Synthesis and Biological Evaluation of Gymnastatin Analogues

Felicia Mutuma

Dublin Institute of Technology

Follow this and additional works at: https://arrow.dit.ie/sciendoc

Recommended Citation

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Synthesis and biological evaluation of gymnastatin analogues

By

Miss. Felicia C. Mutuma B.Sc.

A thesis presented to

Dublin Institute of Technology for the award of

Doctor of Philosophy

Prepared under the supervision of

Dr Gráinne C. Hargaden

School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology,

Kevin St, Dublin 8

and

Dr Brendan Duffy

Centre for Research in Engineering Surface Technology, Focas Institute,

Dublin Institute of Technology, Kevin St, Dublin 8

July 2017
Abstract
A library of eight novel gymnastatin analogues has been prepared. The compounds consist of an unsaturated side chain linked to a tyrosine unit using an amide bond. The compounds have various chain lengths and degrees of conjugation. Additional functionality was added to the tyrosine unit by methylation of the acid side group to prepare methyl ester derivatives. While gymnastatins have shown promising cytotoxic activity, their mode of action is not fully understood. The prepared compounds were evaluated against the A549 cancer cell line. A selection of the compounds were further evaluated for inhibition against POLO like kinase (Plk1).

The methyl ester derivatives showed more activity than compounds containing the acid side group. It was also observed that increasing the chain length resulted in increased activity against the cancer cells. The presence of an additional alkene did not significantly improve the activity. Furthermore, preliminary results of the activity of compounds using an ELISA assay showed that the compounds containing the methyl ester side group inhibited Plk1, while compounds with the acid side group showed no inhibition.

An introduction to gymnastatins is presented in Chapter 1 of this thesis. Chapter 2 contains a review of iron oxide nanoparticles, their synthesis and applications in targeted delivery. Due to time constraints, this part of the proposed study was not carried out synthetically. The synthesis and biological evaluation of gymnastatin analogues are presented in Chapter 3 and 4 respectively. The conclusions and future work are presented in Chapter 5. Finally, Chapter 6 details the experimental procedures employed in this work.
Declaration

I certify that this thesis which I now submit for examination for PhD is entirely my own work and has not been taken from the work of others, save and to the extent that such work has been cited and acknowledged within the text of my work.

This thesis was prepared according to the regulations for postgraduate studies by research of the Dublin Institute of Technology and has not been submitted in whole or in part for an award in any Institute or University.

The work on in this thesis conforms to the principles and requirements of the DIT’s guidelines for ethics in research.

Signature ___ Date: ____________________________

Felicia C. Mutuma
Acknowledgements

I would like to express my gratitude to my supervisors, Gráinne Hargaden and Brendan Duffy for their support and guidance over the course of my PhD.

I would also like to thank Alan Casey for all his help on the biology aspect of this project. I want to thank Martin Kitson, Annette Callaghan, Jimmy Muldoon, Hugh Byrne, Jyothi Nair and all the technicians and staff in the School of Chemistry, CREST and the Focas Institute for all their help and support over the years.

My sincere thanks also go to Sarah Rawe, Craig Hicks, Miriam Kennedy, Sandra Gannon and Laura Perdisatt for everything they taught me before and at the start of my PhD.

Finally, I would like to thank my friends and family, particularly Mum, Damian, Neil and Nicky.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>1 Dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>2 Dimensional</td>
</tr>
<tr>
<td>A549</td>
<td>Human pulmonary adenocarcinoma</td>
</tr>
<tr>
<td>AB</td>
<td>Alamar blue</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscope</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>AOS</td>
<td>Alpha-olefin sulfonate</td>
</tr>
<tr>
<td>APC/C</td>
<td>Anaphase Promoting Complex</td>
</tr>
<tr>
<td>ATI</td>
<td>Alveolar type I</td>
</tr>
<tr>
<td>ATII</td>
<td>Alveolar type 2</td>
</tr>
<tr>
<td>BEAS-2B</td>
<td>Human bronchial epithelium, normal</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxy carbonyl</td>
</tr>
<tr>
<td>Caco-2</td>
<td>Human epithelial colorectal adenocarcinoma</td>
</tr>
<tr>
<td>calc'd</td>
<td>calculated</td>
</tr>
<tr>
<td>Cdk</td>
<td>Cyclin-dependent kinase</td>
</tr>
<tr>
<td>CHS</td>
<td>Continuous hydrothermal system</td>
</tr>
<tr>
<td>CLIOs</td>
<td>Cross linked iron oxide nanoparticles</td>
</tr>
<tr>
<td>COSY</td>
<td>Homonuclear correlation spectroscopy</td>
</tr>
</tbody>
</table>
CST Critical solution temperature
CT-26 colon carcinoma
CTA Cystamine tert-acylhydrazine
d doublet
DCC dicyclohexylcarbodiimide
dd doublet of doublets
ddd doublet of doublets of doublets
dddd doublet of doublets of doublets of doublets
DIBAL-H Diisobutylaluminium hydride
DIEA diisopropylethylamine
DMAP 4-Dimethylaminopyridine
DMEM Dulbecco’s modified Eagle’s medium
DMF Dimethylformamide
DMP Dess-Martin periodinane
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
DOX Doxorubicin
dt doublet of triplets
E E-isomer
ED$_{50}$ Effective dose for 50% of a group
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDC</td>
<td>N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EPR</td>
<td>Enhanced permeability retention</td>
</tr>
<tr>
<td>FA</td>
<td>Folic acid</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>fcc</td>
<td>Face centred cubic</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>HeLa</td>
<td>Human cervix epitheloid carcinoma</td>
</tr>
<tr>
<td>HER-2</td>
<td>human epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple-bond correlation spectroscopy</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>HREIMS</td>
<td>High resolution electron ionisation mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>HWE</td>
<td>Horner–Wadsworth–Emmons</td>
</tr>
<tr>
<td>IBX</td>
<td>2-iodoxybenzoic acid</td>
</tr>
<tr>
<td>IONP</td>
<td>Iron Oxide Nanoparticles</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LCMS</td>
<td>Liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>LHRH</td>
<td>Leuteinizing Hormone-Releasing Hormone</td>
</tr>
<tr>
<td>log</td>
<td>logarithmic/exponential</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low resolution mass spectrometry</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>MDT</td>
<td>Magnetic drug targeting</td>
</tr>
<tr>
<td>MNP</td>
<td>Magnetic Nanoparticle</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MTD</td>
<td>Magnetic targeted delivery</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5-Diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NaH</td>
<td>Sodium hydride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>PAC</td>
<td>poly (N-isopropylacrylamide-chitosan)</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly-ethylene glycol</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethylene imine</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylene oxide</td>
</tr>
<tr>
<td>PEOTMA</td>
<td>Poly (ethylene oxide)-trimellitic anhydride chloride</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly (lactide-co-glycolide)</td>
</tr>
<tr>
<td>Plk</td>
<td>POLO like kinase</td>
</tr>
<tr>
<td>PMA</td>
<td>Amphiphilic polymer</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSMA</td>
<td>Prostate-Specific Membrane Antigen</td>
</tr>
<tr>
<td>PTX</td>
<td>Paclitaxel</td>
</tr>
<tr>
<td>PVBP</td>
<td>Poly(4-vinylbenzylphosphonate)</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>qd</td>
<td>quartet of doublets</td>
</tr>
<tr>
<td>quin</td>
<td>quintet</td>
</tr>
<tr>
<td>RAFT</td>
<td>Reversible addition fragmentation chain</td>
</tr>
<tr>
<td>RES</td>
<td>Reticuloendothelial system</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention factor</td>
</tr>
<tr>
<td>Rochelles</td>
<td>Potassium sodium tartrate tetrahydrate</td>
</tr>
</tbody>
</table>

viii
ROS Reactive oxygen species
RT Room temperature
s singlet
sept septet
SPIONP Super-paramagnetic loaded nanoparticles
STM Scanning Tunnelling Microscope
t triplet
td triplet of doublets
THF Tetrahydrofuran
TLC Thin layer chromatography
TMS tetramethylsilane
UATR Universal Attenuated Total Reflectance
UV Ultra violet
UV-vis Ultra violet- visible
v/v Volume per volume
VEGF Vascular endothelial growth factor
WSC Water soluble carbodiimide
XPS X-ray Photoelectron Microscope
Z Z-isomer
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Fe₂O₃</td>
<td>Hermatite</td>
</tr>
<tr>
<td>β-CD</td>
<td>β-cyclodextrin</td>
</tr>
<tr>
<td>γ-Fe₂O₃</td>
<td>Maghemite</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>
Table of Contents

