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Abstract

This paper introduces an improved mathematical model for holo-
graphic grating formation in an acrylamide-based photopolymer, which
consists of partial differential equations derived from physical laws.
The model is based on the two-way diffusion theory of [12], which as-
sumes short polymer chains are free to diffuse, and generalizes a similar
model presented in [18] by introducing an immobilization rate governed
by chain growth and cross-linking. Numerical simulations were carried
out in order to investigate the behaviour of the photopolymer system
for short and long exposures, with particular emphasis on the effect of
recording parameters (such as illumination frequency and intensity), as
well as material permeability, on refractive index modulation, refrac-
tive index profile and grating distortion. The model reproduces many
well-known experimental observations, such as decrease of refractive
index modulation at high spatial frequencies and appearance of higher
harmonics in the refractive index profile when the diffusion rate is
much slower than polymerization rate. These properties are supported
by a theoretical investigation which uses perturbation techniques to
approximate the solution over various time scales.

1 Introduction

Holography has many applications such as holographic displays, optical el-
ements and sensors, security holograms and holographic data storage. A
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hologram is essentially a recording of an interference pattern created by an
object beam and a reference beam in a photosensitive material; in all ap-
plications the accuracy with which this pattern is copied and the grating
strength are crucial for the performance of the hologram. Photopolymer
systems (which usually consist of one or two monomers, photoinitiator and
sensitizing dye, all dispersed in a binder matrix) are often the material of
choice in holographic patterning because of qualities such as versatility, self-
processing nature, good dynamic range and relatively low cost.

Holographic recording in photopolymer systems has been studied the-
oretically and experimentally by several authors, [1]–[13]. Early diffusion
models describing holographic recording in photopolymers based on free
radical polymerization predict that the key factor that controls dynamics
and final properties of the recorded holographic grating (refractive index
spatial profile and modulation) is determined by the ratio between the rate
of polymerization and the monomer diffusion rate. Experimental evaluation
of these two rates is important for determination of the optimal conditions
for holographic recording in a particular photopolymer system, but this is
not always straightforward since in reality both rates are time dependent.
The diffusion rate is determined by the matrix permeability and the size of
the monomer molecules, while the polymerization rate can be controlled by
the recording intensity and also depends on the reactivity of the monomer
and efficiency of the initiator. Two extreme regimes of holographic recording
at given spatial frequency were distinguished with respect to the ratio of the
characteristic diffusion and polymerization rates, [1], [12], [14]. At recording
conditions for which the diffusion rate is faster than the polymerization rate
the grating profile closely resembles the one of the recording interference
pattern. By contrast, when the monomer diffusion rate is slower than the
polymerization rate, deviation from the sinusoidal profile of the grating is
observed.

A common aim of theoretical models reported in the literature in recent
years has been the analysis of the poor response of photopolymers at high
spatial frequency, a phenomenon which cannot be described by a simple
monomer diffusion model such as [1] (which assumes that growing polymer
chains remain at their place of origin). Instead, the low diffraction effi-
ciency at high spatial frequencies has been explained using two approaches,
both referring to non-local behaviour (that is, the response of the material
at a given point and time depends on what happens at other points and
times in the medium). The non-local photopolymerization driven diffusion
model (NPDD), [8], [9], [10], [11], [15], assumes that the polymer chains
grow away from their initiation point and this is the main factor contribut-
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ing to the “spreading” of the polymer and smearing of the refractive index
contrast. This model predicts that improvement at high spatial frequen-
cies can be achieved if, during the holographic recording, shorter polymer
chains are created. It has been suggested that the incorporation of a chain
transfer agent in the photopolymer composition will improve the diffrac-
tion efficiency at high spatial frequency. The reported experimental results
from recording in materials containing chain transfer agents demonstrate
only marginal improvement of the response at spatial frequency higher than
3000 lines/mm, [16]. An alternative approach to the NPDD theory is to
take into account the diffusion of short polymer chains (such as oligomers)
away from the bright fringes, which could be responsible for reducing the
refractive index modulation and the decrease of diffraction efficiency at high
spatial frequencies. This approach is exemplified by the two-way diffusion
model, [12], [17], [18], and the immobilization-diffusion model, [19]. Both
models account for monomer and polymer diffusion and distinguish between
short polymer chains capable of diffusing and long polymer chains that are
immobile. In the latter model there is a gradual decrease of polymer mo-
bility depending on length, while in the former we make a sharp distinction
between mobile and immobile species.

It has been demonstrated that these models can satisfactorily predict
the poor high spatial frequency response in highly permeable photopoly-
mers. The two-way diffusion model also predicts that the improvement of
the high spatial frequency response of such systems must be directed to-
wards decreasing the permeability of the photopolymer matrix and avoiding
the creation of diffusing short polymer chains. The model has enabled the
optimization of the high spatial frequency response of photopolymers, to
the extent that full colour reflection holography, [20], is now well estab-
lished, along with a range of colour changing holographic sensors, [21], [22].
This was achieved by the use of a polymer binder with a lower permeabil-
ity. It is likely that both diffusion of mobile polymer chains and non-local
polymerization processes contribute to the limited spatial resolution in pho-
topolymers, the dominating process depending on the permeability of the
recording material and the exposure conditions.

