The Pleiades

Frank Prendergast

Dublin Institute of Technology, frank.prendergast@dit.ie

Follow this and additional works at: http://arrow.dit.ie/arastbk

Part of the Australian Studies Commons

Recommended Citation

Harvesting The Stars
A Pagan Temple at Lismullin, Co. Meath

AIDAN O’CONNELL

Lismullin is located in the Gabhra Valley, beneath the Hill of Tara. It is arguably the best known of the 167 archaeological sites discovered and excavated in advance of the construction of the M3 Clonee to North of Kells motorway in County Meath. The discovery, excavation and interpretation of an Iron Age post-enclosure at Lismullin is the centrepiece of this book. The site was designated a National Monument after its discovery. The author interprets the post-enclosure as an open-air pagan temple, but why was it built? Who built it? How was it used? Was it a venue for spectacular nocturnal rituals imploring the Gods for a bountiful harvest?

These and other questions are explored in this publication of one of the most significant discoveries on the M3.

“The presentation offers ready access to the record at whatever level the reader chooses to engage. It is an interesting and, I think, highly successful attempt to address the problem of how best to publish complex excavations. It offers an attractive model which will be widely followed and will do much good in bringing the work of archaeologists to an increasingly demanding public.”

Sir Barry Cunliffe, Emeritus Professor of European Archaeology, University of Oxford.

AIDAN O’CONNELL is a director of Archer Heritage Planning Ltd. He directed excavations of sites along the M3 route, including Lismullin.

DR EOIN GROGAN is a lecturer in the Department of Medieval Irish and Celtic Studies, NUIM. He was an academic advisor to the archaeological component of the M3 motorway and Academic Editor of the current volume.
Harvesting the Stars
Harvesting the Stars
A pagan temple at Lismullin, Co. Meath

Aidan O’Connell

with contributions by
Chris Burbidge, Anwen Caffell, Anne Connon, Gordon Cook, Mary Deevy, Lorne Elliott,
Louisa Gidney, Eoin Grogan, Charlotte Henderson, Tim C Kinnaird, Peter D Marshall,
Charlotte O’Brien, Rob O’Hara, Muiris O’Sullivan, Frank Prendergast, Christine Prior,
Helen Roche, David C W Sanderson, Órla Scully and Farina Sternke.

Academic Editor Eoin Grogan

NRA Scheme Monographs 11
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents of CD ROM</td>
<td>vi</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
<tr>
<td>1. Setting the scene</td>
<td>1</td>
</tr>
<tr>
<td>2. Wayfarers and tomb builders</td>
<td>17</td>
</tr>
<tr>
<td>3. Ordering the land</td>
<td>43</td>
</tr>
<tr>
<td>4. Enclosing a space</td>
<td>61</td>
</tr>
<tr>
<td>5. Making a place</td>
<td>85</td>
</tr>
<tr>
<td>6. A new dawn</td>
<td>109</td>
</tr>
<tr>
<td>7. Lismullin through the ages</td>
<td>135</td>
</tr>
<tr>
<td>Appendix 1—Bayesian analysis</td>
<td>141</td>
</tr>
<tr>
<td>Appendix 2—Optically stimulated luminescence dating</td>
<td>146</td>
</tr>
<tr>
<td>Appendix 3—The Lismullin enclosure—a designed ritual space</td>
<td>150</td>
</tr>
<tr>
<td>Appendix 4—Prehistoric pottery, lithics, decorated stone and metal-detected finds</td>
<td>157</td>
</tr>
<tr>
<td>Appendix 5—Plant macrofossils, charcoal, burnt bone and snails</td>
<td>171</td>
</tr>
<tr>
<td>Bibliography</td>
<td>177</td>
</tr>
<tr>
<td>Index</td>
<td>197</td>
</tr>
</tbody>
</table>
The Pleiades

Frank Prendergast

The Pleiades is a visually distinctive grouping of stars also known as the ‘Seven Sisters’. In the mythology of ancient Greece, the seven sisters (Alcyone, Electra, Maia, Merope, Taygeta, Celaeno and Asterope) were the daughters of Atlas (the primordial Titan) and his wife Pleione. All nine stars, including Atlas and Pleione, thus complete the visible cluster (Illus. 4.12, left). They are easily located in the winter sky by using the three prominent and almost co-linear stars of the so-called belt in the constellation—Orion—as a pointer. The cluster lies above, and on the alignment of the belt, and Sirius lies below it. The diameter of the circle shown in Illus. 4.12 (left) is 100 arc minutes which is about three times the apparent size of the moon.