Abstract ... i

Declaration .. ii

Acknowledgements .. iii

Abbreviations .. iv

List of Schemes ... xvi

List of Figures ... xix

List of Tables .. xxiii

1 Gymnastatins as anticancer agents .. 1

1.1 Marine-Derived fungi as a source of bioactive natural products 1

1.1.1 Marine Sponges (Porifera) ... 2

1.2 Gymnastatins A-E ... 3

1.3 Gymnastatin F, G, H and gymnamide ... 5

1.4 Gymnastatins Q and R ... 7

1.5 Gymnastatins I-K, S-Y and 11’-carboxygymnastatin N ... 8

1.6 Gymnastatin N .. 11

1.6.1 Plk1 and protein kinases ... 12

1.6.2 The Cell Cycle .. 13

1.6.3 Plk1 and cancer ... 13

1.7 Conclusion ... 14

1.8 References ... 15
2. Magnetically tagged drugs for cancer treatment ... 18

2.1. Introduction .. 18

2.1.1. Targeted Drug Delivery .. 21

2.1.2. Magnetic Drug Targeting ... 21

2.1.3. Passive targeting .. 23

2.1.4. Active Targeting .. 24

2.1.5. Tumour cell targeting .. 24

2.2. Tagging .. 26

2.2.1. Folate .. 26

2.2.2. Integrins ... 28

2.2.3. Prostate specific antigen (PSA) ... 31

2.3. IONPs Synthesis ... 31

2.3.1 Co-Precipitation .. 33

2.3.2 Hydrothermal .. 34

2.3.3. Thermal Decomposition ... 35

2.3.4 Other methods .. 36

2.4. Surface modification of Iron Oxide Nanoparticles 36

2.4.1. Organic Coatings .. 37

2.4.2. Inorganic Coatings .. 43

2.4.3. Natural Coatings .. 46

2.5. Conjugation .. 51

2.5.1. Covalent Linkage .. 52
3.2.4 The preparation of esters ... 109
3.2.5 The preparation of acids ... 111
3.2.6 Amide coupling ... 112
3.2.7 Benzyl deprotection ... 112
3.2.8 Methyl ester derivative compound characterisation 114
3.3 Conclusion ... 116
3.4 References ... 116
4. Biological evaluation of gymnastatin analogues 118
4.1. Introduction ... 118
4.1.1. Cell lines .. 118
4.1.2. Cytotoxicity assays ... 119
4.1.3. MTT assay .. 119
4.1.4. AlamarBlue® .. 120
4.1.5. Methodology ... 121
4.1.6. Results of cytotoxic evaluation Gymnastatin analogues in A549 cells ... 125
4.2. ELISA Assay .. 136
4.2.1. Gymnastatins and Plk1 .. 136
4.2.2. Methodology ... 138
4.2.3. Results .. 139
4.3. Conclusion .. 141
4.4. References ... 142
5. Conclusion and Future Work .. 144
Experimental Procedures

6.1 Part A: Synthetic Procedures
6.1.1 General Experimental
6.1.2 Synthesis of short chain gymnastatin analogues
6.1.3 Synthetic Strategy 2
6.1.4 Attempted amide coupling
6.1.5 Attempted Debenzylation

6.2 Part B: Cytotoxicity assays using MTT and Alamar blue
6.2.1 Materials and instrumentation
6.2.2 Procedures
6.2.3 Procedure for trypsinising (splitting) cells
6.2.4 Cytotoxicity Assays
6.2.5 Preparation of cell suspensions and control and drug solutions
6.2.6 Plate seeding procedure
6.2.7 MTT Exposure and absorbance reading
6.2.8 AB Exposure and absorbance reading

6.3 Part C: ELISA Assay
6.3.1 Materials and instrumentation
6.3.2 Preparation of samples and standards

A. Appendix

Results of the biological evaluation

MTT Assay
List of Schemes

Scheme 1.1: Retrosynthetic analysis of Gymnastatin A (4) reported by Ogamino et al. 5

Scheme 1.2: Synthesis of Gymnastatin H (14) from Gymnamide (15) - (i) KOH, (ii) L-tyrosine methyl ester, WSC. 6

Scheme 1.3: Gymnastatin H synthesis reported by Raffier et al. 7

Scheme 2.1: Structures of folate and folic acid. 26

Scheme 2.2: Strategy for synthesis of PAA-PEO and PAA-PAMPEO by Aqil et al. 42

Scheme 2.3: Summary of reactions in Stöber process for the synthesis of silica nanoparticles. 45

Scheme 2.4: Oxidation of dopamine to dopamine quinone. 51

Scheme 3.1: Overview of synthesis of synthesis of 6 and 6a. 83

Scheme 3.2: Wittig reaction. 84

Scheme 3.3: Wittig reaction mechanism involving octanal 1a. 85

Scheme 3.4: Base catalysed hydrolysis using KOH in methanol. 85

Scheme 3.5: Base catalysed hydrolysis of ester 2. 86

Scheme 3.6: Base catalysed hydrolysis reaction mechanism. 86

Scheme 3.7: Attempted amide coupling using N-Boc-O-benzyl-L-tyrosine. 87

Scheme 3.8: Attempted amide coupling using oxalyl chloride. 89
Scheme 3.9: Attempted amide coupling using EDC 89
Scheme 3.10: Amide coupling using HATU .. 90
Scheme 3.11: Deprotonation of acid ... 91
Scheme 3.12: Proposed reaction mechanism for amide formation using HATU 91
Scheme 3.13: Methylation of acid moiety in tyrosine unit 92
Scheme 3.14: Attempted O-Benzyl deprotection using H2, Pd/C 93
Scheme 3.15: Attempted O-benzyl deprotection .. 93
Scheme 3.16: Benzyl deprotection using boron trichloride dimethyl sulfide complex .. 94
Scheme 3.17: Possible sites of methylation highlighted in red 96
Scheme 3.18: Debenzylation reactions using BCl3.S(CH3)2 98
Scheme 3.19: General mechanism of the reaction between an acid chloride and an alcohol ... 99
Scheme 3.20: Overview of synthesis ... 101
Scheme 3.21: The synthesis of alkenes ... 102
Scheme 3.22: Deprotonation of triethyl phosphonoacetate 103
Scheme 3.23: Proposed mechanism for Horner-Wadsworth-Emmons reaction 104
Scheme 3.24: The synthesis of alcohols .. 105
Scheme 3.25: Reaction mechanism for DIBAL-H reduction 106
Scheme 3.26: Improved procedure for preparation of Dess-Martin Periodinane using iodobenzoic acid as reported by Ireland.14 ... 107
Scheme 3.27: The synthesis of aldehydes... 107

Scheme 3.28: Proposed reaction mechanism for oxidation of alcohol to aldehyde using Dess-Martin periodinane .. 109

Scheme 3.29: The synthesis of alkenes.. 110

Scheme 3.30: The synthesis of acids... 111

Scheme 3.31: Amide coupling using HATU ... 112

Scheme 3.32: O-benzyl deprotection using boron trichloride dimethyl sulfide complex .. 113

Scheme 4.1: Reduction of MTT 1 by mitochondrial enzymes to give the formazan dye 2. ... 120

Scheme 4.2: Reduction of resozurin sodium salt (3) to strongly fluorescent resofurin sodium salt (4) in the presence of viable cells ... 120
List of Figures

Figure 1.1: Structures of Vidarabine (1) and Cytarabine (2) ... 1

Figure 1.2: Chemical structure of antibiotic YM-202204 (3) .. 2

Figure 1.3: Image of H. Japonica ... 3

Figure 1.4: Structures of Gymnastatin A (4, 5), Gymnastatin B (6), Gymnastatin C (7),
Gymnastatin D (8-9), Gymnastatin E (10-11) .. 4

Figure 1.5: Structures of Gymnastatin F (12), Gymnastatin G (13), Gymnastatin H (14)
and Gymnamide (15) ... 6

Figure 1.6: Structures of Gymnastatin Q (16) and Gymnastatin R (17) 7

Figure 1.7: Structures of Gymnastatins I-K (18-20), 11’-carboxygymnastatin N (21),
Gymnastatin S-Y (22-27) ... 9

Figure 1.8: Structure of Gymnastatin N (28) ... 12

Figure 1.9: Schematic view of the cell cycle in eukaryotic cells. 26 ... 13

Figure 1.10: Structure of ON01910 .. 14

Figure 2.1: Principle of magnetic drug targeting 8 ... 22

Figure 2.2: Structure of inverse spinel magnetite (Fe₃O₄) ... 22

Figure 2.3: Structure of PEO-TMA-FA polymer ... 28

Figure 2.4: TEM and DLS images of carboxyl coated IONPs (a) 10 nm, (b) 20 nm (c) 30
nm (d) 40 nm 59 .. 32

Figure 2.5: Chemical structures of selected coating materials .. 37

Figure 2.6: Structure of Doxorubicin (DOX) .. 38
Figure 2.7: Structure of PEG-b-PVBP ... 40

Figure 2.8: (a) chemical structure and (b) toroidal shape β-cyclodextrin molecule101 ... 41

Figure 2.9: TEM images of IONPs whose surface has been coated with silica at various thicknesses, depending on the amount of precursor added to the solution. (A) 10 mg (B) 60 mg (C) 1000 mg of TEOS added to solution. (D) HRTEM image of the iron oxide nanoparticle uniformly coated with a 6 nm thin amorphous silica shell. Reproduced with kind permission from ref.173.. 44

Figure 2.10: Selected surfactants used for INOP surface protection 49

Figure 2.11: Functional groups used for covalent conjugation on targeted delivery154 .. 52

