Experimental Tuning of AIFSN and CWmin Parameters to Prioritize Voice over Data Transmission in 802.11e WLAN Networks

Miroslaw Narbutt
Dublin Institute of Technology, narbutt@cnri.dit.ie

Mark Davis
Dublin Institute of Technology, mark.davis@dit.ie

Follow this and additional works at: http://arrow.dit.ie/commcon
Part of the Systems and Communications Commons

Recommended Citation
Experimental Tuning of AIFSN and CWmin Parameters to Prioritize Voice over Data Transmission in 802.11e WLAN Networks

Miroslaw Narbutt
Communications Network Research Institute, Dublin Institute of Technology, Kevin Street, Dublin, IRELAND
tel. +353 1 402 7959
narbutt@cnri.dit.ie

Mark Davis
Communications Network Research Institute, Dublin Institute of Technology, Kevin Street, Dublin, IRELAND
tel. +353 1 402 7950
mark.davis@dit.ie

ABSTRACT

In this paper we experimentally study the impact of two EDCA parameters, namely AIFSN and CWmin, on a mixed voice/data wireless transmission. In particular we investigate how the tuning of these parameters affects both the voice transmission quality and background data throughput. We predict end-to-end voice transmission quality from time varying transmission impairments using the latest Appendix to the ITU-T E-model. Our experimental results show that the tuning of the EDCA parameters can be used to successfully prioritize voice transmission over data in real 802.11e networks. We also demonstrate that the AIFSN parameter more effectively protects voice calls against background data traffic than CWmin. To the best of our knowledge, this is the first experimental investigation on tuning of MAC layer parameters in a real 802.11e WLAN network from the perspective of end-to-end voice transmission quality and end user satisfaction.

Categories & Subject Descriptors: C.2.1
COMPUTER-COMMUNICATION NETWORKS: Network Architecture and Design, Wireless communication; Network communications; Packet-switching networks

General Terms: Design, Experimentation, Performance

Keywords: VoIP over wireless LAN (VoWLAN), IEEE 802.11e EDCA, differentiated prioritization scheme, QoS

1. INTRODUCTION

Real-time voice transmission over wireless LAN (VoWLAN) imposes stringent requirements on transmission impairments such as end-to-end delays, jitter, and packet loss. The responsibility of meeting these requirements is shared between the various communication layers. Actions at the application layer include efficient encoding and packetization schemes, packet loss concealment (PLC) techniques, adaptive de-jitter buffering, echo cancellation, etc. On the network side, the new IEEE 802.11e protocol supports voice traffic by differentiating channel access probability among different traffic categories. In particular, the new, extended channel access mechanism (EDCA) allows for adjustment of a number of channel access parameters at the L2/MAC layer to prioritize VoIP packets over other traffic types. Application-layer adaptation mechanisms and MAC-layer parameters tuning can greatly mitigate the effect of transmission impairments and thus improve speech transmission quality. However, these mechanisms are often complex and difficult to tune properly. We claim that if a part of the VoIP transmission path is being tuned, the impact of local tuning actions on the whole end-to-end (mouth-to-ear) transmission has to be taken into account. For this reason we have developed a method for evaluating end-to-end VoIP transmission quality from time varying transmission impairments. This method has shown to be particularly effective in evaluating various playout buffer algorithms [1, 2], assessing VoIP performance in Voice over WLAN systems [3, 4, 5], and was recently standardized by the ITU-T [6].

In this paper we use this method to experimentally evaluate the capability of the EDCA mechanism to support voice traffic in a mixed voice/data transmission over 802.11e WLAN. We investigate how real-time voice can be supported by tuning two EDCA parameters, namely AIFSN and CWmin and how this impacts background data transmission. This paper is structured as follows. Section 2 briefly introduces the new method for predicting VoIP transmission quality from transmission impairments. In Section 3, the 802.11e WLAN experimental setup is described, EDCA mechanism is outlined and proper de-jitter buffering at application layer is addressed. Experimental results for both EDCA parameters (AIFSN and CWmin) are presented and discussed in Section 4. Finally, the paper is concluded in Section 5.

