1936

Mechanical Engineering: Prospectus of Courses Session 1936-37

City of Dublin Vocational Education Committee

Follow this and additional works at: http://arrow.dit.ie/prosbt
Part of the Curriculum and Instruction Commons

Recommended Citation
Prospectus: Bolton Street. 52.
http://arrow.dit.ie/prosbt/52
City of Dublin
Vocational Education Committee

City of Dublin Technical Schools

Session
1936-37

MECHANICAL ENGINEERING
PROSPECTUS OF COURSES
BOLTON STREET AND RINGSSEND
1936.

SEPT. 7, MONDAY Whole-time Day Schools open for enrolment.
Day Apprentice School resumes work.

SEPT. 14, MONDAY Whole-time Day Schools commence work and Part-time Day Classes open for enrolment.

SEPT. 21, MONDAY Evening Classes open for enrolment and Part-time Day Classes commence work.

SEPT. 28, MONDAY NOV. 1, SUNDAY SEPT. 21, MONDAY Evening Classes commence work.

DEC. 8, MONDAY Whole-time Day Schools—excepting Day Apprentice School and Special Classes—closed.

DEC. 12, SATURDAY Teaching work in Whole-time Day Schools ceases (excepting Day Apprentice School and Special Classes).

DEC. 14, MONDAY Term Examinations in Whole-time Day Schools commence.

DEC. 18, FRIDAY 1937. Schools close for Christmas Vacation.

JAN. 4, MONDAY All Classes resume work after Christmas Vacation.

JAN. 6, WEDNESDAY Feast of Epiphany. Whole-time Day Schools—excepting Day Apprentice School and Special Classes—closed.

MAR. 5, FRIDAY Land Surveying and Levelling Course begins.

MAR. 17, WEDNESDAY St. Patrick’s Day. Schools closed.

MAR. 20, SATURDAY Land Surveying Field Work begins. Motor Car Driving Lessons begin.

MAR. 23, TUESDAY Last meeting of classes before Easter Vacation.

MAR. 31, WEDNESDAY All classes resume work after Easter Vacation.

MAY 1, SATURDAY Evening Classes close—excepting Special classes.

MAY 3, MONDAY Evening Written Sessional Examinations commence (except for Special classes).

MAY 6, THURSDAY Ascension Day. Whole-time Day Schools—excepting Day Apprentice School and Special Classes—closed.

MAY 17, MONDAY Whit-Monday. Schools closed.

MAY 27, THURSDAY Feast of Corpus Christi. Whole-time Day Schools—excepting Day Apprentice School and Special Classes—closed.

JUNE 26, SATURDAY Teaching work ceases in Whole-time Day Schools—excepting Day Apprentice School and Special classes.

JUNE 28, MONDAY Sessional Examinations commence in Whole-time Day Schools—excepting Day Apprentice School and Special classes.

JUNE 29, TUESDAY Feast of Saints Peter and Paul. Whole-time Day Schools—excepting Day Apprentice School and Special classes—closed.

JULY 3, SATURDAY Whole-time Day Schools and Part-time Domestic Economy classes close—excepting Day Apprentice School and Special classes.

JULY 17, SATURDAY Day Apprentice School and Special classes close.
Local Sub-Committees—(Continued)

BOLTON STREET.

MR. O. HYNES, 6 St. Kevin’s Road, S.C.R.

MR. M. ROWAN, 52 Capel Street.

MR. M. SOMERVILLE, 1 O’Curry Road, S.C.R.

MR. W. J. WHELAN, 35 Lower Gardiner Street.

MR. SEAN CAMPBELL, 35 Lower Gardiner Street.

MR. GEORGE DOYLE, 32 East Essex Street.

MR. THOS. DARCY, 91 Ceannt Fort, Mount Brown.

MR. R. MURPHY, Messrs. Hopkins and Hopkins, O’Connell Street.

MR. J. G. WILSON, 13 Sackville Place.

MR. T. A. CRAMPTON, Hammersmith Works, Ballsbridge.

Pembroke (Ballsbridge and Ringsend).

COUNCILLOR MRS. M. WALSH, 16 Elgin Road.

L. G. SHERLOCK, L.L.D., 21 Parliament Street.

REV. J. HOOKE, c.c., St. Mary’s, Haddington Road.

MR. J. J. Beggan, c/o. McEntagart Bros., Percy Place.

PROFESSOR B. F. SHIELDS, 87 Pembroke Road.

MR. WILLIAM HANLON, 29 Home Villas, Donnybrook.

KEVIN STREET.

MR. O. HYNES, 6 St. Kevin’s Road, S.C.R.

MR. M. SOMERVILLE, 1 O’Curry Road, S.C.R.

REV. M. GERAGHTY, c.c., The Presbytery, High Street.

COUNCILLOR D. D. HEALY, 40 Usher’s Quay.

MR. M. P. ROWAN, 52 Capel Street.

MR. J. W. KELLY, 16 St. Joseph’s Parade, Nelson Street.

MR. J. ANDREWS, B.Sc., Messrs. A. Guinness, Son and Co., James’s Street.

CHATHAM ROW (School of Music).

COUNCILLOR MRS. M. WALSH, 16 Elgin Road.

COUNCILLOR M. O’SULLIVAN, 74 Ballymun Road, Glasnevin.

COUNCILLOR MRS. T. CLARKE, Baymount, 95 Clontarf Road.

MADAME KATHLEEN RODDY, Broadcasting Station, Henry Street.

MR. W. J. WHELAN, 35 Lower Gardiner Street.

MR. M. P. ROWAN, 52 Capel Street.

MR. J. T. DOYLE, Osborne Lodge, Mount Prospect Road, Dollymount.