Figure 2.12: Structure of citrate stabilized IONP... 57

Figure 2.13: TEM Image of core-shell polymer-coated IONPs169............................... 59

Figure 2.14: Image of poly-SPIONs below and above LCST 162 60

Figure 2.15: IONPs functionalized with thermoresponsive polymer (PNIPAAm)....... 60

Figure 3.1: Retrosynthetic analysis of gymnastatin N analogue................................. 82

Figure 3.2: O-benzyl-L-tyrosine ... 88

Figure 3.3: Assigned HMBC spectrum of 6b.. 97

Figure 3.4: Retrosynthetic analysis of gymnastatin analogues 100

Figure 3.5: Assigned 1H NMR and COSY of 14a in CD\textsubscript{3}CN............................ 115

Figure 4.1: Characteristic growth curve of cells ... 121

Figure 4.2: Summary of MTT assay procedure ... 123
Figure 4.3: A % viability of treated A549 cells versus the concentration of 3b. % Viability values are calculated from three independent experiments and are shown +/- the standard deviation. B Dose response curve for 3b in A549 cells at 72 hour exposure. ... 124

Figure 4.4: % viability of A549 cells treated with increasing concentration of DMSO versus untreated cells ... 125

Figure 4.5: Legend for Table 4.2 ... 126

Figure 4.6: Comparison of the dose-response of compounds containing methyl ester side group (1b-4b) at three timepoints 24, 48 and 72 hours (A, B, C respectively). 128

Figure 4.7: Comparison of the dose-response of compounds 1b and 2b (A and B respectively) at three timepoints 24, 48 and 72 hours................................. 129

Figure 4.8: Comparison of the dose-response of compounds containing acid side group (1a-4a) at three timepoints 24, 48 and 72 hours (A, B, C respectively)......... 130

Figure 4.9: Legend for compounds assessed using alamar blue assay 132

Figure 4.10: Comparison of the dose-response of compounds 1b, 4a, and 4b (A, B and C respectively) assessed using AB assay at two timepoints, 48 and 72 hours. 133

Figure 4.11: % Plk11 inhibition of A549 cell exposed to compounds (A): containing methyl ester side group (B): containing acid side group.............................. 140

Figure 6.1: 96-Well plate set up for MTT assay with suspension cells, A549. 2 compounds at 5 drug concentrations were assessed per plate .. 184

Figure 6.2: 6 well plate design for preparation of cell culture supernatant for ELISA assay. ... 187
Figure 6.3: 96 well plate design for ELISA assay showing different drug solutions (C1-C6) and different time exposures (1, 2, 4, 6 and 18 hours), controls, calibration standards and blank wells................................. 189

Figure A.1: Legend for Appendices... 191

Figure A.2: Viability of A549 versus concentration of 1a.............................. 192

Figure A.3: Viability of A549 versus concentration of 1b.............................. 193

Figure A.4: Viability of A549 versus concentration of 2a.............................. 194

Figure A.5: Viability of A549 versus concentration of 2b.............................. 194

Figure A.6: Viability of A549 versus concentration of 3a.............................. 195

Figure A.7: Viability of A549 versus concentration of 3b.............................. 195

Figure A.8: Viability of A549 versus concentration of 4a.............................. 196

Figure A.9: Viability of A549 versus concentration of 4b.............................. 196

Figure A.10: Viability of A549 versus concentration of 1b............................ 197

Figure A.11: Viability of A549 versus concentration of 4a............................ 197

Figure A.12: Viability of A549 versus concentration of 4b............................ 198
List of Tables

Table 1.1: Cytotoxicity of gymnastatins against L5178Y mouse lymphoma cells........ 11

Table 2.1: Cancer incidences in 2012 .. 18

Table 2.2: Examples of tumour-targeted nano-carriers in cancer therapy. Extracted from https://clinicaltrials.gov/ct2/home 2016 ... 20

Table 2.3: Most common cancers in Ireland 2, 12 .. 25

Table 2.4: Integrins in cancer progression, adapted from Desgrosellier 53 30

Table 2.5: Examples of covalent IONP-drug conjugates .. 53

Table 2.6: Non covalent drug interactions ... 54

Table 2.7: Currently used in vitro toxicity testing techniques 181 64

Table 2.8: Analytical tools currently used for analysis (adapted from Scown et al) 182.. 65

Table 3.1: Attempted amide coupling reaction conditions 88

Table 3.2: Debenzylation reaction conditions using BC13.S(CH3)2. Yields reported are estimates calculated from NMR integration ... 95

Table 3.3: HRMS analysis of 6, 6a and 6b (samples ran by Jimmy Muldoon in UCD Dublin) ... 99

Table 3.4: Yields and LRMS results for amide products ... 112

Table 3.5: Yields of final compounds. * not purified .. 113

Table 4.1: (MTT Assay) EC50 (μM) of compounds against A549 at three time points: 24, 48 and 72 hours post exposure. EC50 values are expressed as mean +/- standard deviation (s.d.) of at least three experiments .. 127
Table 4.2: (Alamar Blue Assay) EC$_{50}$ (μM) of compounds against A549 at three time points: 48 and 72 hours post exposure. EC$_{50}$ values are expressed as mean +/- standard error of at least three experiments. ... 135

Table 4.3: Plk1 study of Gymnastatin N (24) and its analogues................................. 137

Table 4.4: Compounds and their EC$_{50}$ values for Plk1 inhibition study..................... 139

Table 4.5: Time spent in each phase of a 24 hour cell cycle. 28 .. 140

Table 6.1: Cell suspension concentrations for various exposure duration.................... 181
1 Gymnastatins as anticancer agents

1.1 Marine-Derived fungi as a source of bioactive natural products

Marine derived fungi are an ecological group divided into two subgroups, indigenous and non-indigenous species. Indigenous species can be further divided into obligate (exclusively grow and sporulate in the marine environment) and facultative fungi (retain their ability to grow and/or sporulate in the marine environment). Non-indigenous species stay dormant and are unable to grow and multiply in the marine environment.\(^1\)

The investigation of marine-derived fungi as sources of natural products has been a promising and growing field since the discovery of unusual nucleoside derivatives in the sponge *Tethya crypta* in the 1950s by Bergmann and Feeney. The nucleosides provided the basis for antiviral and anticancer drugs, most notably Ara-C (cytarabine), an anticancer agent, and Ara-A (vidarabine), the first antiviral drug (Figure 1.1).\(^2\)-\(^3\)

![Structures of Vidarabine (1) and Cytarabine (2)](image)

Vidarabine \(1\) inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. Cytarabine \(2\) is one of the most effective drugs for the treatment of acute myeloid leukemia.\(^4\)-\(^5\)

There have been several reports on the use of natural products derived from fungi as antiviral, anti-microbial, anti-tumour, anti-inflammatory, antiPROTOZOAL,
immunosuppressive, anti-fouling agents, and they also display a range of other bioactivities. 6–8

1.1.1 Marine Sponges (Porifera)

Among all marine organisms investigated, sponges are the richest sources of new marine natural products, with over 4000 compounds to date, contributing to nearly 30% of all marine natural products discovered so far. Sponges are aquatic animals that dominate in benthic habitats. They produce secondary metabolites which protect them from microbial infections, biofouling and overgrowth by other organisms. This property makes them attractive as natural products.

Gymnascella dankaliensis OUPS- N134 is derived from one such sponge, *Halichondria Japonica*. Several strains have been isolated from *Halichondria Japonica* e.g. Phoma sp. Q60596 which gave rise to the antibiotic YM-202204 which exhibits potential antifungal activity (Fig 1.2). Other products with antibacterial, antileukemic, antimalarial and anticancer activity have also been reported. 7–9

[Chemical structure of antibiotic YM-202204 (3)]

Gymnastatins are produced by a strain of *Gymnascella dankaliensis* OUPS-N134 which was initially isolated from the sponge *Halichondria japonica* (*Figure 1.3*), collected from Osaka bay in Japan in April 1994.
Several gymnastatins have shown potent cytotoxicity and growth inhibition against cultured human cancer cell lines. Gymnastatins and their derivatives studied to date are discussed below.