Another model considering the role of the diffusion of mobile polymer
chains has been reported recently, [23]. This model is used to analyse the
reaction-diffusion kinetics of two-chemistry diffusive photopolymers. It of-
fers a general strategy for characterizing the reaction-diffusion kinetics of
photopolymer media in which key processes are decoupled and indepen-
dently measured.

To support the two-way diffusion theory, a new mathematical model for
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the formation of a weak grating after short exposure time was proposed, [18],
[24], which consists of partial differential equations describing monomer and
short polymer diffusion, together with photopolymerization and growth of
polymer chains until an immobile state is reached. The impact of diffusion
coefficients, polymerization rate, intensity and spatial frequency of recording
on the properties of weak diffraction gratings were investigated by numerical
simulations which successfully reproduced the experimental observations of
poor high spatial frequency response.

In this paper, an improved version of this mathematical model is pre-
sented, proposing a new mechanism for immobilization (the dynamical pro-
cess by which diffusing polymers are converted into immobile chains). It is
suggested that the immobilization is due to chemical reaction of two poly-
mer chains creating a larger polymer chain or cross-linking of two polymer
chains. Moreover, we now focus on the long term behaviour of the equa-
tions, which gives insight into the evolution of the monomer and polymer
concentrations and refractive index for longer exposure times (comparable
with times used in typical holographic recordings). Section 3 presents nu-
merical simulations showing the dependence of the refractive index spatial
profile and refractive index modulation on recording frequency and matrix
permeability (reflected in the mathematical model by the immobilization
rate) for low, moderate and high intensity recording. A study of the de-
pendence on intensity of recording was carried out since the results can be
used as a practical guide in choosing the optimal experimental conditions.
Finally, Section 4 presents a theoretical analysis of the two extreme regimes
mentioned above (monomer diffusion rate much slower or much larger than
polymerization rate), with special emphasis on studying the differences in
grating strength and deviations of the refractive index spatial profile from
the initial sinusoidal illumination pattern.

The results demonstrate that it is possible to simulate the poor spa-
tial frequency response of photopolymers by taking into account the mobile
chains diffusion. The simulations can also be used to predict optimal con-
ditions of recording at given spatial frequency in order to achieve maximum
refractive index modulation and diffraction efficiency and better fidelity of
the recorded interference pattern.
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2 The mathematical model

The photopolymer is exposed to two coherent beams of intensities I1 and I2
which create the following illumination pattern

I(x) = I0 (1 + V cos(kx)),

where k is the grating wavenumber, I0 = I1+I2 and V = 2
√
I1I2/(I1+I2) are

the overall intensity and visibility of the interference pattern, respectively.
The holographic grating formation then proceeds in three steps: initiation,
propagation and termination. Upon illumination, the sensitizing dye absorbs
a photon and reacts with the electron donor to produce free radicals; in
the presence of monomer these free radicals initiate polymerization. It is
assumed that direct absorption of monomer and polymer at this recording
beam wavelength is negligible. During the propagation step, free radicals
and monomer molecules interact and produce growing polymer chains. At
the termination step, two free radicals or two polymer chains interact and
the polymer chains stop growing. Following exposure to such an interference
pattern, the faster consumption of monomer in the high intensity regions sets
up a concentration gradient so the free monomer diffuses from dark to bright
fringes; in addition we assume that short-chain polymer molecules can also
diffuse during recording . The resulting holographic grating is due to the
spatial variation of the refractive index caused by changes in the density of
monomer and polymer species.

The dynamics of the photopolymer can be described by standard mass
conservation equations, whereby monomer, mobile polymer (typically the
shorter chains) and immobile polymer are seen as interacting species in a
closed system. The evolution of monomer is given by the one-dimensional
diffusion model of [1], which assumes that the polymerization rate (which, in
our theory, gives the transition from monomer to short or mobile polymer)
is proportional to the monomer density and illumination rate. This model
was generalized by adding a diffusion equation for short polymer chains,
with a growth term due to polymerization and a decay term which accounts
for immobilization, formerly assumed to be proportional to the rate of chain
growth, [18]. In what follows, we assume instead that immobilization depends
mainly on combination of short chains and on cross-linking and both these
processes are now more correctly described as proportional to the square of
the mobile polymer density. Finally, the last equation describes the growth
of immobile polymer at the immobilization point but this species does not
diffuse.
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The processes described above are captured by the following partial dif-
ferential equations (see also [18], [24])

∂m

∂t
= Dm

∂2m

∂x2
− Φ(t)F (x)m (1)

∂p

∂t
= Dp

∂2p

∂x2
+Φ(t)