2. PREDICTING VOICE TRANSMISSION QUALITY FROM TIME-VARYING TRANSMISSION IMPAIRMENTS

The latest appendix to the ITU-T E-model [6] introduces so-called quality contours (or contours of user satisfaction) that can be used to predict voice transmission quality from time-varying transmission impairments. The quality contours determine transmission quality (indicated by the R-factor) for all possible combinations of packet loss and mouth-to-ear delay. High values of R in a range of R>90 should be interpreted as excellent quality; while lower values indicate a lower quality. Values below 50 are
clearly unacceptable. Based on the R rating, ITU-T Rec. G.109 [7] also introduced categories of speech transmission quality and categories of user satisfaction. Table 1 defines these categories in terms of R.

<table>
<thead>
<tr>
<th>R</th>
<th>Speech transmission quality</th>
<th>User satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-93.2</td>
<td>Best</td>
<td>very satisfied</td>
</tr>
<tr>
<td>80-90</td>
<td>High</td>
<td>satisfied</td>
</tr>
<tr>
<td>70-80</td>
<td>Medium</td>
<td>some users dissatisfied</td>
</tr>
<tr>
<td>60-70</td>
<td>Low</td>
<td>many users dissatisfied</td>
</tr>
<tr>
<td>50-60</td>
<td>Poor</td>
<td>nearly all users dissatisfied</td>
</tr>
<tr>
<td>0-50</td>
<td>not recommended</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Definition of categories of speech transmission quality and user satisfaction [7]

Figure 1 shows an example of quality contours indicating speech transmission quality and user satisfaction for the G.711 encoding scheme (bursty packet loss) with Packet Loss Concealment (PLC) implemented.

The procedure of predicting speech transmission quality from transmission impairments is as follows: 1) playout delays (i.e. mouth-to-ear delays) and packet loss are calculated over non-overlapping time windows of 10 seconds at the output of the de-jitter buffer; 2) quality contours are chosen for a specific encoding scheme; 3) playout delays and packet losses are mapped onto chosen quality contours; 4) overall user satisfaction regarding speech transmission quality (in the form of pie chart or average R) is derived from the distribution of playout delays and packet losses on quality contours as shown on Figure 2.

With quality contours, the impact of delay and packet loss on conversational speech quality can be studied in two ways: either as the combined effect of loss and delay on overall quality, or as individual contributions of packet loss to speech degradation and playout delay to interactivity degradation. This is especially useful in the process of parameter tuning when a trade-off exists between packet delays and loss, and efforts are focused on finding the operating point where conversational quality is maximized

3. **802.11e WLAN EXPERIMENT**

3.1 **Experimental testbed**

The 802.11e wireless/wired test bed consists of 15 desktop PCs acting as wireless VoIP terminals, one desktop PC acting as a background traffic generator, and one desktop PC acting as an access point (AP). All machines in the test bed use 802.11 PCMCIA wireless cards based on Atheros chipsets controlled by MadWiFi wireless drivers and Linux OS (kernel 2.6.9). The MadWiFi drivers (Release 0.9.1 and above) provide working implementation of IEEE 802.11e EDCA mechanism [8]. All of the nodes are also equipped with 100Mbps Ethernet cards. The PC that acts as access point routes traffic between the wired network and the wireless clients, and vice versa (each PC has two interfaces: one on the wireless and one on wired network). During the experiments each VoIP terminal runs one VoIP session and all sessions are bi-directional. In this way each terminal acts as the source of an uplink flow and the sink of a downlink for a VoIP session. The wired interface of the background traffic generator is used to generate background traffic which is routed via the AP to the wireless interface of the same PC (see Figure 3).
All generated traffic involved a wired and a wireless interface so that no traffic was generated between wireless interfaces. The wireless stations were located within 5 meters range from the AP to ensure that the wireless link quality is good. This test bed is illustrated in Fig. 5. Voice traffic was generated using RTPools [9] which generated G.711 encoded voice packets (80 bytes audio frames created every 10ms) with fixed IP packet overhead of 12 bytes for RTP, 8 bytes for UDP, and 20 bytes for IP layer. During the experiments bi-directional transmission of packets was realized in the form of alternating active and passive periods modeled as a four state Markov chain (talker A active, talker B active, both active, both silent). The duration of states and the transitions between them followed the ITU-T recommendation P.59. [10]. This resulted in an ON-OFF modulated CBR traffic stream being generated. Background traffic in the form of Poisson distributed UDP packet flow was generated using MGEN traffic generator [11]. For the experiments we used 1, 2, and 4 Mbps background traffic. To measure effective throughput (goodput) of the background traffic we used TRPR package [12]. The size and sending rate of the IP packets comprising the load is specified in Table 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>488</td>
<td>977</td>
<td>1954</td>
</tr>
<tr>
<td>512</td>
<td>244</td>
<td>488</td>
<td>977</td>
</tr>
<tr>
<td>1024</td>
<td>122</td>
<td>244</td>
<td>488</td>
</tr>
<tr>
<td>1500</td>
<td>83</td>
<td>167</td>
<td>336</td>
</tr>
</tbody>
</table>