1.2 Gymnastatins A-E

Gymnastatins were first isolated and their stereostructures established by Numata and co-workers in 1998. They reported the isolation and establishment of stereostructures of gymnastatins A-E (Figure 1.4) which exhibited significant cytotoxicity against tumour cells.
Upon evaluation, NMR data suggested that gymnastatin A existed in a 2:1 mixture of stereoisomers (4a and 4b) which could not be separated by column chromatography; however, acetylation afforded two separable acetates (5a and 5b). Gymnastatins B-C existed as single isomers. Gymnastatins D-E both contain epoxy rings and are isomeric with each other. Like gymnastatin A they also exist in a 2:1 mixture of stereoisomers (8a and 8b; 10a and 10b). Acetylation of the two stereoisomers gave diacetates which could be separated by column chromatography (9a and 9b; 11a and 11b).
Cytotoxicity activities of compounds A-C were examined in the P388 lymphocytic leukemia test system according to a method reported by Numata et al.11 This study showed that all three compounds exhibited significant potency against the cancer cell line. Gymnastatin A was the most potent with an ED\textsubscript{50} of 0.018 µg.cm3 compared to gymnastatins B and C (0.108 and 0.106 µg.cm3). The strong cytotoxicity in gymnastatin A was attributed to the conjugated ketone.10,11

Ogamino \textit{et al} reported the synthesis of Gymnastatin A with oxidative cyclisation, amide coupling and Evans asymmetric alkylation as key steps.12 (Scheme 1.1).

\begin{center}
\textit{Scheme 1.1: Retrosynthetic analysis of Gymnastatin A (4) reported by Ogamino et al.}
\end{center}

1.3 Gymnastatin F, G, H and gymnamide

Amagata reported the isolation and structure elucidation of gymnastatins F-H and gymnamide. (Fig 1.5).13 All compounds featured the same side chain as the gymnastatins previously reported. However, gymnastatins F, G and H possessed different ring systems. Gymnastatin F and G feature a unique bicyclo[3.3.1]nonane ring system whereas gymnastatin H has a tyrosine methyl ester moiety.
Figure 1.5: Structures of Gymnastatin F (12), Gymnastatin G (13), Gymnastatin H (14) and Gymnamide (15)

The structure elucidation as well as the relative stereochemistry were determined by 1D and 2D NMR. Gymnastatin G 13 was acetylated due to instability during NMR measurements. It has the molecular formula C_{24}H_{35}NO_4 established by HREIMS (High-Resolution Electron Ionisation Mass Spectrometry). The total synthesis of gymnastatin H allowed for its stereoconfiguration to be determined. (Scheme 1.2)

Scheme 1.2: Synthesis of Gymnastatin H (14) from Gymnamide (15) - (i) KOH, (ii) L-tyrosine methyl ester, WSC.

Gymnamide (15) which was also isolated from Halichondria sponge derived from Gymnascella dankaliensis was hydrolysed to give an acid which was subsequently treated
with L-tyrosine methyl ester in the presence of water soluble carbodiimide to furnish the desired molecule 14.\\(^{11}\)

Gymnastatins F-H and gymnamide were evaluated for cancer cell growth inhibition against the P388 lymphocytic leukemia cell line. Upon evaluation, gymnastatins F and G showed significant growth inhibition (ED\(_{50}\) 0.13, 0.03 µg.cm\(^{-3}\), respectively). Gymnastatin H and gymnamide were inactive.\\(^{13,14}\)

Raffier \(et\ al\) used diastereoselective photodeconjugation of an \(\alpha,\beta\)-unsaturated ester to synthesise gymnastatin H starting with aldehydes. (Scheme 1.3)\\(^{15}\) The synthesis was achieved in 14 synthetic steps.

Scheme 1.3: Gymnastatin H synthesis reported by Raffier \(et\ al\).

1.4 Gymnastatins Q and R

Gymnastatins Q and R were isolated in 2008 and their structures elucidated (Fig 1.6).\\(^{11}\)

Figure 1.6: Structures of Gymnastatin Q (16) and Gymnastatin R (17)

The cancer cell growth inhibition properties of gymnastatin Q and R were examined against P388 lymphocytic leukemia cell line (ED\(_{50}\) 1.7, 2.8 µg.cm\(^{-3}\), respectively).
Furthermore, gymnastatin Q showed growth inhibition against BSY-1 (breast) and MKN7 (stomach) cell lines (IC$_{50}$ = 0.7, 0.71 µg.cm3, respectively)14

1.5 Gymnastatins I-K, S-Y and 11’-carboxygymnastatin N

More recently, gymnastatins I-K and T-Y (Figure 1.7) were isolated from a soil fungus collected near the Giza pyramids in Egypt and assessed for biological activity. 16-18
Gymnastatins as anti-cancer agents

Figure 1.7: Structures of Gymnastatins I-K (18-20), 11’-carboxygymnastatin N (21), Gymnastatin S-Y (22-27)

Gymnastatins I-K, T-Y are brominated tyrosine derived alkaloids. Gymnastatins T, V, Y, I, J and K can be considered derivatives of gymnastatins G, D, A, B and C whose chlorines
have been replaced by bromine. *Halichondria* is known to produce mainly chlorinated alkaloids. Halogenating enzymes including halogenases and haloperoxidases have been discovered and are used to halogenate natural products. Hammerschmidt and Wang *et al.* fermented fungal cultures isolated from *Halichondria* in the presence of NaCl or KBr to produce chlorinated or brominated metabolites respectively. The fungal controls were not chlorinated or brominated as indicated by LCMS. 17

Gymnastatins I-K, T-Y (18-27b) were evaluated for their cytotoxicity against murine lymphoma L5178Y cell line.18 They showed moderate to significant activity against the cancer cell line (IC_{50} 0.078 to 14.1 μM). Gymnastatin K was the most potent (0.078 μM). A comparison between 25 vs 27 and 19 vs 20 suggested the conjugated ketone system to be important for the cytotoxic activity (Table 1.1). Gymnastatins I (18) and J (19) were compared to their chlorinated analogues, gymnastatins A (1) and B (2). Gymnastatin I showed similar activity to gymnastatin A, whereas gymnastatin I exhibited much stronger activity than gymnastatin B17,18
<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Gymnastatin I</td>
<td>0.55</td>
</tr>
<tr>
<td>19</td>
<td>Gymnastatin J</td>
<td>0.078</td>
</tr>
<tr>
<td>20</td>
<td>Gymnastatin K</td>
<td>9.6</td>
</tr>
<tr>
<td>23a</td>
<td>Gymnastatin T</td>
<td>1.3</td>
</tr>
<tr>
<td>23b</td>
<td>Gymnastatin U</td>
<td>3.0</td>
</tr>
<tr>
<td>24</td>
<td>Gymnastatin V</td>
<td>3.6</td>
</tr>
<tr>
<td>25</td>
<td>Gymnastatin W</td>
<td>0.99</td>
</tr>
<tr>
<td>26</td>
<td>Gymnastatin X</td>
<td>14.1</td>
</tr>
<tr>
<td>27a</td>
<td>Gymnastatin Y</td>
<td>6.2</td>
</tr>
<tr>
<td>27b</td>
<td>Gymnastatin Y</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>Gymnastatin A</td>
<td>0.64</td>
</tr>
<tr>
<td>6</td>
<td>Gymnastatin B</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Table 1.1: Cytotoxicity of gymnastatins against L5178Y mouse lymphoma cells

1.6 Gymnastatin N

It has been suggested that gymnastatin N 28 (Figure 1.8) is an important intermediate in the biosynthetic pathway of tyrosine derived amides isolated from Gymnascella derived alkaloids.
Gymnastatin N has an intact tyrosine unit. Cytotoxic evaluation of gymnastatins has shown no cytotoxic activity of compounds with an intact tyrosine unit. However, an examination of the biological properties of gymnastatin N 28 and a range of analogues showed that gymnastatin N and its analogues inhibited the protein kinase POLO-like kinase (Plk 1).17-19 It was proposed that the conjugated diene and free acid on the tyrosine unit functionalities were responsible for bioactivity against Plk1.19

1.6.1 Plk1 and protein kinases

Protein kinases are enzymes that phosphorylate specific amino acids in protein substrates. They are involved in a wide variety of growth hormones and growth factors which trigger cell growth and cell division. In most cancers, there is an overexpression or excess of a growth hormone. In other cases, there is an excess of a protein kinase receptor. Due to their role in processes that drive cell growth and division, there has been keen interest in developing and using protein kinase inhibitors as anti-cancer agents.20

Plk1 is a protein kinase belonging to a family of serine-threonine kinases. Plk1 plays a key role in regulating the cell cycle and ensuring proper cell cycle progression. Other proteins called cyclins, and enzymes, including cycline-dependent kinases (Cdk), also play various roles in different stages of the cell cycle. Cdk 1 functions as a serine-threonine kinase and is sequentially activated and deactivated during the cell cycle as required. Excessive and insufficient production of these enzymes has been associated
with imbalances and errors in the cell cycle which lead to tumourigenesis, birth defects and spontaneous abortions.21-23

1.6.2 The Cell Cycle

The cell cycle is divided into four phases, the G\textsubscript{1}, S, G\textsubscript{2} and the M phase. During the S phase, the cell replicates its nuclear DNA. The M-phase is the most important part of the entire cell cycle and it consists of six stages followed by cytokinesis (Figure 1.9). It is accompanied by major reorganization of the entire cell. Events in the M-phase vary in different organisms; however, the fundamental and basic events are conserved in eukaryotic cells. These events include chromosome condensation, formation of the mitotic spindle, attachment of the chromosomes to the spindle microtubules and finally the formation of daughter nuclei. During the gap phases (G\textsubscript{1} and G\textsubscript{2}) the cell monitors its environment to ensure the conditions are suitable before moving on to the S or M phases. The gap phases also give the cell time to grow. Plk1 as well as cycline-dependent kinases (Cdks) are prominent in the M-phase.22, 24, 25

![Figure 1.9: Schematic view of the cell cycle in eukaryotic cells.26](image)

