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Figure 12: Auto-RJ exchange algorithm output: posterior model probabilities (top)
and posterior parameter probabilities for model m2 (bottom).

26



algorithm for exponential random graph models of Caimo and Friel (2011). This takes
the form of an independence sampler making use of a parametric approximation of
the posterior in order to overcome the issue of tuning the parameters of the jump
proposal distributions and increase within-model acceptance rates. We also note that
the methodology may also find use in other recent papers which are also amenable to
Bayesian analysis of networks such as Koskinen et al. (2010) for ERGMs in the presence
of missing data and Schweinberger and Handcock (2011) who implemented a version
of the exchange algorithm adapted to hierarchical ERGMs with local dependence.

This methodology has been illustrated by four examples, and is reproducible using
the Bergm package for R (Caimo and Friel, 2012). Additionally we have presented a
within-model approach for estimating the model evidence which relies on the path
sampling approximation of the likelihood normalizing constant and nonparametric
density estimation of the posterior distribution.

The methods described in this paper have their limitations, however. The compu-
tational effort required by these algorithms render inference for large networks with
hundreds of nodes or models with many parameters, out of range. Moreover, the need
to take the final realisation from a finite run Markov chain as an approximate “exact”
draw from the intractable likelihood is a practical and pragmatic approach. As yet a
perfect sampling algorithm has not been developed for ERGMs, and this would have
clear applicability for our algorithms.
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