MR. THOS. MURPHY, 16 Cowper Road.

MR. JOS. O'REILLY, 9 Lower Leeson Street.

L. G. SHERLOCK, L.L.D., 21 Parliament Street.

ADVISORY COMMITTEES

MASTER JEWELLERS.

Mr. G. THORNLEY.

MR. J. SHEERIN.

MR. L. BEIRLEY.

MR. SLEATOR.

MASTER TAILORS.

Mr. E. J. MCWILLIAM.

MR. W. O'CONNOR.

MR. W. SCOTT.

MR. R. BOYD.
GENERAL NOTICES

ENTRANCE EXAMINATIONS, FEES, REGULATIONS.

Students, on enrolment, may be required, at the discretion of the Principal, to sit for an Entrance Examination. Introductory Courses are provided for those not sufficiently qualified to enter a full Technical Course.

Fees: per Session.

Courses in Mechanical Engineering and Motor Car Engineering
Introductory Course
Additional Course subjects
Single subjects

7/6 for Course.
2/6 for Course.
2/6 each.
7/6 each.

Technical students may take a class in Irish and in Physical Training for an additional fee of 2/6 per class.

Students who through obtaining employment are unable to continue in attendance at the Whole-time Day School Courses of the City of Dublin Vocational Education Committee will be admitted to approved Evening School Courses, without fees, up to the value of the Day School Fees paid.

The same concession may be extended to other students who have left the Day School Courses, if the reasons for their non-attendance at the Day School Classes are considered by the Principal to be adequate.

Applicants for admission to Courses or Classes must be at least fourteen years of age.

The Trade Classes are primarily intended for those engaged in the several trades. Others will not be admitted before November 8th, and then only if there be room, and on payment of a quadruple fee.

A Laboratory or Workshop Class can only be taken in conjunction with an approved Lecture or Drawing Class. No student will be allowed to continue in a Laboratory or Workshop Class if his attendance at the Lecture or Drawing Class is unsatisfactory.

A Class may be discontinued if an insufficient number of students join or attend; the number of evenings allotted weekly to a Class may be reduced if there is a falling off in the attendance. The right is reserved to close Classes for any other reason whatever.

Students must make good any damage done by them.

Strict order must be observed at all times within the precincts of the Schools.

A complete course of study in any section generally occupies from three to four years.

Where possible, separate Classes for journeymen will be arranged in Trade subjects.

The Courses in Mechanical Engineering, Engineering Workshop Practice, Metal Plate Work and Motor Car Engineering are arranged in connection with the Technical Examinations Syllabus of the Department of Education. They are not to be considered as arbitrary, and the subjects may be varied with the sanction of the Principal.
COURSES AND TIME TABLES
Bolton Street

<table>
<thead>
<tr>
<th>No. of Course</th>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Room</th>
<th>Teacher</th>
<th>No. of Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>Arithmetic</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>B 20</td>
<td>M. Burns</td>
<td>2</td>
</tr>
<tr>
<td>3B</td>
<td>Machine Drawing—L.A. or</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>A 5</td>
<td>H. C. Fitzgerald</td>
<td>4</td>
</tr>
<tr>
<td>4B</td>
<td>Machine Drawing—II.</td>
<td>Thurs.</td>
<td>7.30-9.30</td>
<td>B 57</td>
<td>E. J. Dowling</td>
<td>9</td>
</tr>
<tr>
<td>5B</td>
<td>Machine Construction—III</td>
<td>Tues.</td>
<td>7.30-9.30</td>
<td>A 5</td>
<td>E. E. J. O'Brien</td>
<td>6</td>
</tr>
<tr>
<td>6B</td>
<td>Machine Construction—IV</td>
<td>Tues.</td>
<td>7.30-9.30</td>
<td>A 5</td>
<td>A. M. MacLoughlin</td>
<td>17</td>
</tr>
<tr>
<td>7B</td>
<td>Machine Design—V</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>C 33</td>
<td>M. Burns</td>
<td>10</td>
</tr>
<tr>
<td>8B</td>
<td>Machine Design—VI</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>B 22</td>
<td>M. Burns</td>
<td>12</td>
</tr>
<tr>
<td>10B</td>
<td>Engineering Workshop—I</td>
<td>Wed., Th.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, J. J. Redmond</td>
<td>22</td>
</tr>
<tr>
<td>11B</td>
<td>Engineering Workshop—II</td>
<td>Tues.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, J. J. Redmond</td>
<td>23</td>
</tr>
<tr>
<td>12B</td>
<td>Engineering Workshop—III</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>B 18</td>
<td>J. J. Hughes</td>
<td>11</td>
</tr>
<tr>
<td>13B</td>
<td>Engineering Workshop—IV</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, R. Bent</td>
<td>24</td>
</tr>
<tr>
<td>14B</td>
<td>Patternmaking—L</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>29</td>
</tr>
<tr>
<td>15B</td>
<td>Patternmaking—II</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>27</td>
</tr>
<tr>
<td>16B</td>
<td>Patternmaking—III</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>28</td>
</tr>
<tr>
<td>17B</td>
<td>Machine Drawing—II</td>
<td>Thurs.</td>
<td>7.30-9.30</td>
<td>A 5</td>
<td>G. M. Burns</td>
<td>15</td>
</tr>
</tbody>
</table>