1.6.3 Plk1 and cancer

Excessive, insufficient and/or deregulation of Plk1 has been associated with imbalances and errors in the cell cycle which lead to tumourigenesis, birth defects and spontaneous
abortions. Several studies have linked overexpression of Plk1 with numerous types of cancer and their aggressiveness, e.g. lung, oesophageal, gastric, melanoma, and breast cancers. If Plk1 can enhance tumour formation, then selective inhibition of Plk1 can be used to achieve tumour regression. Hence Plk1 has been proposed as a prognostic marker for malignancies and as a potential target for cancer therapy.27-30

Efforts are ongoing to identify molecular inhibitors of Plk1. These inhibitors would deplete Plk1 activity at various stages of the cell cycle where Plk1 is prominent, thereby suppressing tumour growth. In several studies, inhibitors have induced apoptosis and caused mitotic spindle abnormalities thereby inhibiting tumour cell proliferation. One such molecule is ON01910 (Figure 1.10) which was found to be a potent inhibitor and exhibits very little or no toxicity21, 27, 31

\textbf{Figure 1.10: Structure of ON01910}

ON01910, trade name Estybon inhibits Plk1 and is currently on Phase III clinical trials for the treatment of chronic myelomonocytic leukaemia.32

1.7 Conclusion

This chapter introduces gymnastatins beginning with their first discovery and details the gymnastatins that have been reported to date. The cytotoxicity of these compounds against various cell lines are also discussed. Moreover, an overview of protein kinases and Plk1, the role they play in the cell cycle, and their relevance to cancer is presented. Although gymnastatins have shown promising cytotoxic activity, their mode of action of gymnastatins is not fully understood. Literature reports to date focus primarily on the
natural product chemistry and there is little detail on the mechanism of action of these and other related compounds.

1.8 References

Chapter 1

Gymnastatins as anti-cancer agents

26. http://cnx.org/contents/GFy_h8cu@9.87:1tJ55Ot6@7/The-Cell-Cycle (accessed 22/05/17)

32. https://clinicaltrials.gov/ct2/show/NCT01928537 (accessed 08/05/17)
2. Magnetically tagged drugs for cancer treatment

2.1. Introduction

Cancer is a leading cause of death worldwide. There were an estimated 14.1 million cancer cases around the world in 2012, of these 7.4 million cases were in men and 6.7 million in women. Europe carries a significant load of the global burden, with one quarter of the global burden of cancer observed in Europe despite a total population that comprises one-ninth of the world’s population. Cancer is the second most common cause of death in Ireland. According to the Irish cancer society, one in three people in Ireland will develop cancer during their lifetime. An average of 30,000 new cases of cancer are diagnosed each year. The number is expected to rise to over 40,000 per year by 2020. Table 2.1 shows cancer incidences and deaths in Europe.¹,²

<table>
<thead>
<tr>
<th>Region</th>
<th>Incidences in 2012</th>
<th>Deaths in 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central and Eastern Europe</td>
<td>1,036,900</td>
<td>638,200</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>525,900</td>
<td>245,100</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>769,200</td>
<td>390,500</td>
</tr>
<tr>
<td>Western Europe</td>
<td>1,110,300</td>
<td>482,600</td>
</tr>
<tr>
<td>Ireland</td>
<td>20,515</td>
<td>8,544</td>
</tr>
</tbody>
</table>

Table 2.1: Cancer incidences in 2012

Chemotherapy, radiation therapy and surgery are the most common methods of treatment with the first accounting for 50% of all procedures. Chemotherapeutics suffer from several barriers that limit their delivery to specific targets. Only 0.1-1% of administered therapeutic agents reach the tumour and the rest enter healthy tissue resulting in undesirable side effects. Toxic effects are thus significant, and desired therapeutic effects
are suboptimal. Targeted drug delivery aims to increase the bioavailability of a drug at a specific part of the body for a defined duration of time. Current efforts are focused on developing drug delivery systems that are target specific, i.e., have the ability to target the tumour cells, thereby leaving healthy cells unharmed. The advantages of this approach are the reduction in quantity and frequency of dosage, reduced costs and fewer side effects. 3, 4, 5, 6, 7

Over the last two decades, nanotechnology has evolved into a multidisciplinary topic. It has revolutionized fields such as catalysis, robotics, design, imaging, data storage and medicine. Advances in nanotechnology are enabling the development of nanoparticles with specific functional properties to address current limitations in a range of chemical and biological applications. 8

A number of nanomedicines have been approved for clinical use in cancer therapy. These include liposomal doxorubicin used to treat breast cancer; 9 polymer based PEG-L-Asparaginase (Oncaspar®) for leukemia; 10 micellar paclitaxel for breast, lung and ovarian cancer; albumin based nanoparticle containing paclitaxel for breast cancer. 11 There are several other drugs still undergoing clinical trials. (Table 2.2)
In the first part of this review, the use of targeted drug delivery for cancer treatment will be discussed. In the second part the unique properties of superparamagnetic iron oxide nanoparticles (SPIONPs), their synthesis and subsequent protective coatings will be discussed. Finally, advances in magnetically tagged drugs for cancer treatment, limitations, tagging of SPIONPS to chemotherapeutics and their release in vivo will be presented.
2.1.1. Targeted Drug Delivery

Chemotherapy is the most common form of cancer treatment and has considerable impact on the patient. To overcome the drawbacks with chemotherapy, it is important to improve the pharmacokinetics and target site accumulation of drugs through sufficient bioavailability. Even intravenous drug delivery does not guarantee that the drug is freely available at the target site due to competing particles such as red blood cells, leukocytes and proteins such as albumin. Over the last number of years, several drug delivery systems have been designed to overcome this low efficiency. Liposomes, antibodies, micelles, polymers and nanoparticles have demonstrated clinical relevance for cancer therapy. The advantage of using these drug delivery systems includes improved selective delivery of chemotherapeutics to target sites and their guidance away from healthy tissue.14, 15, 16

Cancerous cells have different biological characteristics from healthy cells and targeted therapies take advantage of these differences. Cancerous cells replicate faster than tumour cells and therapies like doxorubicin capitalise on this by intercalating DNA and disrupting its replication. This is termed circumstantial targeting, but has limited efficacy due to sub optimal drug concentrations that must be used to avoid cytotoxic effects on healthy cells. Therefore, there is urgent need to develop more efficient systems for targeted delivery of cancer treatments.14, 17

2.1.2. Magnetic Drug Targeting

In 1960, Freeman \textit{et al} established the concept of magnetic drug targeting (MDT) using iron oxide nanoparticles (IONPs). Subsequently there has been significant interest in using IONPs and other magnetic nanoparticles for targeted delivery in cancer treatment. (Figure 2.1) Biocompatible magnetic nanoparticles (MNPs), conjugated with drugs have
been injected into the bloodstream and accumulated at a tumour site with the help of an external magnetic field.

Figure 2.1: Principle of magnetic drug targeting

IONPs typically have two structural configurations, namely magnetite and maghemite. Magnetite is the most commonly used IONP because of its biocompatibility. It possesses a cubic inverse spinel with oxygen forming a face centred cubic (fcc) close packing and Fe occupying the octahedral sites. (Figure 2.2)

Figure 2.2: Structure of inverse spinel magnetite (Fe$_3$O$_4$)

For magnetisable nanoparticles to be introduced into a biological system, they should only display magnetic behaviour under the influence of an external magnetic field and lose the behaviour when the field is withdrawn. This can be achieved by restricting their size to a specific range. Superparamagnetism arises when such nanoparticles have a
diameter in the region of 10-20 nm, and are at a temperature above the so-called “blocking temperature”. To be used in vivo, the blocking temperature has to be below room temperature to guarantee disappearance of residual magnetism when the magnetic field is removed. In this review, such nanoparticles will be referred to as superparamagnetic nanoparticles (SPIONPs).15, 16, 19

Much research has focused on numerous innovative targeting strategies to increase selectivity of chemotherapeutics and minimize their accumulation in healthy tissues. Nanomedicines can be passively or actively targeted to the tumour tissue. Passive and active targeting have been used together with MDT to improve efficacy of chemotherapeutics.

2.1.3. Passive targeting

Passive targeting relies on the preferential delivery of nanomedicines to solid tumours due to the enhanced permeability and retention (EPR) effect.20 Tumour tissues lack an effective lymphatic drainage and are leaky due to abnormality in form and architecture. Nanoparticles, due to their size, easily diffuse passively through the leaky vasculature to reach the tumour. This enables high local drug concentration at the tumour site instead of normal tissue. In order to achieve sufficient targeting at the tumour site, the circulation time of the therapeutic agent must be sufficiently long.21 The size and surface chemistry of nanoparticles influence circulation time and therefore can be manipulated to avoid premature clearance. Surface modification of nanoparticles has been used to prolong the circulation time. Nanoparticles with a size range of 10-100 nm are big enough to avoid renal filtration but are small enough to slow down activation of the reticuloendothelial system (RES). RES is part of the immune system that is responsible for clearance of foreign material from the body.22 Upon administration, nanoparticles are quickly recognised as foreign particles and are opsonized by blood opsonins (protein markers).
Chapter 2
Magnetically tagged drugs for cancer treatment

The opsonized nanoparticles interact with receptors on macrophages in the spleen and are rapidly eliminated via RES. Larger IONPs are more visible to RES and are cleared faster. RES is the main barrier in nanoparticle systemic circulation. In order to evade RES and opsonisation IONPs have to be modified and thereby increasing their circulation time.