The reasoning behind choosing UDP and notTCP as a transport protocol for carrying background traffic is threefold: 1) UDP background traffic gives more accurate estimate of the actual load in the network (no retransmissions at transport layer) 2) results obtained with UDP constitute an upper bound for the throughput possible with TCP; 3) retransmissions of lost or corrupted packets is done by the 802.11 MAC-layer so TCP do not get affected by the packet loss [13].

During experiments all the measured VoIP data (packet arrival times, timestamps, sequence numbers, and marker bits) was collected at all receiving terminals to be processed later (off-line) by a program that simulated the behavior of the de-jittering buffer and finally by the quality assessment algorithm described in Section 2.

3.3 Application-layer parameters tuning

Impairments introduced by de-jitter buffering at the receiver can be more substantial than the transmission impairments introduced by the network. This can often be observed in a WLAN

3.2 MAC-layer parameters tuning

The original 802.11 standard does not support any type of service differentiation needed by real-time applications such as VoIP. The newer standard called 802.11e offers two quality enhancement mechanisms: contention-based channel access mechanism called Enhanced Distribution Coordinate Access (EDCA) and contention-free channel access mechanism called Hybrid Controlled Channel Access (HCCA). When the Enhanced Distributed Channel Access (EDCA) mechanism is used, packets are categorized in different traffic categories (TCs), and later mapped to four prioritized output queues called access categories (ACs). Each AC uses its own set of channel access parameters that control access to the wireless medium. Those parameters are: Arbitration Inter-Frame Space (AIFS), minimum and maximum Contention Window (CWmin and CWmax), and the maximum length of a single transmission (TXOP).

Configuring these parameters for each AC separately enables service differentiation between TCs as follows: A station with packet to send waits until the medium is idle and for an additional period of time defined by the AIFS parameter. AIFS period for voice AC should be smaller than AIFS for background AC. This way time-sensitive voice traffic will content sooner for access to the wireless medium winning transmission opportunities over less-sensitive background traffic. After the AIFS period, the stations with a packet to send generate random numbers between the CWmin and CWmax for each contending access category. Since the smallest number indicates the winner, the value of CWmin and CWmax should be lower for voice AC than for background AC. In general the combination of AIFS, CWmin and CWmax should be configured so that high-priority voice packets win transmission opportunities over background traffic. However, to avoid situations in which the low-priority traffic is completely blocked, the sum of AIFS plus CWmax for high-priority voice should be greater than AIFS for low-priority traffic. The TXOP parameter defines the maximum length of a single transmission and plays important role when large amount of data is to be sent (when data to be sent is too large to transfer within the TXOP limit, the station splits it into multiple transmissions.) Since voice packets are short, setting the TXOP parameter can be neglected.

In our experiments the voice packets were mapped into the voice AC (AC_VO) queue while the data traffic was mapped into the background (AC_BK) queue based on their TOS values in IP packets’ headers.

During the first experiment we prioritized voice over background traffic by increasing the number of time slots comprising the background AIFS period (AIFS[AC_BK]) from 2 to 15. All the other AC_BK parameters were: CWmin=7, CWmax=1023, TXOP=0 and they were kept fixed for the duration of the first experiment. During the second experiment we prioritized voice over data traffic by increasing the CWmin[AC_BK] from 7 to 1023. All the other AC_BK parameters were: AIFS=2, CWmax=1023, TXOP=0 and they were kept fixed for the duration of the second experiment. The parameters under consideration for both AC_BK and AC_VO are listed in Table 3.

Table 3. EDCA parameters settings during the experiments.

