Targeted Drug Delivery Systems for Cancer Therapy

Antonio Clementi
Dublin Institute of Technology, antonio.clementi@dit.ie

Christine O’Connor
Dublin Institute of Technology, christine.oconnor@dit.ie

Mary McNamara
Dublin Institute of Technology, Mary.McNamara@dit.ie

A. Mazzaglia
Institute of nanostructured materials, Agata (ME), Italy

M. C. Aversa
University of Messina

See next page for additional authors

Follow this and additional works at: http://arrow.dit.ie/scschcpscon

Part of the [Chemical and Pharmacologic Phenomena Commons](http://arrow.dit.ie/scschcpscon), [Chemistry Commons](http://arrow.dit.ie/scschcpscon), and the [Medical Biochemistry Commons](http://arrow.dit.ie/scschcpscon)

Recommended Citation

The role of cyclodextrin’s (CD) in drug delivery has advanced in recent years and this may be attributed to its biocompatibility and well established synthesis. Chemical modification of CDs has shown to extend the physicochemical properties and the host capacity for a variety of drugs. β-CD has been widely used in the early stages of pharmaceutical applications because of its ready availability and its cavity size suitability for a wide range of drugs. Chemical modification of β-CD has proven to enhance aqueous solubilisation, microbiological stability and reduced toxicity in previous studies. Folate Receptors are over-expressed in several human cancers including ovarian, breast and renal carcinomas. This property has been utilised to develop tumour-selective anti-neoplastic drugs. Folate has been bound to chemotherapeutic drugs and since tumour cells have a huge appetite for folate, their folate receptors ‘pull’ the drug-folate conjugate towards the tumour site. However the direct conjugation of folate to the bioactive drug can lead to loss of targeting or alter the function of the conjugate. Folate-cyclodextrin bioconjugates have been prepared with polyethylene glycol (PEG) linkers; however this conjugate partially prevents drug degradation. This study describes the synthesis and characterisation (UV-Vis, Emission, IR, Raman, NMR, MALDI-MS and ESI-MS) of a novel folate-cyclodextrin bioconjugate (CDEn-FA). As mentioned previously it was found that direct conjugation of folate to the bioactive molecules led to loss of targeting or an alteration of the function of the conjugate and most of the conjugates to date cannot be further modified to improve targeting or anti-tumour activity. Preliminary biological evaluation of the tumour targeting device will be discussed.

SYNTHETIC STRATEGY

The role of cyclodextrin’s (CD) in drug delivery has advanced in recent years and this may be attributed to its biocompatibility and well established synthesis. Chemical modification of CDs has shown to extend the physicochemical properties and the host capacity for a variety of drugs. β-CD has been widely used in the early stages of pharmaceutical applications because of its ready availability and its cavity size suitability for a wide range of drugs. Chemical modification of β-CD has proven to enhance aqueous solubilisation, microbiological stability and reduced toxicity in previous studies. Folate Receptors are over-expressed in several human cancers including ovarian, breast and renal carcinomas. This property has been utilised to develop tumour-selective anti-neoplastic drugs. Folate has been bound to chemotherapeutic drugs and since tumour cells have a huge appetite for folate, their folate receptors ‘pull’ the drug-folate conjugate towards the tumour site. However the direct conjugation of folate to the bioactive drug can lead to loss of targeting or alter the function of the conjugate. Folate-cyclodextrin bioconjugates have been prepared with polyethylene glycol (PEG) linkers; however this conjugate partially prevents drug degradation. This study describes the synthesis and characterisation (UV-Vis, Emission, IR, Raman, NMR, MALDI-MS and ESI-MS) of a novel folate-cyclodextrin bioconjugate (CDEn-FA). As mentioned previously it was found that direct conjugation of folate to the bioactive molecules led to loss of targeting or an alteration of the function of the conjugate and most of the conjugates to date cannot be further modified to improve targeting or anti-tumour activity. Preliminary biological evaluation of the tumour targeting device will be discussed.

SYNTHETIC STRATEGY

The conjugate is fully studied by HPLC-PDA, NMR, MS, UV-VIS, IR and Raman spectroscopy.

DISCUSSION OF RESULTS

1H-NMR was assigned by COSY NMR. The 1H-NMR shows three groups of signals (three for each aromatic proton) which are representative of the folate acid portion in three different configurations as shown in Figure 5. By ROESEY NMR it was possible to assess the phenyl group of the folate moieties which can interact with the cavity of the CD. ESI-MS confirms the formation of the CD conjugated product as shown in Figure 7. UV-VIS absorption analysis of CDEn, FA and product, CDEn-FA show different absorption spectra as shown in Figure 6. The HPLC-PDA has evaluated the stability and purity of the product. The material presents traces of CDEn and FA not reacted. Preparative HPLC experiments are in progress to optimize the purification. During preliminary biological testing, HeLa cells were not affected when they were treated with CDEn-FA. These initial biological evaluations allows for further experimentation on cell systems to develop a drug target vehicle.

CONCLUSION

In summary CDEn-FA was synthesized with an attempt to eliminate the polydispersity of the modified CD. This fact is vital in the design and characterisation (thermodynamic properties, photophysics, etc.) of new multifunctional host-guest systems having different sites of complexation. By designing a molecular system with a controlled number of binding sites (i.e. targeting moiety, CD cavity, metal coordination environment) it will be possible to modulate the properties of recognition towards receptor proteins. Such versatility of the CDEn-FA can be exploited in the field of photodynamic therapy (PDT) – organic and inorganic drugs in conventional anticancer therapy, metal nanoparticles (Photothermic Therapy of Tumours, PTT).

ACKNOWLEDGEMENTS

Strand 1 R & D funding 2006, Technological Sector Research Initiative NDP 2000-2006, Dublin, Ireland

Dr Rosanna Stancanelli for HPLC, Department of Pharma-chemistry, University of Messina , Italy
Dr Maria Teresa Sciortino for the biological tests, Department of Biology, University of Messina , Italy
Dr Carmelo Corsaro and Dr Spooren Jeroen for high resolution NMR spectra (700 MHz), Department of Phsic, University of Messina