MECHANICAL ENGINEERING TRADES COURSES—ENGINEERING WORKSHOP PRACTICE

<table>
<thead>
<tr>
<th>No. of Course</th>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Room</th>
<th>Teacher</th>
<th>No. of Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10B</td>
<td>Engineering Workshop—I</td>
<td>Wed., Th.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, J. J. Redmond</td>
<td>22</td>
</tr>
<tr>
<td>11B</td>
<td>Engineering Workshop—II</td>
<td>Tues.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, J. J. Redmond</td>
<td>23</td>
</tr>
<tr>
<td>12B</td>
<td>Engineering Workshop—III</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>B 18</td>
<td>J. J. Hughes</td>
<td>11</td>
</tr>
<tr>
<td>13B</td>
<td>Engineering Workshop—IV</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 7</td>
<td>J. Kelly, R. Bent</td>
<td>24</td>
</tr>
</tbody>
</table>

BRASSFINISHING

<table>
<thead>
<tr>
<th>No. of Course</th>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Room</th>
<th>Teacher</th>
<th>No. of Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>23B</td>
<td>Brassfinishing, Practical</td>
<td>Mon. Fri.</td>
<td>7.30-9.30</td>
<td>D 5</td>
<td>W. Murtagh</td>
<td>31</td>
</tr>
<tr>
<td>24B</td>
<td>Boilermaking, Lectures</td>
<td>Thurs.</td>
<td>7.30-9.30</td>
<td>B 1</td>
<td>R. Bryan</td>
<td>32</td>
</tr>
<tr>
<td>25B</td>
<td>Boilermaking, Practical</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>D 9</td>
<td>R. Bryan</td>
<td>33</td>
</tr>
<tr>
<td>30B</td>
<td>Smithwork, Practical</td>
<td>Thurs.</td>
<td>7.30-9.30</td>
<td>D 9</td>
<td>A. J. Ward</td>
<td>34</td>
</tr>
</tbody>
</table>

METAIR WORK

<table>
<thead>
<tr>
<th>No. of Course</th>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Room</th>
<th>Teacher</th>
<th>No. of Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>34B</td>
<td>Metal Plate Work, Lecture</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>C 22</td>
<td>J. Dooley</td>
<td>37</td>
</tr>
<tr>
<td>35B</td>
<td>Metal Plate Work, Practical</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>D 2</td>
<td>J. Dooley, T. J. Ryan</td>
<td>38</td>
</tr>
</tbody>
</table>

PATTERNMAKING

<table>
<thead>
<tr>
<th>No. of Course</th>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Room</th>
<th>Teacher</th>
<th>No. of Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>13A</td>
<td>Patternmaking—L</td>
<td>Mon.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>29</td>
</tr>
<tr>
<td>14A</td>
<td>Patternmaking—II</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>27</td>
</tr>
<tr>
<td>15A</td>
<td>Patternmaking—III</td>
<td>Fri.</td>
<td>7.30-9.30</td>
<td>D 4</td>
<td>E. J. Kennedy</td>
<td>28</td>
</tr>
</tbody>
</table>

Students are recommended to add a suitable class in Mathematics.
TECHNICAL SCHOOL,
RINGSEND

TEACHING STAFF

MARTIN KEADY, A.R.C.SCI., B.SC. (ENG.), LOND.—Principal.

THE PRINCIPAL.

S. O. EVANS.

D. R. HARTE, B.A., B.E., A.R.C.SCI.

I. LAMBERT, B.A. (HONS.), M.SC., H.DIP.ED.

B. DEVLIN, B.E., A.R.C.SCI.

P. J. O'HAGAN.

J. R. EVANS.

J. J. DOOLEY

D. FLYNN.

P. V. HOBBS.
COURSES AND TIME TABLES

RINGSEND

MOTOR CAR ENGINEERING COURSES

TRADE CERTIFICATE COURSE

(Trade Apprentices and Mechanics)

JUNIOR STAGE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Section</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Car Engineering (Lecture)</td>
<td>B</td>
<td>Monday</td>
<td>7.0-8.0</td>
<td>D. Flynn</td>
<td>42</td>
</tr>
<tr>
<td>Garage Practice</td>
<td>B</td>
<td>Monday</td>
<td>8.0-9.0</td>
<td>S. O. Evans</td>
<td>51</td>
</tr>
<tr>
<td>Motor Workshop Practice</td>
<td>B</td>
<td>Wednesday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>47</td>
</tr>
<tr>
<td>Electricity</td>
<td>B</td>
<td>Thursday</td>
<td>7.30-9.30</td>
<td>D. R. Harte</td>
<td>53</td>
</tr>
<tr>
<td>SECOND YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Car Engineering (Lecture)</td>
<td>D</td>
<td>Friday</td>
<td>7.0-8.0</td>
<td>D. Flynn</td>
<td>45A</td>
</tr>
<tr>
<td>Garage Practice</td>
<td>D</td>
<td>Friday</td>
<td>8.0-10.0</td>
<td>S. O. Evans</td>
<td>51</td>
</tr>
<tr>
<td>Motor Workshop Practice</td>
<td>D</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>47</td>
</tr>
<tr>
<td>Electricity</td>
<td>D</td>
<td>Wednesday</td>
<td>7.30-9.30</td>
<td>D. R. Harte</td>
<td>54</td>
</tr>
</tbody>
</table>

SENIOR STAGE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Section</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIRD YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage Practice</td>
<td>F</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>S. O. Evans</td>
<td>52</td>
</tr>
<tr>
<td>Motor Workshop Practice</td>
<td>F</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>51</td>
</tr>
<tr>
<td>Electricity</td>
<td>F</td>
<td>Friday</td>
<td>7.30-9.30</td>
<td>D. Flynn</td>
<td>55</td>
</tr>
<tr>
<td>FOURTH YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage Practice</td>
<td>G</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>S. O. Evans</td>
<td>52</td>
</tr>
<tr>
<td>Motor Workshop Practice</td>
<td>G</td>
<td>Thursday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>48</td>
</tr>
<tr>
<td>Electricity</td>
<td>G</td>
<td>Friday</td>
<td>7.30-9.30</td>
<td>D. R. Harte</td>
<td>56</td>
</tr>
</tbody>
</table>

FOURTH YEAR.