[
F (x)m− Γp2

]
(2)

∂q

∂t
= Φ(t) Γp2, (3)

where m(x, t), p(x, t), q(x, t) are the concentrations of monomer, short and
long polymers, respectively. Due to the periodic nature of this system we
choose to study the equations on a spatial domain given by one grating
period, 0 ≤ x ≤ Λ, where Λ = 2π/k, and t ≥ 0. If the intensity of the
incident beams is weak enough not to produce a nonlinear reaction, the
polymerization rate can be assumed proportional to the light intensity and
written as F (x) = F0 (1 + V cos(kx)). Finally, Γ is the immobilization rate
constant which reflects physical properties of the photopolymer (such as
permeability and cross-linking activity) and Φ(t) is a step function equal to
1 during the light exposure and 0 afterwards.

The initial conditions are

m(x, 0) = m0, p(x, 0) = q(x, 0) = 0, 0 ≤ x ≤ Λ,

where m0 is the monomer density before photopolymerization, and we im-
pose zero-flux boundary conditions since we expect the resulting concentra-
tions to display the same pattern of minima and maxima as the illumination
function:

∂m

∂x
(x, t) =

∂p

∂x
(x, t) =

∂q

∂x
(x, t) = 0, x = 0,Λ; t ≥ 0.

For simplicity, the monomer and polymer diffusion coefficients, Dm and Dp,
are assumed to be constant in space and time. Since, in reality, diffusivity
(especially that of the larger polymer molecules) decreases with polymer-
ization, it would seem that our model overestimates the effect of diffusion.
However, this effect is compensated in the long term by increased produc-
tion of immobile chains, as described by (2), so the polymer diffusion slows
down significantly, and the simulations of the refractive index behaviour will
be shown in later sections to match experimentally observed patterns.

In order to facilitate the theoretical analysis and the numerical simula-
tions, we introduce the following non-dimensional variables

x̄ =
x

Λ
; t̄ =

t

t0
; m̄ =

m

m0
; p̄ =

p

m0
; q̄ =

q

m0
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and the system becomes (after dropping the bars again)

∂m

∂t
= α

∂2m

∂x2
− Φ(t)βf(x)m, (4)

∂p

∂t
= αε

∂2p

∂x2
+Φ(t)

[
βf(x)m− γp2

]
(5)

∂q

∂t
= Φ(t) γp2 (6)

where

α =
Dmt0
Λ2

, ε =
Dp

Dm
, β = t0F0, γ = m0t0Γ,

f(x) = 1 + cos(2πx).

We assume that the parameter ε = Dp/Dm is small (ε ≪ 1) since the dif-
fusion of short polymers is always much slower than that of monomers. For
example, in all subsequent numerical integrations, we take Dm = 10−12m2/s
and Dp = 10−14m2/s (in accordance with values determined in [12]) which
gives ε = 10−2. We choose the reference time t0 = 1s and we also introduce
the nondimensional parameter

K =
α

β
=

Dm

F0Λ2
, (7)

which measures the ratio of the diffusion rate to polymerization rate. (This
parameter was also considered in [1], [8], denoted by R.) The nondimen-
sional initial conditions are m(x, 0) = 1, p(x, 0) = q(x, 0) = 0, and the
zero-flux boundary conditions are applied at x = 0, 1.

The refractive index of a material consisting of a mixture of components
can be calculated with the well-known Lorentz-Lorenz equation:

n2 − 1

n2 + 2
=

∑

i

Φi
n2
i − 1

n2
i + 2

, (8)

where n is the effective refractive index of the mixture, ni are the refractive
indices of the components (monomer, polymers and binder) and Φi are the
volume fractions. Since Φm +Φp +Φq +Φb = 1, we can calculate

Φm =
m/ρm

m/ρm + p/ρp + q/ρq + b/ρb
,

with similar expressions for Φp and Φq, where ρm, ρp, ρq and ρb are the
densities of monomer, polymers and binder, respectively, while m, p and q
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refer to the non-dimensional (scaled) concentrations, as determined by the
system (4)–(6), and b is the similarly scaled binder concentration. Assuming
that the monomer initially occupies about 17% of the total volume, we
find that b = 0.83/0.17 = 4.9. The densities and refractive indices for all
components are as follows

ρm = 1.15g/cm3; ρp = ρq = 1.3g/cm3; ρb = 1.19g/cm3;

nm = 1.49; np = nq = 1.52; nb = 1.48. (9)

These values are consistent with previously published values by other au-
thors modelling acrylamide-based photopolymers (see, for example, [16],
[18]). The refractive index calculated by (8) is a function of fringe posi-
tion and time, n = n(x, t), and has a nonlinear dependence on m, p and q,
the concentrations of the photopolymer components. When the exposure is
stopped early, the monomer and short polymer will quickly diffuse to spa-
tially homogeneous states therefore the refractive index spatial variation will
be completely determined by that of immobile polymer.

