2010-12-01

The Significance of Preattentive Visual Search (PAVS) in Glaucoma

James Loughman
Dublin Institute of Technology, james.loughman@dit.ie

Peter Davison
Dublin Institute of Technology, Peter.Davison@dit.ie

Follow this and additional works at: http://arrow.dit.ie/scschphycon

Part of the Medicine and Health Sciences Commons

Recommended Citation
The Significance of Preattentive Visual Search (PAVS) in Glaucoma

James Loughman PhD & Peter Davison PhD
Optometry Department
Dublin Institute of Technology
Why Another Psychophysical Test for Glaucoma?

Objectives of investigating PAVS:
- to provide tests maximizing sensitivity to M_y magno-fibres & to parvo-fibres
- to determine whether PAVS can discriminate between normals, hypertensives, & glaucomatous Pxs
- to determine whether PAVS (using 2-AFC reaction times) has practicality (e.g. consistency)
PAVS Targets: Orientation Task

- Px required to press switch to indicate whether target (N) is on L or RHS.
- Uses paradigm of Flitcroft et al. (1996)
Flicker & Oscillatory Targets

1 target flickers or oscillates vertically among stationary distractors
Target & Distractor Parameters

Include:

- # distractors
- Oscillation frequency
- Displacement frequency

[All 3 PAVS tests are 2-alternative forced-choice]
<table>
<thead>
<tr>
<th>Glaucoma</th>
<th>Glaucoma Susp.</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic ONH/RNFL damage</td>
<td>Suspicious ONH/RNFL structure</td>
<td>Normal ONH & RNFL structure. C:D < 0.7</td>
</tr>
<tr>
<td>Characteristic, repeatable, VF loss (Abnormal GHT &/or corrected PSD < 5%, &/or cluster criteria defect)</td>
<td>No repeatable characteristic VF loss</td>
<td>Normal VF sensitivity</td>
</tr>
<tr>
<td>Classified based on IOP & gonioscopy findings</td>
<td></td>
<td>Normal IOP & anterior chamber angle</td>
</tr>
</tbody>
</table>
Dec 2010 Loughman & Davison UKEGS
<table>
<thead>
<tr>
<th>[41 Px’s per category]</th>
<th>Flicker</th>
<th>Displacement</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glaucoma Vs Suspect</td>
<td>T = 7.43 P < 0.001</td>
<td>T = 6.25 P < 0.001</td>
<td>T = 9.34 P < 0.001</td>
</tr>
<tr>
<td>Glaucoma Vs Normal</td>
<td>T = 9.16 P < 0.001</td>
<td>T = 7.54 P < 0.001</td>
<td>T = 10.96 P < 0.001</td>
</tr>
<tr>
<td>Suspect Vs Normal</td>
<td>T = 1.76 P = 0.083</td>
<td>T = 2.18 P = 0.032</td>
<td>T = 1.39 P = 0.168</td>
</tr>
</tbody>
</table>
Potential Problems with RTs

Choice RTs (CRTs) are:

- sensory status dependent

But also potentially influenced by

- motor status
- cortical factors – e.g. decision time
- age
Perceptual Search Index

- CRT paradigm: find square & press L or R button (only 1 distractor)
- PSI = PAVS RT / CRT
- PAVS RTs should not increase significantly above the CRT regardless of the number of distractors
PSI Results

![Graph showing PSI results for Flicker, Displacement, and Orientation.]

- **Flicker**: A bar indicating a value around 1.5 with a standard error of about 0.5.
- **Displacement**: A bar indicating a value around 2.5 with a standard error of about 0.5.
- **Orientation**: A bar indicating a value around 3.5 with a standard error of about 0.5.

Dec 2010
Loughman & Davison UKEGS
PSI: Glaucoma Suspects vs Normals

<table>
<thead>
<tr>
<th>Flicker PAVIS/CRT</th>
<th>Displacement PAVIS/CRT</th>
<th>Orientation PAVIS/CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 3.19 P = 0.002</td>
<td>T = 3.59 P = 0.001</td>
<td>T = 2.60 P = 0.012</td>
</tr>
</tbody>
</table>

- PSI discriminates for all 3 PAVIS tests, even between normals & glaucoma suspects.
Conclusions

- All 3 PAVS tests discriminate between glaucoma & suspect Px’s.
- Displacement PAVS discriminates between suspects & normals.
- Using CRT to generate PSI improves discriminability by reducing motor & decision time factors.
- Test is rapid & Px-friendly (does not use thresholds).
- Only requires PC & software.
Acknowledgements

- Ian Flitcroft
- Colm O’Brien & staff of Mater Hospital Eye Dept.
- James Callis
- Irish Fight for Sight