TECHNOLOGICAL CERTIFICATE COURSE.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Section</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Car Engineering (Lecture)</td>
<td>A & C</td>
<td>Monday</td>
<td>7.0-8.0</td>
<td>D. Flynn</td>
<td>42</td>
</tr>
<tr>
<td>SECOND YEAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Car Engineering (Lecture)</td>
<td>A</td>
<td>Wednesday</td>
<td>7.30-9.30</td>
<td>S. O. Evans</td>
<td>54</td>
</tr>
<tr>
<td>Electrical Science</td>
<td>C</td>
<td>Thursday</td>
<td>7.30-9.30</td>
<td>D. Flynn</td>
<td>57</td>
</tr>
</tbody>
</table>

Students who desire to present themselves for the written examination of the Trade Certificate Course, are advised to attend also for instruction in Machine Drawing and Practical Mathematics.
MECHANICAL ENGINEERING COURSES

TRADE CERTIFICATE COURSE
(Trade Apprentices and Mechanics)

FITTER'S WORK AND TURNER'S WORK.

JUNIOR STAGE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitting and Turning</td>
<td>Wednesday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>22</td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitting and Turning</td>
<td>Thursday</td>
<td>7.30-9.30</td>
<td>J. R. Evans</td>
<td>23</td>
</tr>
</tbody>
</table>

Students who desire to present themselves for the written examination of the Trade Certificate Course are advised to attend also for instruction in Machine Drawing and Practical Mathematics.

TECHNOLOGICAL CERTIFICATE COURSE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Friday</td>
<td>7.30-9.30</td>
<td>I. Lambert</td>
<td>58 & 60</td>
</tr>
<tr>
<td>Machine Drawing</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>B. Devlin</td>
<td>4</td>
</tr>
<tr>
<td>Practical Mathematics</td>
<td>Monday</td>
<td>7.30-9.30</td>
<td>P. J. O'Han</td>
<td>11</td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Monday</td>
<td>7.30-9.30</td>
<td>I. Lambert</td>
<td>59 & 61</td>
</tr>
<tr>
<td>Machine Drawing</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>B. Devlin</td>
<td>5</td>
</tr>
<tr>
<td>Practical Mathematics</td>
<td>Thursday</td>
<td>7.30-9.30</td>
<td>P. J. O'Han</td>
<td>12</td>
</tr>
</tbody>
</table>

OXY-AcETYLENE WELDING

<table>
<thead>
<tr>
<th>Subject</th>
<th>Day</th>
<th>Hour</th>
<th>Teacher</th>
<th>Syllabus No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxy-Acetylene Welding</td>
<td>Friday</td>
<td>8.0-10.00</td>
<td>J. J. Dooley</td>
<td>39</td>
</tr>
<tr>
<td>Practical Drawing and Sketching</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>B. Devlin</td>
<td>40</td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxy-Acetylene Welding</td>
<td>Monday</td>
<td>8.0-10.00</td>
<td>J. J. Dooley</td>
<td>39</td>
</tr>
<tr>
<td>Practical Drawing and Sketching</td>
<td>Tuesday</td>
<td>7.30-9.30</td>
<td>B. Devlin</td>
<td>40</td>
</tr>
</tbody>
</table>

SYLLABUSES

SUBJECTS.

1—ENGLISH.
Grammar, parts of speech, punctuation. Reading exercises from technical publications, dictation, letter and essay writing, notetaking. Lectures on simple machines, workshop appliances and engineering materials.

2—WORKSHOP ARITHMETIC.
Signs and symbols, factors, greatest common measure, least common multiple, fractions, decimals. Percentages, ratio and proportion, units of length, the foot rule and its sub-divisions; area, volume and weight. Simple mensuration.

3—PRACTICAL DRAWING.
Use of instruments, lettering, simple geometrical exercises, orthographic projection. Freehand sketches of models and machine parts. Scale drawings of nuts, bolts, screw threads, bearings, brackets, couplings and other simple machine details.

4—MACHINE DRAWING, I.
Use of drawing instruments and materials, precision exercises, orthographic projection. Use of sketch book, dimensioned freehand sketches of simple parts. Scale drawings of brackets, bearings, couplings, bolts, nuts, screws, simple engine details, valves and cocks. Explanation of features of importance in machine and engine parts, and of operations involved in their manufacture.

5—MACHINE DRAWING, II.
6—MACHINE CONSTRUCTION, III.

7—MACHINE CONSTRUCTION AND DESIGN, IV.
Advanced exercises in Machine Drawing, also problems involved in the design of the simpler details of machines and steam engines.

8—MACHINE DESIGN, V.
The application of mechanical science and of empirical knowledge to practical problems in mechanical engineering design. The properties and preparation of materials used and their employment with special regard to modern methods of economic production. The subjects will include:—Boilers, cylinders to sustain internal pressure, valves and valve mechanisms, steam and internal combustion engine details, engine, dynamo and other important bearings, governors, pumps, tanks, cranes and winches, cams and link mechanisms, riveted and welded structures.

9—PRACTICAL GEOMETRY.
Use of instruments, setting out of angles, proportional parts; scales. Exercises on straight lines and curves. Construction of plane figures, areas of figures, and reduction of areas to equal squares, properties of the triangle and parallelogram; application to link work. Construction of angles; circular measure and trigonometrical functions of angles. Proportionals, construction and use of scales. Location of points by rectangular co-ordinates, problems on lines and circles, construction of circles from specified data, tangents, angles in segment. The ellipse; cycloidal and involute curves. Triangles, polygons and curved figures. Vectors and vector quantities, problems on uniplanar forces. Projections and methods of defining positions of points and lines in space, horizontal and vertical traces. Views of solids in various positions, alterations of ground line, inclined and vertical planes. Elevations, plans and sections of prisms, pyramids, cylinders, and cone. Interpenetrations and developments.