The refractive index has the Fourier cosine expansion

n(x, t) = n0(t) + n1(t) cos(2πx) + n2(t) cos(4πx) + · · ·
and, if we let

ñ(x, t) = n0(t) + n1(t) cos(2πx)

be the sinusoidal approximation, we define the grating distortion as

d2(t) =

∫ 1

0
[n(x, t)− ñ(x, t)]2 dx. (10)

Since d2 = n2
2 +n2

3+ · · · (by Parseval’s identity) it follows that the function
d(t) contains information regarding all higher harmonic amplitudes and can
therefore be used as a measure of the refractive index departure from the
ideal sinusoidal profile.

The absolute value of the first harmonic amplitude, |n1(t)|, is frequently
used in the literature as a measure of grating strength and an approximation
to the refractive index modulation,

|n1(t)| ≈ ∆n(t) = nmax(t)− nmin(t),

which is calculated as the difference between the maximum and minimum
values of n(x, t) at a particular time. Note that this is a more general
method for calculating the refractive index modulation than used in [1] or
[8], as it does not need the assumption that ∆n is linearly related to polymer
concentration; indeed, for the early stages of recording, it can be seen that
all species concentrations make a (nonlinear) contribution.
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3 Numerical simulations

The equations (4)–(6), together with the relevant initial and boundary con-
ditions, were integrated numerically using a standard implicit finite differ-
ence scheme, for short (te = 10s) and long (te = 100s) exposure times. The
numerical scheme was implemented in C, while the data manipulation and
graphics were performed using the IDL (Interactive Data Language) soft-
ware. The total integration time was t = 100s in all simulations (although
the full range may not be shown in all diagrams).

We choose three values for the polymerization rate constant, F0 = 0.1s−1,
F0 = 1s−1 and F0 = 10s−1 (which correspond to regimes of low, moderate
and high intensity recording), and for each of these values we study the
dependence of the first harmonic amplitude n1(t) (or refractive index mod-
ulation), distortion from illumination pattern, d(t), and refractive index
profile, n(x, t), on recording frequency Λ and “immobilization” parameter
γ. These numerical simulations are presented in subsections B and C below.
The different curves shown in Figures 3–12 correspond to spatial frequencies
between 100 and 2000 lines/mm (Λ = 5× 10−7 − 10−5m), although not all
frequencies are shown in all diagrams in order to avoid cluttering.

Recall that the parameter γ in this model represents the (non-dimensional)
rate of conversion of mobile to immobile chains and depends on physical
properties such as permeability of the photopolymer or amount of cross-
linker present. Numerical values of γ are difficult to determine experimen-
tally so in our simulations we examine values related to those of polymer-
ization rates, e.g. γ = β/10, γ = β or γ = 10β (where β = t0F0 is
the non-dimensional polymerization rate). Large values of γ imply faster
cross-linking and immobilization of the produced polymer chains and is also
equivalent to creation of less permeable material. On the other hand, the
permeability of the binder is one of the factors influencing the rate of im-
mobilization of polymer chains since it determines how easily two shorter
chains can move and interact to create a larger immobile polymer chain.

3.1 The effect of binder on refractive index modulation

Before starting the simulations on the influence of immobilization rate on
final refractive index modulation and fidelity of the recorded pattern, studies
on the influence of the binder refractive index were carried out. The time
evolution of the refractive index modulation of the photopolymer system,
as given by numerical simulations of (4)–(6) and (8), is sensitive to the
values chosen for the refractive indices of the individual components. For
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example, if we vary the refractive index of the binder while keeping all other
parameters constant, as given by (9), we obtain the curves in Figures 1–2.
A low recording frequency (Λ = 10−5m) was chosen for the simulation in
Figure 1(a) and Figure 2(a) while a high frequency example (Λ = 10−6m)
is shown in Figure 1(b) and Figure 2(b). In all these simulations we used
F0 = 0.1s−1 and γ = 0.1 while the exposure time is te = 10s.
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(b) 1000 lines/mm
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Figure 1: First harmonic amplitude for different values of binder refractive
index, for (a) low recording frequency (Λ = 10−5m) and (b) high frequency
(Λ = 10−6m). The legend applies to both (a) and (b). In both figures,
F0 = 0.1s−1, γ = 0.1 and te = 10s.
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(b) 1000 lines/mm
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Figure 2: Refractive index modulation (as given by |n1(t)|) for different val-
ues of binder refractive index, for (a) low recording frequency (Λ = 10−5m)
and (b) high frequency (Λ = 10−6m). All values are the same as in Figure
1.

Figures 1(a) and (b) show the evolution of the first harmonic amplitude,
n1(t), which decreases and becomes negative when the refractive index of
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the binder is higher than that of polymer, nb > np, as the refractive index
n(x, t) is half a wavelength out of phase with the illumination pattern. By
contrast, Figure 2 shows the absolute value of the first harmonic amplitude,
|n1(t)|, which is a better measure for the refractive index modulation. From
this figure we notice that the long term value of the refractive index mod-
ulation depends on the difference between nb and np, regardless of which
one is higher (for example, nb = 1.48 and nb = 1.56 produce similar long
term behaviour in both (a) and (b), since np = 1.52). Note that, as the
remainder of this paper deals exclusively with the case nb < np, the first
harmonic amplitude will remain positive at all times and will be used as an
approximation for refractive index modulation.

