respondents believed that irrespective of its potential as a business strategy, it was still not considered an actual profession
Mixed Methodology Results

- Early collaboration between the Facilities Manager and the design team would have resulted in reduced life cycle costs.

- Adopt a more practical approach in avoiding counterproductive designs in favour of a more passive building.

- Innovative approach of partnering the Project and Facilities Manager along with the Design Team throughout the Construction Stage.

- A vital experience to external visitors and was central to the clinics business goals.

- Facilities Departments are still only viewed at an operational level and is still not considered an actual profession.
CONCLUSION

- Facilities Manager, if introduced into the beginning of a structures lifecycle, has the potential to increase sustainability and in the process promote best construction practice.

- Operational needs of the client are addressed at the onset of construction

- Continue to play the silent partner, unless it begins to promote itself as the key business strategy.

- FM process begins to move towards creating interactive capabilities, in order, to portray its financial worth to an organisation
QUESTIONS