11—PRACTICAL MATHEMATICS, I.
Arithmetic: Simple and compound rules, calculations of prices and costs, fractions, decimals, contracted methods, percentages, ratio and proportion, square root. Mensuration: Square, rectangle, triangle and circle, areas, volumes; applications of geometry to problems. Algebra: Symbols, the four simple rules, simple equations, evaluation and transformation of formulae, factors. Elementary graphs.

12—PRACTICAL MATHEMATICS, II.

13—PRACTICAL MATHEMATICS, III.
Simultaneous and quadratic equations, graphical solution of equations of degree higher than the second; maximum and minimum values of quadratic and cubic expressions, logarithmic solution of equations. Applications of Simpson's trapezoidal rules. Work done by a variable force or expanding gas. General solution of triangles,
formulae for sine, cosine and tangent of sum or difference of two angles, formulae for sum or difference of sines or cosines of two angles; application of the formulae for compound angles to problems on valve displacement, etc. Formulae for the functions of \(\frac{A}{2}\) and \(2A\) in terms of \(A\). Linear graph law and the reduction thereof to other laws, graphs of the form \(y = ax^n\). Trigonometrical and logarithmic functions. Slope of a curve at a point and its interpretation, rate of increase, velocity and acceleration, area of a curve and its interpretation, area of \(y = \sin^2 x\) and \(y = \sin x\). The "root mean square" value of the ordinate.

14—Practical Mathematics, IV.

Binominal expansions and approximations. Exponential and logarithmic theorems. Calculations of logarithms to the exponential base and their transformation to a decimal or other base. Tabular study of the rate of increase and graphical study of the slope of curve of simple functions of a varying quantity, i.e., powers, trigonometrical, logarithmic and exponential functions. Differentials of such simple functions; of their sum, difference of product, and the function of a function. Successive differentiation and determination of the maximum and minimum values of a function. Integration as a process of summation, and as the inverse of differentiation. Further study of curves: conics, cycloids, trochoids, catenary. Discussion of the properties of curves from their cartesian equations. Simple harmonic motion.

15—Practical Mathematics, V.

16a—Engineering Science, Ia.

Force: its effects and measurement, simple stress and ultimate strength. Turning effect of a force; moments; levers, Speed; velocity ratio of wheel trains, of belt and pulley gearing and of simple lifting machines. Work, work diagrams, power, horse power. Resultant force; equilibrium of three forces, the triangle of forces.

16b—Engineering Science, Ib.

Systems of linear, superficial and volumetric measurement. Fractions, decimals, contracted methods. Measuring instruments; the foot rule; the micrometer and its use. Fits, limits and gauges. Simple mensuration applied to workshop problems. Engineering materials; properties, applications, production, commercial forms, methods of working.

Machine tools; types and uses. Power transmission; pulley and belt gearing, toothed gearing, wheels in train, screws, use of change wheels in screw-cutting. Force, work, power.

17—Applied Mechanics, II.

Force measured by its straining action; stretching of wires and springs. Stress, strain, elasticity. Moments of forces, couples, centres of gravity. Work, energy, power; diagrams of work, horse power. Friction. Simple machines, velocity ratio and efficiency. Composition, resolution and equilibrium of forces. Velocity and acceleration. Elementary hydrostatics.

18—Applied Mechanics, III.

19—Applied Mechanics, IV.

Further treatment of testing of materials; alloy steels, heat treatment; fatigue of metals. Principal stresses. Strength and deflection of beams, distribution of shear stress. Strength and stiffness of

20—HEAT ENGINES, II

The steam engine cylinder, steam distribution, mean effective pressure, calculation of indicated, and of brake horse power. Problems on the simple slide valve. Work done per cubic foot of steam, superheating. Steam boilers; types, heating surface. Mechanical stokers, economisers, feed-water heaters, feed pumps and injectors, boiler efficiency. Fuels, calorific value, air supply per pound of fuel, products of combustion. Transmission of heat from furnace to water, evaporation, air supply to furnace, natural and forced draught. Descriptive treatment of gas, oil and Diesel engines.

21—HEAT ENGINES, III

22—ENGINEERING WORKSHOP, I.

23—ENGINEERING WORKSHOP, II.

All work will be done to drawings prepared in connection with the classes in Machine Construction and Design. Patterns and castings made in the Institute will be utilised as far as possible.

24—ENGINEERING WORKSHOP, III.

25—ENGINEERING WORKSHOP, IV.

Advanced work on Syllabus of earlier years, involving the complete turning, machine, fitting and assembly of machine and engine details requiring a high degree of accuracy and finish; tool making. The application and use of modern high-grade measuring instruments and gauges. Fine grinding operations on hardened surfaces. Production of spur and ratchet wheels; tapered work; cottered connections, screw jacks and other workshop accessories.

26—PATTERNMAKING, I.

Selection, qualities and application of timbers and other materials used. Use of patternmaking tools and appliances, the contraction rule. Operation of wood-turning lathe. Construction of simple patterns of flanges, brackets, bearings, brasses and cocks. Corebox making; use of core prints.

27—PATTERNMAKING, II.

Patterns of more advanced type; built-up patterns, pedestals, wall brackets, hangers, toothed wheels, pulleys, clutches, pipe bends, valves, cocks, pistons. Use of strickles and loam board.
28—**Patternmaking, III.**

Cylinders and connections for engines and pumps, hydraulic details. Patterns of complex nature, involving coring of passages, chambers and recesses. Patterns for ornamental castings in iron, brass and bronze.