The simulations presented in Figures 1–2 reveal that a choice of a binder
with lower refractive index is beneficial when a larger refractive index mod-
ulation is sought. Also, it can be seen from these graphs that, at very low
spatial frequencies (for example 100 lines/mm), the refractive index modu-
lation displays post-exposure growth, a fact which has been observed exper-
imentally (see, for example, [12], [19]). The holographic recording typically
leads to an increase of the density of the bright fringes due to photopoly-
merization and concentration driven monomer diffusion. In the case when
the refractive index of the binder is lower than the refractive index of the
polymer the refractive index modulation initially grows, since the difference
between the refractive indices in the bright and the dark regions can only
increase; however, after the short exposure time, the refractive index mod-
ulation decreases. The decrease is smaller at the lower spatial frequency
since the distance over which the diffusion of mobile polymer chains takes
place is one order of magnitude larger and thus the effect of the diffusion on
smearing the refractive index profile is smaller. When nb > np, the intervals
of increase and decrease for the first harmonic amplitude are reversed, as
seen in Figure 1.

3.2 Low intensity recording

The case of slow polymerization rate, F0 = 0.1s−1, is shown in Figures 3-
6 for two values of the immobilization parameter γ. Figure 3 shows the
evolution of the first harmonic amplitude n1(t) for short and long exposures
and low immobilization rate γ = 0.01 while Figure 5 shows similar graphs
for a higher immobilization constant, γ = 1. The grating distortion d(t),
which was defined in (10), is plotted in Figures 4 and 6, together with the
refractive index spatial profile, n(x, t), at the end of exposure (te = 100s).

Figure 3 shows that the refractive index modulation decreases faster with
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F0=0.1, γ=0.01
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Figure 3: Low polymerization rate, F0 = 0.1, and low immobilization con-
stant, γ = 0.01. The first harmonic amplitude n1(t) is shown for long
exposure te = 100s (left)and short exposure te = 10s (right).
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Figure 4: Low polymerization rate, F0 = 0.1, and low immobilization con-
stant, γ = 0.01. The grating distortion, d(t), is shown on the left and the
spatial profile, n(x, 100) on the right. The exposure time is te = 100s for
both graphs.
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increasing recording frequency while Figure 5 shows that, for the same spa-
tial frequency, increased immobilization rates lead to higher refractive index
modulation values. Also, longer exposure times are more beneficial in the
case of slow immobilization (Figure 3). In the case of faster immobilisation
longer exposure time does not lead to significant improvement in the final
refractive index modulation (Figure 5). Note that when F0 = 0.1, the value
of the nondimensional factor K (the ratio of diffusion to polymerization
rates, defined in (7)) varies from K = 0.1 (achieved at a frequency of 100
lines/mm) to K = 40 (at 2000 lines/mm). The results in Figure 3 show that
the use of low intensity of recording is beneficial at low spatial frequencies
and detrimental at high spatial frequencies, as long as the rate of immobiliza-
tion is low. The picture changes significantly when the immobilization rate
is two orders of magnitude faster (Figure 5) when steady growth reaching
saturation is observed in long exposure simulations. The maximum refrac-
tive index modulation at this relatively low intensity of recording is observed
at a spatial frequency of 200 lines/mm (Λ = 5×10−6m). The reason for the
higher value observed at 200 l/mm than at 100 l/mm is the shorter distance
travelled by the monomer molecules from dark to bright areas. This al-
lows for a better mass transport and a larger density change to be achieved.
The grating period and the distances that the molecules have to travel at
100 and 200 lines/mm are large and the detrimental effect of mobile termi-
nated/unterminated polymer chains diffusion is negligible. In addition, due
to the higher distortion at this spatial frequency (see Figure 6), the amount
of light diffracted into higher orders will be higher at 100 lines/mm than
at 200 lines/mm and, for that reason, the first harmonic amplitude at 100
lines/mm is slightly smaller at these conditions of recording.