In an astronomical sense, there can be some confusion between clusters and constellations. Constellations named in ancient times were patterns of stars perceived by humans and intended to represent mythological gods, animals or monsters as celestial stick-like figures. Different cultures recognised different patterns in the heavens and, as such, we now require ethnographical or other evidence to interpret their meaning and cultural significance. Clusters, on the other hand, are roughly circular groupings of stars, noticeable through their apparent density and degree of separation from other surrounding but fainter stars (Illus. 4.12, right). These are few in number, obvious and unique. The Hyades and Beehive clusters are the only other examples that are visible to the naked eye. These characteristics would have made them conspicuous and thus significant to sky-watchers throughout the world.

The individual stars of the Pleiades are sized by their relative brightness. This is measured in an astronomical scale of magnitude (logarithmic), where a larger number indicates a fainter...
object. The most prominent star in the cluster is Alcyone (magnitude +2.9) while Asterope (magnitude +5.8) is 7.3 times fainter. This is at the limit of what can be resolved by the human eye, situated in a standard state of atmospheric transparency free from the effects of artificial light pollution. For comparison, a full moon (magnitude -12.9) is 40 times brighter than Alcyone while Sirius (magnitude -1.4), the brightest star in the heavens, is 11 times brighter.

The prominence of this particular star cluster in the sky, as well as its recurring seasonal reappearance, has brought the Pleiades to the attention of many cultures in more recent times, as well as in the prehistoric past. In one example of a bark painting (Illus. 4.13) by an unknown indigenous Australian artist, the Pleiades and the three stars in Orion that act as pointers to it are depicted in the composition. These are coloured white and placed inside a boat shown against a dark background that represents the sky. In the oral tradition of indigenous Australians (known as ‘The Dreaming’), these two star patterns are linked with human voyages.

Illus. 4.13—Depiction of the Pleiades on a bark painting by an unknown indigenous Australian artist (Mountford-Sheard collection of the State Library of Australia with the permission of the Yirrkala Community).

Many North American Indian tribes are also known to have observed the Pleiades, albeit attaching different meanings and legends according to their tribal group. Roe (1993)
describes numerous traditions and myths connecting the Pleiades, Hyades and Orion with the astronomical knowledge of past civilisations in Mesoamerica and South America. At some temple sites in the Hawaiian Islands, orientation and other contextual evidence shows these were linked with the rising sun and the rising Pleiades (Kirch 2004).

In Europe, cult worship of the goddess Atemis Orthia at a sanctuary temple in Sparta, Greece, from c. 700–400 BC, has been shown to be associated with the heliacal (close to the sun) rising of the Pleiades and clearly demonstrates ‘the role of astronomy in Greek religious practice and perceptions of the cosmos’ at that time (Boutsikas & Ruggles 2011). Oldham (2006) suggests that the passages of some chambered megalithic tombs (Antas) in south-central Portugal were aligned on the rising Pleiades. Hoskin (2001, 30–6) has found similar evidence for the alignment of part of the great temple complex of Mnajdra in Malta, which dates to c. 3600 BC. Closer to home, the surveyor and archaeoastronomer Boyle Somerville proposed that the alignment of a megalithic tomb on the Isle of Lewis, Scotland (Somerville 1912; 1923, 202–3) may have been linked with the heliacal rising of the Pleiades. He further discusses the role of that cluster in the agricultural calendar of early Northern European farmers (Somerville 1927, 34). Importantly, the astronomer Krupp (1997, 86) states:

Nothing in the sky is quite like the Pleiades. They are recognized by nearly everyone as something special. Worldwide, they are seasonal heralds and their coming and goings have been used to regulate calendars, festivals, and rituals.

The discovery of a potential link between the Iron Age enclosure at Lismullin and the Pleiades is probably significant and could partly explain the likely ceremonial role of the site.

Age estimates for the construction and use of the enclosure were derived from all three models (Marshall et al., Appendix 1). Ultimately, the overall chronology of the monument, as deduced from each of the three models, was broadly similar. However, Model 1 was the preferred version. It was seen to be more objective than Models 2 and 3, both of which imposed preconceived ideas on the sequence. Details of radiocarbon dating (including calibration and Bayesian modelling of individual radiocarbon dates) are provided in Radiocarbon dates 4.3. Bayesian analysis of all the combined date ranges allowed for a deduction of the overall chronology of the monument and suggested that:

- the inner ring of the outer enclosure was constructed in the period 455–400 BC (68 % probability)
- the outer ring was constructed in the period 415–385 BC (68 % probability)
- the inner enclosure was built in the period 405–365 BC (56 % probability) or 285–265 BC (12 % probability).

Use of the monument was estimated to cease c. 370–330 BC (38 % probability) or 270–220 BC (32 % probability). This suggested duration of use ranged from 45–115 years (36 % probability) or 140–225 years (32 % probability; Marshall et al., Appendix 1).

The fundamental trend suggested by the Bayesian analysis is that the monument’s main structural components were constructed separately, in distinct phases, but over a relatively short period of time.