Passive targeting also uses charges on nanoparticles to induce targeting towards the tumour. Myocet, Doxil and Abraxane are amongst passively targeted nanomedicines.

2.1.4. Active Targeting

In active targeting, the delivery systems are designed to interact with specific biomolecules usually by the attachment of a ligand/linker on the outer surface of a nanocarrier. Active targeting relies on disease-selective molecular markers. The molecular recognition of a ligand coupled to a nanodrug surface promotes cellular entry via receptor-mediated endocytosis thereby enhancing cellular uptake of the nanomedicine. In active targeting long circulation time is important to allow effective transport of nanoparticles to the tumour site; moreover, the targeting molecule enhances endocytosis.

Active targeting can also be used to target cell proliferation receptors that are expressed in certain tumour cells. Most of the research regarding actively targeting nanoparticle systems have been directly associated with a type of cancer.

2.1.5. Tumour cell targeting

Tumour cell targeting is specific to a type of cancer. The most established cell proliferation targets used by actively targeting nanoparticles include human endothelial transferrin, HER-2 and folate receptors. (See section 2.2.)

Prostate, breast, lung and bowel are the most common non-melanoma cancers in Ireland. These four account for 53% of new cancer cases per year (2008-2010).

Current
treatment methods include surgery, radiation therapy, chemotherapy and hormone therapy. Table 2.3 shows the most common types of cancer in Ireland, their prevalence and receptors that are usually targeted in treatment methods.

<table>
<thead>
<tr>
<th>Cancer</th>
<th>% of all cancer deaths Ireland (2008-2010)</th>
<th>Receptor targets</th>
<th>Clinically approved drugs targeting receptor</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>12.2</td>
<td>PSMA</td>
<td>Prostascint</td>
<td>26, 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sigma</td>
<td>--</td>
<td>28, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>folate</td>
<td>--</td>
<td>30, 31</td>
</tr>
<tr>
<td>Breast</td>
<td>7.9</td>
<td>HER-2</td>
<td>Trastuzumab</td>
<td>32, 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LHRH</td>
<td>--</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sigma</td>
<td>--</td>
<td>35</td>
</tr>
<tr>
<td>Bowel/Colorectal</td>
<td>11</td>
<td>EGFR</td>
<td>Panitumab, Cetuximab</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEGF</td>
<td>Avastin, ramucirumab</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guanylyl cyclase C</td>
<td>--</td>
<td>38, 39</td>
</tr>
<tr>
<td>Lung</td>
<td>20.4</td>
<td>aptamers</td>
<td>--</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VEGF</td>
<td>--</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 2.3: Most common cancers in Ireland

The overexpression of certain receptors in cancer cells has provided important tools for exploitation in the active targeting of drugs to cancer cells. SPIONs can achieve specific targeting of tumours with high accuracy when conjugated with targeting ligands. Ligands
can be designed to be specific to receptors that are over-expressed on cancerous cells, but are normally expressed on healthy cells. In the next section, the most common receptor molecules and their mode of operation are evaluated.2

2.2. Tagging

2.2.1. Folate

Folate receptors stand out as one of the most promising and most investigated cell markers. Folate based targeting systems have shown great potential for therapeutic applications.38 The folate receptor, also known as the high affinity membrane folate binding protein, is often overexpressed in many human carcinomas including malignancies of the ovary, brain, kidney, breast, colon, myeloid cells and lung. In normal tissue however, folate is either absent or inaccessible to circulating drugs.42 Two general strategies are used for targeted delivery of drugs to folate receptor positive cells (a) coupling to a monoclonal antibody against folate receptor (b) coupling to a high affinity ligand of folate receptor- folic acid.

\begin{center}
\textbf{Scheme 2.1: Structures of folate and folic acid}
\end{center}

Folic acid (FA), the conjugate acid of folate (Scheme 2.1), is required for essential cell function. It has a high binding affinity to the folate receptor that is overexpressed in tumours and therefore provides a distinguishable marker from normal cells. Moreover, FA is cheap, non-immunogenic, highly stable and gets internalized quickly through cell membranes. FA is usually conjugated to nanoparticles \textit{via} the carboxylic acid or the
amine moiety. Socaci et al. developed folic acid di-ester functionalized MNPs and used 1° and 2° amine sites as the anchoring reaction sites instead of the carboxylic acid. 43

Pourjavadi et al developed PEGylated dendritic nano-carriers functionalized with folic acid as tumour targeting agents. FA conjugated agents showed enhanced cytotoxicity against carcinoma cell line A431 and improved cellular uptake of cancerous cells compared to free nano-carriers. 44 Huang et al reported modified IONPs with poly (glycidyl methacrylate) (PGMA) followed by conjugation with different amounts of FA to form SPIONs–PGMA–FA. These folate modified nano-carriers achieved a significantly higher uptake by cancer cells than those by macrophages and 3T3 fibroblasts. 45

Cis-platin is one of the most effective therapeutic agents for the treatment of head and neck cancer. However, it has many disadvantages including rapid clearance, binding to plasma proteins and toxicity. 46 Chen et al recently developed a pH sensitive therapeutic agent release system using folic acid modified cis-platin loaded MNPs to overcome problems associated with cis-platin and to improve its efficacy. The resulting moiety exhibited superparamagnetic properties and high stability and released cis-platin in a low pH environment which is ideal for targeted delivery to acidic tumour environment. 46

Ma et al developed a magnetic polymer nano-carrier with folate receptor-targeting and pH sensitive functionalities loaded with doxorubicin (DOX) (F-PDOX) for the treatment of advanced gastric cancer. F-PDOX displayed FR-targeting specificity and pH sensitivity that were hoped to improve uptake. Encouragingly the cytotoxicity studies in vitro and in vivo showed tumour suppression and tumour accumulation, demonstrating that F–PDOX were indeed effective on gastric cancer treatment, importantly without significant side effects. 47
Chapter 2
Magnetically tagged drugs for cancer treatment

Li et al developed nanosized folate-conjugated PEGylated PLGA nanoparticles co-encapsulated with anticancer drug (sorafenib). The folic acid-conjugated NP exhibited sustained drug release and enhanced cellular uptake in BEL7402, liver cancer cells.

Maeng et al synthesized multifunctional polymeric IONPs, carrying the anticancer drug doxorubicin (DOX), for treatment of liver cancer. The formation of nanoparticles was mediated by poly (ethylene oxide)-trimellitic anhydride chloride-folate (PEOTMA-FA) (Figure 2.3) containing folate as the targeting moiety.

![PEO-TMA-FA polymer](image)

Figure 2.3: Structure of PEO-TMA-FA polymer

The presence of the folate significantly facilitated the specific delivery of DOX to folate receptor-positive liver tumour cells and inhibited tumour growth without causing any toxic effects such as body weight loss or cardiac toxicity that are usually associated with the use of DOX.

2.2.2. Integrins

Linkage of the cell to the extracellular matrix requires adhesion proteins that act as matrix receptors. Integrins are the principal receptors used by animal cells to bind to the extracellular matrix. Integrins, unlike other cell surface receptors, bind their ligand with lower affinity to stop them being irreversibly glued to the cellular matrix. In addition to this, integrins function as signal transducers, activating various intracellular signalling pathways when activated by cellular binding. Integrin receptors are highly
expressed in tumour cells but not in normal cells. They are heterodimers and there are at least 24 distinct integrin heterodimers formed by the combination of 18 α subunits and 8 β subunits. Studies have shown that integrins can influence tumour survival both positively or negatively by either enhancing cell survival or initiating apoptosis. Expression of integrins αvβ3, αvβ5, α5β1, α6β4, α4β1 and αvβ6 has been associated with tumour progression in various tumour types and therefore these integrins are the most widely studied. Table 2.4 shows the most studied integrins and tumours associated with them. The advances in integrin facilitated drug delivery in cancer treatment are reviewed elsewhere.
Table 2.4: Integrins in cancer progression, adapted from Desgroellier

IONPs have been used in combination with integrin targeting receptors for enhanced drug delivery. Nazli et al developed DOX loaded nano-carriers designed for integrin receptor specific uptake.