Comparing the results presented in Figures 3–6, the following observa-
tions can be made: 1) the drop of diffraction efficiency after short exposure
significantly decreases with increasing immobilization rate, as the polymer
chains are prevented from moving and consequently smearing the created re-
fractive index pattern; 2) at low intensity of recording, the best results for the
refractive index modulation are achieved at low spatial frequency, which was
also observed experimentally in [25];
3) faster immobilization is more important for high rather than low spa-
tial frequencies at this intensity; 4) very little distortion of the recorded
refractive index profile is observed at this low intensity of recording.
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Figure 5: Low polymerization rate, F0 = 0.1, and higher immobilization
constant, γ = 1. The first harmonic amplitude n1(t) is shown for long
exposure te = 100s (left) and short exposure te = 10s (right).
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Figure 6: Low polymerization rate, F0 = 0.1, and higher immobilization
constant, γ = 1. The grating distortion, d(t), is shown on the left and the
spatial profile, n(x, 100) on the right. The exposure time is te = 100s for
both graphs.
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3.3 Moderate and high intensity recording

Figures 7–12 show the cases of moderate (F0 = 1s−1) and high (F0 = 10s−1)
polymerization rates. At these values, we found little difference between an
exposure of te = 10s and te = 100s and therefore only the long exposure
simulations were displayed. When F0 = 1, the diffusion to polymeriza-
tion ratio K varies from K = 0.01 (for 100 lines/mm) to K = 4 (at 2000
lines/mm), while for F0 = 10 we obtain the range K = 0.001 − 0.4. We
note from Figures 8–9 and 11–12 that, at small values of K (corresponding
to low recording frequencies), the refractive index variation exhibits distor-
tions from the initial sinusoidal profile. This phenomenon will be further
investigated in Section 4B.

It is observed that an increased rate of immobilization (which can be
achieved, for example, by fast cross-linking) is beneficial for both medium
and high intensity of recording. Contrary to the case of low recording inten-
sity, medium and high intensities lead to better results and higher refractive
index modulation at high spatial frequency. From Figures 7–10 it is seen
that the optimal frequency of recording and immobilization rate (the values
which lead to the highest refractive index modulation and lowest distortion)
depend on the spatial frequency. For example, moderate intensity F0 = 1
and fast immobilization γ = 10 are optimal for 500 lines/mm, while high
intensity F0 = 10 and fast immobilization γ = 10 are best for the higher
frequency 2000 lines/mm. The exact pattern for this dependence is difficult
to establish as it results from a complex interplay between processes such
as monomer and polymer diffusion as well as polymer immobilization, all of
which having different effects in different parameter regimes.

4 Perturbation analysis

The behaviour of the solutions in two extreme cases, K ≪ 1 and K ≫ 1
(hence the diffusion rate is much smaller or much larger than the poly-
merization rate) can be studied analytically using perturbation methods,
a standard tool in mathematical modelling (see, for example, [26]). Since
ε = Dp/Dm is a small parameter, we expand the concentration functions
m, p and q in asymptotic series using powers of ε thus reducing the system
(4)-(6) to a sequence of simpler problems which can be solved sequentially.
In particular, this approach will show the appearance of distortions for small
K values. As this analysis is concerned with the long term behaviour of the
monomer and polymer concentrations under constant light exposure, we let
Φ(t) ≡ 1 in (4)–(6).
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Figure 7: Moderate polymerization rate, F0 = 1. The evolution of the first
harmonic amplitude n1(t) is shown for low immobilization constant, γ = 0.1
(left) and high immobilization constant, γ = 10 (right). The exposure time
is te = 100s for all curves.

4.1 Polymerization rate less than diffusion rate (K ≫ 1)

Without loss of generality we choose α = Dmt0/Λ
2 = 1 (achieved, for exam-

ple, with t0 = 1s, Λ = 10−6m) and β =
√
ε (corresponding to F0 = 0.1s−1),

which gives K = 10. We also assume the immobilization rate to be smaller
than the polymerization rate, hence we take γ = ε. The subsequent analysis
can be easily modified to deal with other parameter regimes which lead to
large K values. Figure 13 shows numerical simulations of the spatial profiles
of monomer and polymer concentrations, m, p and q, as well as refractive
index, n, for various times between 0 and 100s (in these graphs, short and
long polymers refer to mobile and immobile chains, respectively). Note that
the mobile polymer concentration first increases due to polymerization but
then decreases as the immobilization process starts to dominate.

Multiple timescales expansions (see [26]) are appropriate since the poly-
mers evolve more slowly than the monomer and can be used to approximate
the initial behaviour for all species. Using the short time t and long time
τ = ε1/2t, we write

m(x, t, τ) = m0(x, t, τ) +
√
εm1(x, t, τ) + εm2(x, t, τ)+

+higher order terms (h.o.t),

with similar expressions for p and q. Substituting this expansion into (4)
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Figure 8: Moderate polymerization rate, F0 = 1. The refractive index
spatial profile n(x, 100) is shown for low immobilization constant, γ = 0.1
(left) and high immobilization constant, γ = 10 (right). The exposure time
is te = 100s for all curves.

and equating coefficients of each power of ε, we obtain

Order 1 :
∂m0

∂t
=

∂2m0

∂x2
, m0(x, 0, 0) = 1

Order
√
ε :

∂m1

∂t
=

∂2m1

∂x2
−
(
∂m0

∂τ
+ f(x)m0

)
,

m1(x, 0, 0) = 0,

and similar problems at higher orders, all satisfying zero-flux boundary con-
ditions. Solving these problems sequentially, we obtain

m(x, t, τ) = e−τ +
√
ε

[
1

8π2
τe−τ+

1

4π2
e−τ

(
e−4π2t − 1

)
cos(2πx)

]
+ h.o.t

and a similar approach for (5)–(6) gives asymptotic expansions for the poly-
mers

p(x, t, τ) = 1− e−τ +
e−τ − e−4π2τ

4π2 − 1
cos(2πx) + h.o.t

q(x, t, τ) =
√
ε

∫ τ

0
p20(x, s) ds + h.o.t.