30—**Workshop Drawing and Calculations.**

Orthographic projection. Simple exercises in drawing as applied to patternmaking and foundry work. Interpretation of prints and drawings of castings. Elementary calculations required for foundry work.

31—**Brass Finishing.**

Bench and lathe operations involved in finishing and assembly of cocks, valves, lubricators, injectors, gauges, steam whistles. Turning of screwed spindles and of balls. Preparation of small switches and other simple electrical fittings. Ecclesiastical and ornamental brass-work requiring a high degree of finish. Chasing, knurling, spinning, brazing, polishing and lacquering operations.

32—**Boilermaking, Drawing.**

33—**Boilermaking, Practical.**

Marking out, cutting and bending to required shape and dimensions of cylindrical and coned riveted bodies. Preparation of plates for boiler-construction, levelling, squaring, cutting and drilling. Simple riveted joints, caulking and fullering. Riveted tank work, watertight joints, corner connections, stiffening and staying. Boiler smithwork, heating of angle and channel bars in the fire, bending to required shape and size, welding and finishing. Flanging of boiler end plates. Oxy-acetylene processes applied to boilermakers' work.

34—**Smithwork.**

35—**Metal Plate Work, Drawing and Theory, I.**

Lectures: Fuels used in metal plate work. Metals: characteristics and applications of tinplate, zinc, copper and iron. Solders and brazing materials. Galvanising, tinning and re-tinning processes. Calculations of dimensions, capacities and weights of vessels of various designs.

Drawing: Geometrical problems involved in metal plate work; intersections and penetrations. Development of patterns for vessels and other objects of simple form such as:—Cylindrical pipes and branches, coned articles in two or more pieces, equal tapering bodies, baking pans; objects with combined flat and coned surfaces, tee pipes, bends in two or more pieces, V and Y pipes. Patterns for finials, simple mouldings, gutters and other roofwork details. Principal joints used in metal plate work practice.

36—**Metal Plate Work, Practical, I.**

37—Metal Plate Work, Drawing and Theory, II., III.

The subjects listed for the First Year will be dealt with in their advanced stages. The following will be the principal:

Metals and alloys: their physical and chemical properties. Special uses of tinplate, galvanised and lead-coated iron. Fuels, solid and gaseous; their methods of application. Oxy-acetylene processes. Development of patterns of an advanced type involving triangulation methods. Development of complex patterns and mouldings, and of those required for articles to be welded, brazed, and specially treated.

38—Metal Plate Work, Practical, II., III.

In addition to advanced work on the Syllabus for the First Year, special attention will be given to the following:—Oxy-acetylene processes applied to the cutting and welding of sheet-metal objects; the choice and proper use of blowpipes, welding rods and fluxes. Oxy-acetylene methods in the treatment of sheet copper, aluminium, brass, and stainless steel. Sifbronze welding. Welding, bending and treatment of light panels. Preparation and repair of motor car wings, bonnets and radiators. Domes, finials, ships’ ventilators. Lamps, vases, caskets and other ornamental work involving a high degree of finish. Flashings for domes, spires and special roof forms. Kettles, urns, boilerettes, mirrors and other domestic articles of importance.

39—Oxy-Acetylene Welding.

Low pressure acetylene generator: precautions to be observed in the preparation and use of the gas. Storage and preservation of calcium carbide. Dissolved acetylene; care of high pressure acetylene and oxygen cylinders, valves, gauges and other fittings. Choice and use of blow-pipes for various purposes. Cutting and welding processes. Practical exercises in cutting and welding plates, angle and other sectional bars. Welding of framed structures of different designs. Oxy-acetylene methods applied to cast iron, aluminium alloys, brasses; bronzes and copper. Use of welding rods and fluxes for different metals.

40—Welding Science.

Simple chemistry of the atmosphere; oxidation and combustion. Some of the simpler elements, in particular carbon, hydrogen, iron, copper, aluminium; oxidation of these elements.

Force and fluid pressure; elementary ideas of stress and strain.

Metallurgy:—Composition and properties of the principal ferrous metals; effects of carbon, manganese, silicon, sulphur, phosphorus, oxygen and nitrogen on the strength, hardness, ductility, plasticity and malleability of steels. The effect of metallic additions for the improvement of physical or chemical properties.

Heat treatment of metals. Normalising, annealing, hardening, tempering and case hardening.

Types of electrodes and welding rods, and their compositions. Slags and fluxes.

Expansion and contraction; stresses resulting therefrom in welds. Modes of testing welds, destructive and non-destructive.

Cast iron and alloy steels.

Composition and properties of the non-ferrous metals, principally copper, aluminium and some of their alloys.

Sketching and Drawing:—Freehand sketching, and drawing to scale of simple elements of machines and structures. The dimensioning and reading of drawings. Sketches showing assembling of elements and methods of holding them in place during welding.
41A—Motor Car Lecture (Introductory):
Simple descriptive lectures designed to familiarise students with note-taking and the expression of their ideas in writing. The lessons will be illustrated by suitable sketches and will include:—The engine, transmission system, differential, back and front axles, steering and brake mechanisms, carburettors, springs, the names and functions of the principal parts and details. Simple calculations in length, area and volume relating to motor car problems.

41B—Motor Car Engineering (Lecture).

42—Motor Car Engineering (Lecture).
The chassis and its parts.
The engine; single and multi-cylinder engines; general consideration of their construction and operation.
Fuel supply systems; the carburettor; carburettors of different types; the exhaust system.
Radiator; circulation pumps; fans.
Power transmission; simple treatment of clutches and change speed gears of various types.
Rear axle; rear axle casing; propeller shaft and universal joints; drive shafts; attachment to hub, construction of hub and its attachment to road wheels.
Brake operating mechanisms; brakes and brake linings; wheels; tyres; tubes; valves.

