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5. Conclusion

In conclusion, a novel DSPSMS fiber structure is fabricated from a standard SMS fiber 
structure by employing a side polishing technique, which is reported for the first time. 
Through calculating the light propagation characteristic of MMF polished on both sides, it 
was found that the resulting transmitted mode field distribution is dependent on the degree of 
centro-symmetry and gives rise to complicated MMI patterns. The sensing performance of 
this fiber structure was also calculated and these demonstrated that it has a high dependence 
on SPD. Three DSPSMS fiber samples with different SPD values (d = 10 μm, 20 μm and 30 
μm) were successfully fabricated and their physical appearance was compared with a standard 
MMF using microscopic imaging. The experimental results have shown that over an RI range 
from 1.3450 to 1.4050, the measured average RI sensitivity is as high as 64.82 nm/RIU for d 
= 10 μm, 85.29 nm/RIU for d = 20 μm, and 151.29 nm/RIU for d = 30 μm. 
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