These are valid up to t = O(1/
√
ε) (although the monomer expansion can

be shown to hold as t → ∞) and on this time scale it can be seen that the
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Figure 9: Moderate polymerization rate, F0 = 1. The grating distortion
d(t) is shown for low immobilization constant, γ = 0.1 (left) and high im-
mobilization constant, γ = 10 (right). The exposure time is te = 100s for
all curves.

leading order spatial dependence is sinusoidal, or constant (as in the case
of monomer, which only depends on the slow time τ). These asymptotic
approximations give good agreement with the numerical solutions shown in
Figure 13. The evolution of the refractive index modulation and grating
distortion for this particular choice of physical constants (F0 = 0.1, Λ =
10−6, γ = 0.01) can be seen in Figures 3–4. The distortion measure in this
case is low, which confirms the sinusoidal profile calculated in this section.

It is evident from the asymptotic approximations and numerical simu-
lations presented above that this regime is characterized by monomer and
polymer profiles with little spatial variation, due to the relatively short diffu-
sion distances, and consequently a fast decaying refractive index modulation.
However, even under these conditions of high diffusion to polymerization
rate, the refractive index contrast can be improved if the polymer immobi-
lization rate is increased (for example, by using a more efficient cross-linker),
as shown in Figure 5.

4.2 Diffusion rate less than polymerization rate (K ≪ 1)

To illustrate the case when the diffusion rate is much slower than the poly-
merization rate we choose, for example, β = t0F0 = 1, α = γ = ε ≪ 1,
which gives K = 0.01. (We take Λ = 10−5m and F0 = 1s−1.) A standard
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Figure 10: High polymerization rate, F0 = 10. The evolution of the first
harmonic amplitude n1(t) is shown for low immobilization constant, γ = 0.1
(left) and high immobilization constant, γ = 10 (right). The exposure time
is te = 100s for all curves.

perturbation approach applied to (4) gives

m(x, t) = e−(1+cos(2πx)) t + ε
2

3
π2t2 e−(1+cos(2πx)) t×

×
(
t+ 3cos(2πx) − t cos(4πx)

)
+ h.o.t, (11)

which is valid for t ≪ 1/
√
ε; however this expansion fails for large t and

x ≈ 1
2 (the point of zero illumination) due to the presence of secular terms.

This suggests the existence of an internal layer, centred at x = 1
2 , where the

solution changes very fast and can be analysed using the change of variables
ξ = (x − 1

2 )ε
−1/4, τ = ε1/2t. The non-dimensional monomer equation (4)

becomes
∂m

∂τ
=

∂2m

∂ξ2
−m

(
2π2ξ2 − ε

1

2

2π4

3
ξ4 + · · ·

)
(12)

where −∞ ≤ ξ ≤ ∞, τ ≥ 0 and we used a Taylor approximation for the
illumination function,

f(x) = 1 + cos(2πx) = 1− cos(2πξε
1

4 ) = 2π2ξ2ε
1

2 + · · ·
The asymptotic expansion

m(ξ, τ) = m0(ξ, τ) + εm1(ξ, τ) + · · ·
substituted into (12) gives the following equation for the leading order
monomer approximation

∂m0

∂τ
=

∂2m0

∂ξ2
− 2π2ξ2m0, −∞ ≤ ξ ≤ ∞, t ≥ 0, (13)
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Figure 11: High polymerization rate, F0 = 10. The refractive index spatial
profile n(x, 100) is shown for low immobilization constant, γ = 0.1 (left)
and high immobilization constant, γ = 10 (right). The exposure time is
te = 100s for all curves.

where ∂m0

∂ξ (±∞) = 0. Using the separation of variables assumptionm0(ξ, τ) =
A(ξ)B(τ) we obtain the problems

dB

dτ
= λB, (14)

d2A

dξ2
− (λ+ 2π2ξ2)A = 0,

dA

dξ
(±∞) = 0, (15)

where λ is the separation constant. The problem in (15) is a non-dimensional
form of the quantum harmonic oscillator (or the Schrödinger equation with
quadratic potential) and its solutions are well known. It can be shown (see,
for example, [27]) that the only possible eigenvalues are

λn = −π
√
2 (2n + 1), n = 0, 1, 2 . . .