The steering mechanism; front axle beam; steering swivel head; swivel pins; front wheel hubs and bearings.
Chassis frame; mounting and attachment of various units; springs and spring accessories; torque bracing.
Lubrication of engine and chassis main units.
Properties and treatment of the following materials:—Cast iron; mild, tool and special steels; cast steel; aluminium and its alloys; bronzes; bearing metals; rubber; celluloid; asbestos; copper; vulcanised fibre; mica.

Use and care of the ordinary garage equipment.

43A—Motor Car Engineering.
Chassis arrangement, the internal combustion engine in its simplest form, construction of the power system, the Otto Cycle. Valves and valve operating mechanism, valve timing. Petrol feed systems; the carburettor; description of popular carburettors. Ignition systems. Simple lubricating systems. Cooling. Construction of common types of clutch; change speed mechanisms. The rear axle; chassis suspension. Brakes. Steering mechanisms and front axles.

43B.
Preparation of engine for starting, preparation of car for starting, car manouevring. Simple maintenance work, including chassis lubrication, brake adjustment, detachable wheel work and tyre manipulation. Exercises worked by students on the four-stroke cycle, four-stroke engine and exercises to make clear the principles of operation of clutch, gears, etc.

44A—Motor Car Engineering, 2nd Year.
Four and six cylinder engines, general description, construction and operation of the various forms of clutches and change speed gears in common use, the steering mechanism, brakes and braking, universal joints and transmission to road driving wheels, fuel and ignition systems, operation, maintenance and location of simple faults in the complete power unit, car manouevring.
and bedding in crankshaft, lapping and grinding operations, scraping, taper and parallel reaming. Chassis frame and unit alignment and setting. Axle straightening. Spring setting.

51—Garage Practice.

Common garage operations, such as:—Decarbonising; valve grinding; packing water pump gland; making joints for oil, petrol, and water systems; mending punctures; outer cover repairs, tightening parts of steering and suspension systems; cleaning of plugs; diagnosis of simple engine faults; simple cases of dismantling and re-assembling.

Removal and replacement of defective parts, such as:—Bolts; nuts; studs; pins; clips; springs; cotters; keys; valves; shackle pins; bushings; flexible couplings; jointings and washers; oil and petrol pipes; ball and socket joint parts; spring leaves; tyres and tubes; wires; cables; terminals, and lamp bulbs.

Adjustments to parts such as:—Tappets, control rods; driving belts; ignition and plug points; brakes; clutches.

Maintenance work such as:—Greasing; oiling; flushing out and renewal of lubricants; cleaning out fuel feed lines and oil and water systems; removal and replacement of road wheels; preparation of car for long journey; car manoeuvring and rudiments of driving.

52—Garage Practice.

Exercises of a more advanced type involving the processes specified in the Junior Stage and, in addition, the use of the acetylene welding blow pipe, lathe and machine drill for the simpler operations involved in repair of engine and chassis mechanism.

Dismantling and re-assembling operations of a difficult character with particular reference to procedure necessitated by differences of lay out and design.

Examination and report on condition of car as a whole or any part of the car with particular reference to any reconditioning or repair which may be necessary.

Diagnosis and treatment of mechanical and electrical faults.

Renewing timing chain and gears; renewing gudgeon pins and bushes; fitting new piston rings; replacing broken or defective valve; remettling engine bearings; refitting engine bearings; installation of members of change speed gear and rear axle drive; installation and adjustment of road wheel, load and thrust bearings; relining of brakes and clutches; rewiring; tuning of engine and testing for satisfactory road performance.

53—Motor Car Electricity, I.

54—Motor Car Electricity, II.

55—MOTOR CAR ELECTRICITY, III.

Car starter types and circuits. The dynamotor.

56—MOTOR CAR ELECTRICITY, IV.

57—AUTOMOBILE ELECTRICAL EQUIPMENT, TESTING AND REPAIR.

Testing, repair, and adjustments of car electrical equipment, such as dynamos, starters, magnetos, ignition coils, "cut outs," batteries, horns, general wiring, etc.

58—SCIENCE, I. (MOTOR CAR ENGINEERING).

General Physics: British and metric units of length and mass, Density. Pressure of liquids and gases, atmospheric pressure, Boyle's Law, the Principle of Archimedes. Heat: Temperature, expansion, thermometers, the units of quantity. Change of state, melting and boiling points, vaporisation, condensation. Conduction, convection, radiation. Chemistry: Chemical change, the meaning of combustion, oxides, the air, brief study of oxygen, nitrogen, sulphuric acid and hydrogen.

59—SCIENCE, II. (MOTOR CAR ENGINEERING).

Chemistry: Molecules and atoms, elements and compounds, chemical symbols, the atomic theory, atomic weights, quantitative notation, valency. Water, carbon, carbon dioxide; carbon monoxide; carbides; combustion; ignition point; flame; the Bunsen burner. Hydrochloric acid, zinc chloride. Lead, its oxide and sulphate, brief treatment of iron, aluminium, tin and zinc. The paraffin group.

60—MECHANICS, I. (MOTOR CAR ENGINEERING).

61—MECHANICS, II. (MOTOR CAR ENGINEERING).

62—GENERAL PHYSICS (GAS ENGINEERING).

63—INORGANIC CHEMISTRY (GAS ENGINEERING).

64—ART IRONWORK.