<table>
<thead>
<tr>
<th>EDCA parameter</th>
<th>AC_VO class (STAs and AP)</th>
<th>AC_BK class (STAs and AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWmin</td>
<td>7, 15, 31, 63, 127, 511, 1023</td>
<td></td>
</tr>
<tr>
<td>CWmax</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>AIFS</td>
<td>2, 3, 4, …13, 14, 15</td>
<td>2, 3, 4, …13, 14, 15</td>
</tr>
<tr>
<td>TXOP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3 Application-layer parameters tuning

Impairments introduced by de-jitter buffering at the receiver can be more substantial than the transmission impairments introduced by the network. This can often be observed in a WLAN.
environment where delay variation is high due to contention-based access mechanisms causing congestion at the AP. Good de-jittering schemes can mitigate the effects of high jitter by minimizing buffering delays and minimizing number of discarded packets due to their late arrival. Consequently, we claim that proper tuning of the de-jitter mechanism is essential. In our experiments we used the Ramjee’s algorithm [14] which is often used as a reference playout buffer controller. The algorithm uses the same playout delay throughout a given talkspurt but permits different playout delays for different talkspurts. We modified the original Ramjee’s algorithm by adding one parameter, namely \(\text{playout_offset} \) that represents additional pre-buffering delay. In our solution the playout time \(\text{pt} \) at which the the \(i \)-th packet, assumed to be the first packet in a talkspurt (played at the destination) is calculated as follow:

\[
p_i = t_i + \hat{d}_i + \beta \cdot \hat{v}_i + \text{playout_offset}
\]

where \(\hat{d}_i \) and \(\hat{v}_i \) are the estimates of delay \(i \)-th packet delay \(n_i \) and its variance respectively and are calculated as follows:

\[
\hat{d}_i = \alpha \cdot \hat{d}_{i-1} + (1 - \alpha) \cdot n_i
\]

\[
\hat{v}_i = \alpha \cdot \hat{v}_{i-1} + (1 - \alpha) \cdot | \hat{d}_i - n_i |
\]

Parameter \(\beta \) (discrete values: 0, 0.5...5) controls the delay/packet loss ratio while parameter \(\alpha \) (continuous values: 0...0.998002) controls the agility of the estimation process. By experimenting with different values of \(\alpha, \beta \), and \(\text{playout_offset} \) in a real wireless environment we were able to chose the values (i.e. \(\alpha = 0.998002, \beta = 2 \), \(\text{playout_offset} = 40ms \) that maximized rating factor \(R \) for all possible \(\text{AIFS} \) and \(\text{CWmin} \) settings.

4. Experimental Results

4.1 Tuning the \(\text{AIFS} \) parameter

Firstly, we experimentally investigated the impact of the \(\text{AIFS} \) parameter on the access probability differentiation between AC_VO and AC_BK in a mixed voice/data wireless transmission. Experiments covered 3 background traffic loads (1, 2, 4Mbps), 4 packetization schemes for background (256Bytes, 512Bytes, 1024Bytes and 1500Bytes packets) and 14 settings of the \(\text{AIFS} \) parameter: 2, 3, ...14, and 15.

Figures 4, 5, and 6 shows the average voice transmission quality (at wireless and wired interface) calculated for all 15 VoIP terminals and effective throughput (i.e. goodput) as a function of \(\text{AIFS} \) for three background traffic loads (1Mbps, 2Mbps, and 4 Mbps respectively). It can be seen that voice transmission at the wireless subnet can be effectively prioritized over data by tuning the \(\text{AIFS} \). Increasing \(\text{AIFS} \) essentially promotes the AC_VO queue at the expense of the AC_BK queue in terms of probability access. The bigger the difference in \(\text{AIFS} \) values, the easier it is for the AC_VO queue to win transmission opportunities from AC_BK. As a result, transmission impairments (delay, jitter and packet loss) are reduced and the overall transmission quality is improved. For example, when the \(\text{AIFS} \) difference between AC_BK and AC_VO was 6 (\(\text{AIFS} = 8 \) and \(\text{AIFS} = 2 \)), all VoIP stations could experience at least “tol” voice transmission quality (indicated by \(R \geq 70 \)) for all examined background traffic loads and packetization schemes.
At the same time (when the AIFSN difference between AC_BK and AC_VO was 6) a substantial reduction in the background traffic goodput was observed. In some cases (256Bytes packets comprising the background load) the goodput of the background traffic was almost halved. Increasing the AIFSN difference between AC_BK and AC_VO penalizes background traffic by making it more difficult to win transmission opportunities.