with corresponding eigenfunctions

An(ξ) = e
− π

√

2
ξ2
Hn

(
(2π2)1/4 ξ

)
,

where Hn are the Hermite polynomials. The first problem, (14), then yields
B(τ) = e−λnτ and hence the general solution for the first order problem (13)
is given by

m0(ξ, τ) =
∞∑

n=0

C2ne
−π

√
2(4n+1) τ− π

√

2
ξ2
H2n

(
(2π2)1/4 ξ

)
, (16)
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Figure 12: High polymerization rate, F0 = 10. The grating distortion d(t)
is shown for low immobilization constant, γ = 0.1 (left) and high immobi-
lization constant, γ = 10 (right). The exposure time is te = 100s for all
curves.

where we have only retained the even eigenfunctions. The constants C2n are
determined using the initial condition m0(ξ, 0) = 1 together with properties
of the Hermite polynomials:

C2n =

√
2

2n(2n)!!
.

The first terms in the expansion shown in (16) are therefore

m0(ξ, τ) =
√
2 e

−π
√
2 τ− π

√

2
ξ2

+ e
−5π

√
2 τ− π

√

2
ξ2
(2π2ξ2 − 1√

2
)

+
1

4
√
2
e
−9π

√
2 τ− π

√

2
ξ2
(8π2ξ4 − 12

√
2πξ2 + 3) + · · · (17)

It is easily seen that for fixed τ (τ = O(1)), the amplitudes decay very fast
as n → ∞ and that the second and subsequent terms make a very small
contribution to m0.

The inner and outer expansions (17) and (11) (which represent solution
approximations inside and outside the “dark” layer) accurately describe the
behaviour of the monomer concentration for all times and can be used to
determine similar approximations for the polymer functions; all these ap-
proximations match the numerical solutions shown in Figure 14. In this case
the refractive index profile no longer resembles the sinusoidal illumination
as it develops multiple maxima per grating period. These distortions typi-
cally appear on the longer time scale of τ and could therefore be avoided by
using shorter exposure times. The two peaks in the polymer and refractive
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Figure 13: Time evolution of monomer, polymers and refractive index pro-
files for K ≫ 1. Here, α = 1, β =

√
ε = 0.1, γ = 0.01 andK = 10. Exposure

time is te = 100s.
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index profiles, adjacent to the dark region, have already been reported in
the literature (see, for example, [11], [8]).

The evolution of the refractive index modulation and grating distortion
for this particular choice of physical constants (F0 = 10, Λ = 10−5, γ = 0.1)
can be seen in Figures 10, 12. In this case only a modest improvement is
observed in the refractive index modulation when the immobilization rate
is increased by a factor of 100. The distortion function d(t) is high, which
implies that higher harmonic amplitudes make a significant contribution
to the refractive index in this case. The analytical approach presented in
this section, seems to suggest that, in the K ≪ 1 regime, the component
concentrations might be more accurately described by different eigenfunction
expansions, rather than the standard Fourier cosine series.
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Figure 14: Time evolution of monomer, polymers and refractive index pro-
files for K ≪ 1. Here, α = ε = 0.01, β = 1, γ = 0.1 and K = 0.01. Exposure
time is te = 100s.
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5 Conclusions

In this paper we presented a mathematical model for holographic grating for-
mation in an acrylamide-based photopolymer system. The equations are de-
rived from standard physical laws (diffusion, mass conservation, photopoly-
merization) and no a priori assumptions were made regarding the solution
behaviour. The model assumes short polymer chains are free to diffuse and
introduces an immobilization rate which is determined by chain growth and
cross-linking. Numerical simulations were carried out in order to assess the
effect of recording parameters such as illumination frequency and intensity,
as well as material permeability, on refractive index modulation, refractive
index profile and grating distortion.

The behaviour of the photopolymer system was seen to be qualitatively
different in two extreme regimes, characterized by polymerization rate much
larger than diffusion rate (K ≫ 1) and polymerization rate much slower
than diffusion rate (K ≪ 1). A perturbation analysis, verified by numerical
integration of the model equations, shows that the monomer and polymer
concentrations, as well as the refractive index, have a weakly sinusoidal
spatial variance when K ≫ 1 but display large distortions due to higher
harmonics when K ≪ 1. (Note that the model derived in [19] assumes that
the monomer concentration decreases homogeneously due to high monomer
mobility; however, our analysis shows that this assumption, while approxi-
mately correct when K ≫ 1, would not be appropriate when K ≪ 1.)

The model presented here suggests that, for achieving good response
at high spatial frequency of recording, it is beneficial to work with high
intensities and fast immobilization rates. By contrast, good response at
low spatial frequency of recording requires lower recording intensities, [25].
Fast immobilization is desirable but not as critical as in the case of high
spatial frequency. It is also observed from numerical simulations that, for
any polymerization rate F0 and immobilization parameter γ, the grating
distortion is always highest at the lowest recording frequency Λ.

It was demonstrated that the model can predict the diffraction gratings
dynamics at long exposure times and the obtained values for the refractive
index modulation are comparable to those reported in the literature.
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