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Integrins expressed</th>
<th>Associated phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>αvβ3 and α5β1</td>
<td>Vertical growth phase and lymph node metastasis</td>
</tr>
<tr>
<td>Breast</td>
<td>α6β4 and αvβ3</td>
<td>Increased tumour size and grade, and decreased survival (α6β4). Increased bone metastasis (αvβ3)</td>
</tr>
<tr>
<td>Prostate</td>
<td>αvβ3</td>
<td>Increased bone metastasis</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>αvβ3</td>
<td>Lymph node metastasis</td>
</tr>
<tr>
<td>Ovarian</td>
<td>α4β1 and αvβ3</td>
<td>Increased peritoneal metastasis (α4β1) and tumour proliferation (αvβ3)</td>
</tr>
<tr>
<td>Cervical</td>
<td>αvβ3 and αvβ6</td>
<td>Decreased patient survival</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>αvβ3 and αvβ5</td>
<td>Both are expressed at the tumour–normal tissue margin and have a possible role in invasion</td>
</tr>
<tr>
<td>Non-small-cell lung carcinoma</td>
<td>α5β1</td>
<td>Decreased survival in patients with lymph node-negative tumours</td>
</tr>
<tr>
<td>Colon</td>
<td>αvβ6</td>
<td>Reduced patient survival</td>
</tr>
</tbody>
</table>
2.2.3. Prostate specific antigen (PSA)

There are several treatment methods for prostate cancer, however chemotherapy is the primary clinical treatment to prolong overall patient survival. Prostate specific antigen (PSA) is overexpressed in prostate cancer cells and is the most studied target for cancer treatment. PSA specific ligands are good candidates for prostate cancer targeting.

Yang et al developed a dual targeting nanomedicine, PTX-HMNC-EPEG-APSMA and combined it with magnetic targeting to increase local accumulation of paclitaxel. Paclitaxel (PTX) was conjugated to non-toxic high magnetization nano-carriers. The surface was functionalized with long, carboxylated EPEG linkers to prolong the circulation time. Antiprostate PSA (APSA) were then conjugated to the carrier to recognize PSA and bind to cancer cells using active targeting. The treatment was significantly more effective in low doses against cancer cells, compared to free paclitaxel. Moreover, functionalizing the surface increased the circulation time from 6 minutes to 120 minutes before being cleared by the RES. 42

Docetaxel is one of the commonly used therapeutic options for prostate cancer. Nagesh et al developed PSA targeted IONPs loaded with Docataxel to improve its efficacy. The resulting moiety showed potent anti-cancer effect in prostate cancer cells and immunofluorescence data confirmed that only PSA positive cancer cells were targeted. 55

2.3. IONPs Synthesis

To be used in vivo, nanoparticles must be biocompatible and studies have shown that this behaviour is highly dependent on their morphology and physical properties. The size and shape of IONPs affects their magnetic and biological properties, toxicity, stability, biodistribution and elimination. The choice of synthetic route is important as it influences the size and morphological properties of IONPs. 56-57
Several studies have linked high surface area on IONPs to toxicity in vivo. Changes in the shape and size of nanoparticles are accompanied by alterations on the surface that influences cytotoxicity. A study by Han-Lee et al revealed that rod shaped IONPs had a high surface area compared to spherical IONPs. The high surface area in the rod shaped IONPs resulted in increased cytotoxicity towards mouse macrophage cells.

The size of IONPs also influences the circulation time of IONPs in vivo. Lin Yang et al studied the effect of size on the bio-distribution, toxicokinetics and toxicity of various size carboxyl coated IONPs ranging from 10-40 nm (Figure 2.4). The smallest IONPs showed highest uptake by the liver and were cleared fast from the liver and kidneys.

![Figure 2.4: TEM and DLS images of carboxyl coated IONPs (a) 10 nm, (b) 20 nm (c) 30 nm (d) 40 nm](image)

The particles also entered the uterus more readily and penetrated the blood brain barrier. On the other hand, larger IONPs (over 40 nm) were mostly taken up and eliminated by the spleen. In a study by Gil et al, the large IONPs changed expression levels of genes associated with oxidative stress and metabolic processes in mice.

Roohi et al carried out a study on the effect of size of IONPs on blood half-life and systemic clearance. This study demonstrated a decrease in the blood half-life from 50 to
3 minutes when the hydrodynamic size of nanoparticles was increased from 19 to 86 nm.

Ideally, IONPs should be in the range of 10-100 nm. At this range, they are small enough to delay the mononuclear phagocyte system but big enough to avoid renal filtration. Due to the importance of size and shape on IONPs, it is vital to use the appropriate synthetic method to obtain the desirable nanoparticles for use in vivo. Over the last number of years, different synthetic routes have been developed including co-precipitation, thermal decomposition, hydrothermal synthesis, wet grinding, micro emulsion and laser pyrolysis, amongst others. These routes allow the size range, shape and stability of the nanoparticles to be manipulated and tailored to enable interaction with specific biomolecules. 61, 62, 63

2.3.1 Co-Precipitation

Co-precipitation is the most common, simplest and convenient way to synthesise IONPs. It involves the use of readily available starting materials under mild reaction conditions, resulting in naked magnetite in high concentrations. Massart et al first reported the synthesis of IONPs using the co-precipitation method in 1981. 64 In this synthesis, the particles were roughly spherical and had a diameter of 8 nm. Since then, a number of modified synthetic methods have been reported where parameters are varied to achieve certain properties suited for their application.

Addition of a base to an aqueous solution of Fe²⁺/Fe³⁺ ions in a ratio of 1:2 produces a black precipitate of magnetite in uniform sizes under alkaline conditions and an oxygen free environment. The chemical reaction of dissolved iron salts to magnetite can be summarized according to the equation below. 64

\[
\text{Fe}^{2+} + 2\text{Fe}^{3+} + 8\text{OH}^- \rightarrow \text{Fe}_3\text{O}_4\downarrow + 4\text{H}_2\text{O}
\]
In co-precipitation, the chemical, physical, structural and magnetic properties of nanoparticles can be manipulated by varying certain reaction conditions. The size and shape of nanoparticles is dependent on the type of salt used, pH value and ionic strength of the aqueous media, reaction temperature and ratio of Fe$^{3+}$/Fe$^{2+}$ ions. Berensmeier et al recently studied the effects of process parameters on particle size and saturation magnetization. Nanoparticles with diameters of 3 – 17 nm and saturation magnetization of 29 – 89 Am2/kg were obtained by varying the following (1) iron salt concentration (2) reaction temperature (3) ratio of hydroxide ions to iron ions (4) ratio of Fe$^{3+}$/Fe$^{2+}$ ions. High saturation magnetization was reported at high synthesis temperatures, high iron salt concentrations and lowest ratios of Fe$^{3+}$/Fe$^{2+}$. Furthermore, the particle size of magnetite was increased by using a higher iron salt concentration and a higher ratio of hydroxide ions to iron ions. The particles also showed superparamagnetic behaviour.

Despite being the most widely used method for the synthesis of IONPs, co-precipitation has several disadvantages. Naked NPs synthesised by this method need to be coated in situ or in a subsequent step to prevent oxidation and agglomeration at ambient temperature. The use of alkaline solution for the synthesis represents environmental issues, and as a subsequent treatment step is required before disposal of waste.

2.3.2 Hydrothermal

Hydrothermal synthesis of nanoparticles involves the synthesis in water, of crystals at high temperature and high pressure using materials that would otherwise be insoluble at normal conditions. In this technique, nanoparticles are synthesised by other methods and then treated under hydrothermal conditions where the pressure can be higher than 2000 psi and the temperature can be above 200 °C. Techniques like microemulsion, co-
precipitation and microwave have been utilised in combination with hydrothermal methods to form SPIONPs.66, 67, 68, 69 Kockar \textit{et al} and Wang \textit{et al} reported that increasing hydrothermal treatment temperatures, up to 200 °C, resulted in high crystallinity and increased saturation magnetization.67, 70 It has also been reported that increasing reaction time results in an increase in nanoparticle size. More recently, Fester \textit{et al} reported a detailed study on the influence of process parameters on nanoparticle characteristics using a continuous hydrothermal system (CHS) synthesis. This study revealed that an increase in temperature and flow rate of CHS resulted in a major increase in nanoparticle crystallinity.71 Varying other process parameters like concentration, pressure, residence time etc. had minimal effect on nanoparticle crystallinity.71, 72

2.3.3. Thermal Decomposition

Thermal decomposition involves the decomposition of an organometallic precursor in a high boiling organic solvent in the presence of a surfactant. It is a recognised method for the synthesis of monodisperse SPIONPs with a narrow size distribution. The synthesis of monodisperse SPIONPs through the thermal decomposition method involves two stages. Firstly, tiny crystal nuclei are formed at around 200°C, and this is called nucleation. The second stage involves the growth of the nuclei at the boiling point of the organic solvent used. It is at this stage that the size, shape and magnetic properties of the nanoparticles can be manipulated by varying the reaction time and temperature. The use of high temperatures makes this process expensive and limited to small batch reactions because of difficulties in maintaining a uniform temperature in large scale reactions.73 Continuous flow and microwave assisted thermal decomposition methods have been proposed to overcome this limitation.74, 75, 76 The prepared nanoparticles are water insoluble due to their hydrophobic surfaces and thus cannot be used in a biological system. This can be
overcome by employing a ligand exchange strategy to substitute the hydrophobic layer with a hydrophilic one.