Iron, its nature and properties, various kinds of iron used by art ironworkers; tools, their application and uses. Treatment and manipulation of wrought-iron; forging, welding, jumping, bending and embossing. Methods of joining ironwork, operations in art-smithing; riveting, intersecting, slitting, tenoning, shrinking on collars. Twisting scrolls and volutes.

65—GAS FITTING, LECTURES AND CALCULATIONS, I.

Simple calculations of areas and volumes; cubic contents of tanks, vessels, apartments, etc. Meter reading; units employed in gas measurements; elementary treatment of pressure gauges and recorders.

66—GAS FITTING LECTURES, II.

Blown, screwed and flanged joints; testing and precautions against accidents. Meters; types, connections, reading of indices. Gauges; burners for lighting, heating and cooking appliances; burner governors. Description and fixing of domestic cookers, grills, gas fires, radiators, geysers, etc.

Physical properties of materials used for gas pipes and fittings; their reaction to stretching, compression, bending and twisting; effects of heat on materials.

Gauges; gauge pressures; pressure required for various gas appliances. Volumetric and pressure governors.

67—GAS FITTING LECTURES III.

Internal gas pipes and fittings: joints, pipe laying, lighting fittings; testing for soundness; detection and correction of faults. Relation between loss of pressure, bore and length of pipe and capacity; other circumstances affecting pressure. More advanced treatment of meters,
governors and gauges. Illumination; lighting schemes; burners; shades; reflectors and chimneys. Domestic cookers and heaters; water heating: principles of hot water circulation; appliances and fittings; thermostats. Principles of ventilation. Physical effects of heat: temperature, British Thermal Unit. Precautions to be observed in working with gas; method of dealing with gassing.

68—Gas Fitting, Practical, I.

Gas fitting tools, use, care and upkeep. Cutting and screwing iron, brass and copper tubing. Formation of parallel and taper screw threads; use of stocks, dies and taps. Drilling operations. Simple exercises in joint blowing, pipe fitting, bending and jointing.

69—Gas Fitting, Practical, II.

More advanced work on the Syllabus of the First Year and, in addition—

Examination and practical study of L.P. lighting burners and lamps; ventilation arrangements; gas and air controls. Burners and castings of small cooking stoves; oven ventilation; spacing of hot plate burners; small gas circulators, burners, waterways and flues. Domestic gas irons; radiators; flueless heaters; thermostatic control arrangements. Gas connections to lighting fittings, burners and gas fires; regulating devices. Pipe-work testing for soundness with gauge; fixing of small type meters. The use of U tubes for ascertaining pressures.

70—Gas Fitting, Practical, III.

Joint making in larger sized pipes; saddle joints; large screwed connections. Bending larger lead and iron pipes. Use of pressure gauge for locating stoppages. More advanced work on lighting fixtures, gas fires, radiators, cookers, geysers and hot water circulating arrangements, adjustment of thermostats. Practical study of recent improvements.

71—Irish.

Conversation lessons on simple matters such as the name, home or residence, salutations, the clock, days of the week, months and seasons, the weather, money, easy counting, colours, etc. Location of objects in the classroom and neighbourhood, parts of the body and clothing, giving and carrying out simple orders. With the conversational lessons the student will be familiarised with the use of is and tis, and of verbal nouns.

Memorising of simple songs, rhymes, stories, etc., so as to be able to repeat them with correct bias. Short stories and recitations.
GENERAL CURRICULUM OF THE SCHOOLS
UNDER THE CONTROL OF
THE CITY OF DUBLIN VOCATIONAL EDUCATION COMMITTEE.

BOLTON STREET TECHNICAL SCHOOL
Mechanical Engineering.
Motor Car Engineering.
Gas Engineering.
Metal Plate Work.
Brass Finishing.
Building Science.
Building and Allied Trades.
Printing and Book Production.
Watchmaking.
Art and Art Crafts.

Day Apprentice and specialised Daytime Technical Courses.
Day Junior Technical School.

KEVIN STREET TECHNICAL INSTITUTE
Pure and Applied Mathematics.
Pure and Applied Physics.
Pure and Applied Chemistry.
Bacteriology.
Pharmacy.
Electrical Engineering and Allied Trades.
Radio-Telegraphy.
Art and Art Crafts.
Domestic Science and Housecraft.
Bootmaking.
Hairdressing.
Tailoring.

PARNELL SQUARE TECHNICAL INSTITUTE
General Commercial Subjects.
Accountancy and Allied Subjects.
Local Government.
Domestic Science and Housecraft.
Languages.
Retail Distribution.
Transport.
Day Trade Classes:
Dressmaking.
Shirtmaking (Power).
Cloth Manufacture (Power).
Chefs’ Training Course.

Day School of Commerce.

PEMBROKE TECHNICAL INSTITUTE (Ringsend and Ballsbridge)
General Commercial Subjects.
Retail Distribution.
Languages.
Domestic Science and Housecraft.
Art and Art Crafts.
Mechanical Engineering.
Motor Car Engineering.
Oxy-Acetylene Welding.
Building Trades.

Day School of Commerce.
Day Junior Technical School.

RATHMINES TECHNICAL INSTITUTE
General Commercial Subjects.
Accountancy, Auditing and Allied Subjects.
Insurance.
Advertising and Publicity.
Banking, Finance and Foreign Exchange.
Company Secretaries.
Government Accountancy & Finance.
Languages.
Domestic Science and Housecraft.

Day School of Commerce.

CHATHAM ROW SCHOOL OF MUSIC (Day and Evening Classes)
Pianoforte.
Violoncello.
Uileann and Irish War Pipes.
Elocution.
Violin.
Singing and Choir.
Wind Instruments (Wood & Brass).
Fifes.
Viola.
Orchestra.
Drums and Flute.
Traditional Music.