4.2 Tuning the CWmin parameter

A second set of experiments was conducted to experimentally investigate the impact of the CWmin parameter on a mixed voice/data wireless transmission. Similarly to the first set of experiments we took into account 3 background traffic loads and 4 packetization schemes. However, this time we examined 8 settings of the CWmin[AC_BK] parameter: 7, 15, 31, 63, 127, 255, 511, and 1023. Figures 7, 8 and 9 show the average voice transmission quality (at wireless and wired interface) calculated for 15 VoIP terminals and the goodput of the background traffic as a function of CWmin[AC_BK] for three background traffic loads (1Mbps, 2Mbps, and 4 Mbps respectively). This time the channel access probability differentiation was provided by using different values of CWmin for AC_VO and for AC_BK. Stations with lower value of CWmin experienced smaller average time needed to win transmission opportunity (back-off time), and thus could experience improved performance in comparison to the stations with higher CWmin values. In other words, the higher the CWmin for AC_BK, the higher probability of winning the contention by the AC_VO what resulted in improved voice transmission quality. Consequently, it can be seen from Figures 7, 8, and 9 that as CWmin[AC_BK] increases, the average voice transmission quality at the wireless subnet increases as well. However, tuning the CWmin[AC_BK] parameter is not as effective as tuning the AIFSN[AC_BK]. This can be observed especially in low network congestion situations (see 1500Bytes curve on Figure 7), when changes in the CWmin parameter have limited effects on throughput differentiation [15]. A substantial reduction in the background traffic throughput can be observed when higher background traffic loads of 4Mbps are injected to the network (see Figure 9).

5. Conclusions

In this paper we have experimentally evaluated the capability of the new 802.11e MAC protocol to support voice calls in a mixed voice/data transmission over WLANs. In our experiments we have focused on the contention-based mode of MAC operation called Enhanced Distributed Channel Access (EDCA) and more specifically on two quality enhancement mechanisms: the usage of different arbitration interframe spaces (controlled by the AIFSN parameter) and the usage of different minimum contention windows (controlled by the CWmin parameter).

Our results show that the proper tuning of either AIFSN or CWmin parameters can improve voice transmission quality at the wireless subnet reducing goodput of the background data traffic. We have also demonstrated that the quality differentiation with the AIFSN parameter provides superior and more robust operation than contention window differentiation with the CWmin parameter. For example, when the AIFSN difference between AC_BK and
AC_VO was 6 \((AIFS_{[AC_BK]}=8\) and \(AIFS_{[AC_VO]}=2\)), all VoIP terminals could experience at least “toll” voice transmission quality (indicated by \(R \geq 70\)) in the presence of the heavy background traffic injected to the network. The same results \((R \geq 70)\) could be obtained for only for some VoIP terminals when the difference between \(CW_{min}\) for AC_BK and AC_VO was 120 \((CW_{min}_{[AC_BK]}=127\) and \(CW_{min}_{[AC_VO]}=7)\). A substantial reduction in the background traffic throughput was also observed as a result of increasing either the \(AIFS_{[AC_BK]}\) or \(CW_{min}_{[AC_BK]}\) parameters. However, increasing the \(CW_{min}_{[AC_BK]}\) resulted with unnecessary higher reduction of the background goodput than increasing the \(AIFS_{[AC_BK]}\). Our experimental results confirm earlier analytical and simulation-based findings that the \(AIFS\) parameter more effectively protects voice calls against data than the \(CW_{min}\).\([15][16][17][18]\). The \(AIFS\) differentiation is a superior mechanism to \(CW_{min}\) differentiation because of the very existence of discrete instants of times (protected slots represented by the \(AIFS\) difference) where a lower number of stations may compete and access the channel. This increases the effectiveness of the overall random mechanism for the high-priority stations.

To our knowledge, all experimental work regarding voice transmission quality in real 802.11e WLAN networks was focused only on MAC layer delays introduced by the EDCA mechanism.\([19]\). This paper is the first experimental demonstration of voice prioritization over background data transmission from the perspective of end-to-end voice transmission quality and user satisfaction.

6. ACKNOWLEDGMENTS

This work was supported by Science Foundation Ireland grant 03/IN3/I396.

7. REFERENCES

[4] Miroslaw Narbutt, Mark Davis "Gauging VoIP Call Quality from 802.11b Resource Usage", Proc of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM06), Buffalo-NY, June ’06

[8] H. Yoon, “Test of MADWIFI-ng WMM/WME inWLANs”, TR nr 1, February ’06

[18] B. Bellalta, C. Cano, M. Oliver, M. Mee; “Modeling the IEEE 802.11e EDCA for MAC parameter optimization”, Proc. of the Performance Modelling and Evaluation of Heterogeneous Networks Conference (Het-Nets 06), September 2006, Bradford, UK