Other considerations for this method include long reaction times, use of organic solvents, and the safety issues associated with use of high temperatures. 66, 77, 78, 79

2.3.4 Other methods

Other methods for the synthesis of IONPs include laser pyrolysis, sol gel synthesis and microemulsion. 80-87

2.4. Surface modification of Iron Oxide Nanoparticles

Their application in biology and therapy require IONPs to be stable in water at neutral pH and at physiological salinity. Naked IONPs are very unstable and tend to aggregate at ambient conditions leading to rapid clearance from the system before their intended use. To address this, IONPs are coated with a surface layer during or after synthesis. This layer provides an interface between the surrounding environment and the core. The presence of a surface layer reduces opsonisation, inhibits corrosion/oxidation of the magnetic core, ensures colloidal stability under physiological conditions and enhances circulation time. Moreover, the coating layer can also be functionalized by attaching carboxyl groups, carbodiimide and other molecules that can be augmented to drug molecules by covalent attachment, adsorption or entrapment to the nanoparticles. 88, 89 Coating systems can also be made stimuli sensitive, e.g. to pH and temperature, to favour release at a specific site. However, coatings affect the magnetic properties of IONPs. The extent to which magnetic properties are affected depends on the molecular weight, composition and thickness of coating. Conjugation to other molecules also deteriorates the magnetic properties. 7
Several organic and inorganic coatings have been reported to date and include dextran, silica, lipids, polyethylene glycol (PEG), and chitosan (Figure 2.5) amongst others and these are discussed in more detail in this section.

![Chemical structures of selected coating materials](image)

Figure 2.5: Chemical structures of selected coating materials

Like nanoparticles, the coatings should be biocompatible, nontoxic and hydrophilic. Their size should be less than 100 nm so they can avoid elimination via the RES.\(^{90,91}\)

2.4.1. Organic Coatings

2.4.1.1. Polyethylene glycol (PEG) and its derivatives

One way of increasing the circulation time and the blood half-life of nanoparticles *in vivo* is by using hydrophilic polymers. PEG can be integrated onto IONPs surface to form a hydrophilic, uncharged, biocompatible and non-immunogenic layer. IONPs are coated during synthesis *in situ* or post synthesis *via* adsorption or end grafting resulting in uniform encapsulation.\(^{92}\) Studies have shown that PEG provides the nanoparticles with functionality, stability and compatibility in the biological environment and improves their hydrophilicity.\(^{90,91}\) At sizes below 100,000 dalton, PEG polymers are amphiphilic and soluble in water as well as many organic solvents. This property makes them compatible...
Magnetically tagged drugs for cancer treatment

with a range of chemistries in aqueous or organic phases. Bio distribution studies have also shown that PEGylated IONPs preferentially accumulate in the tumour region via enhanced permeability and the retention effect. Cytotoxicity studies by Pisciotti et al revealed that IONPs coated with PEG were nontoxic up to concentrations as high as 100 µg/mL. In the same study, an increased tumour uptake (160%) in vivo was observed when PEG coated SPIONPS were used in the presence of a magnetic field.

Several reports have been published on the use of so-called PEGylated IONPs with a commercially available drug, Doxorubicin (DOX) (Figure 2.6), to increase its efficacy.

DOX is an anti-cancer chemotherapy drug used for several cancers including breast, gastric, liver and ovarian cancer. Its clinical use is limited due to its adverse side effects, resistance developed by cancer cells to it, dose dependent cardiotoxicity and hematotoxicity.

As well as making nanoparticles stealth, PEGylation can also have an important influence on drug loading, drug release, use with other therapies and nanoparticle distribution into the cell.

Quinto et al synthesized PEG coated IONPs loaded with DOX for chemotherapy-hyperthermia combinatorial treatment. It was also found that the presence of PEG not only gave protection to IONPs but also has the potential to concurrently deliver DOX and
generate heat for an enhanced multimodal cancer treatment. The synergy between chemotherapy and hyperthermia has a potential for a more effective treatment of cancer.

Gautier et al developed DOX loaded IONPs and investigated the release of DOX in vitro in order to observe how PEGylation modifies the release. The study showed a pH dependent release of DOX from the polymer coating. A sustained, gradual release with no burst effect was observed at pH 7.4. Release was accelerated when the pH was lowered to 4.

There are also several reports on using PEG derivatives for surface modification to improve stealthiness of IONPs. Orlando et al reported the synthesis of IONPs coated with an amphiphilic polymer (PMA) followed by PEGylation in order to form PEG-IONP-PMA. The PMA polymer coating not only gives the IONP extra protection but also bears several carboxylate groups for further functionalization. IONP-PMA were synthesized according to a previously reported procedure and PEGylated using PEG-NH₂ and an amide-coupling agent to form PEG-IONP-PMA. The nanoparticles did not exhibit cytotoxicity and were less internalized by macrophages or human endothelial cells (HUVEC). Moreover, these nanoparticles crossed the blood brain barrier, which makes them potentially useful as therapeutic agents for brain diseases.

There has been several reports by Nagasaki et al on the use of PEG based hydrophilic block copolymers demonstrating their stability even in harsh conditions (e.g. high salt concentrations and broad range of pHs). Block copolymers are commonly used for the encapsulation of SPIONs for direct use in cancer therapy and imaging. Block copolymers are prepared by controlled polymerization of one monomer (A), followed by chain extension with a different monomer (B) and in some case a third monomer (C) to form
AB or ABC block copolymers. In one of their reports, IONPs were synthesized by co-precipitation in the presence of PEG-poly (4-vinylbenzylphosphonate) (PEG-b-PVBP) (Figure 2.7) as a surface coating to form PEG-PION4 block copolymer. The nanoparticles were strongly bound to the polymer through multi point anchoring via the phosphate group.

![Figure 2.7: Structure of PEG-b-PVBP](image)

Following in vivo administration to mice, these modified nanoparticles showed prolonged blood circulation time and significant EPR-mediated tumour accumulation. PEG-PION4 also showed excellent dispersion stability, remaining intact after one week in serum containing solution due to the strong phosphate anchoring. More recently, the same group synthesized DOX loaded IONPs coated with PVBP to study their encapsulation efficiency and stability in tumour bearing mice. They showed high drug loading efficiency and excellent dispersion stability under physiological conditions. Furthermore, the IONPs had a crystalline structure, superparamagnetic properties and exhibited sufficient saturation magnetization to be used in MDT.

Yang et al developed PEG modified, cross-linked starch coated magnetic nanoparticles using N-hydroxysuccinimide chemistry to produce nanoparticles with long circulation time. Recently, Prabha et al developed β-cyclodextrin (Figure 2.8) (β-CD)-PEG–PEI coated iron oxide nanoparticles as drug delivery agents. β-CD is an oligosacharide with a hydrophilic surface layer used to improve solubility, stability and bioavailability thereby enhancing drug delivery.
The resulting coated NPs exhibited superparamagnetic behaviour and were used as a carrier vehicle for the hydrophobic anti-cancer drug 5-fluorouracil.102 Schleich et al reported paclitaxel loaded PEGylated PLGA (poly (lactide-co-glycolide))-based IONPs with excellent magnetic properties for theranostic purposes. They had high cellular uptake and showed growth inhibition against colon carcinoma (CT26) tumour cells at a range of PTX concentrations (2–20 μg/ml). This concentration corresponds to plasma levels of the drug achievable in humans.103

Polyethylene oxide (PEO), like PEG, is a polymer of ethylene oxide. However, polymers of PEO have a molecular weight above 20000 g/mol compared to a molecular weight of lower 20000 g/mol in PEG.104 PEO chains present a steric barrier against the adsorption of proteins on the nanoparticle surface. This reduces opsonisation and hence increase the blood circulation of NPs.105

Aqil et al prepared poly (acrylicacid)-b-poly (ethyleneoxide), PAA–PEO, and poly (acrylicacid)-b-poly (acrylate methoxy poly (ethyleneoxide)), PAA–PAMPEO, by reversible addition fragmentation chain transfer (RAFT) polymerization. RAFT is an organic process of controlled radical polymerization technique, applicable for a wide range of monomers under mild reaction conditions. The stealthiness of PAA–PAMPEO
and PAA–PEO (Scheme 2.2) was investigated \textit{in vitro} by assessing the amount of proteins adsorbed to NP surface. The block copolymers demonstrated stealthiness and stability.\footnote{106}

Hafeli \textit{et al} investigated the toxic properties of polyethylene oxide (PEO) triblock copolymers and found that the PEO tail length was inversely correlated to toxicity. The study concluded that magnetite nanoparticles coated with triblock copolymers containing PEO tail lengths of above 2 kDa were biocompatible and appropriate for \textit{in vivo} application.\footnote{108}

PEI is a polycation (highly positive polymer), also used as a capping agent to stabilize IONPs. It is a branched biopolymer with amine groups on it with potential to bind to other molecules. PEI has been used together with PEG to form hydrophilic, biocompatible SPIONPS, resulting in increased blood circulation.\footnote{102, 109}

The use of PEG and other organic coatings does not render sufficient protection of SPIONPS against physiological conditions. Drug loading efficiency and specific bio distribution \textit{in vivo} remains a challenge. There is still need to improve the surface immobilization density of the PEG chains as well as their binding stability to the nanoparticle surface.
2.4.2. Inorganic Coatings

2.4.2.1. Silica

Silica is one of the most abundant minerals and the most widely used inorganic coating for IONPs in MDT for cancer therapy. (Figure 2.9) Philipse et al. \(^{110}\) first reported the use of silica for coating magnetite. Since then, the stability and biocompatibility of silica coated IONPs have been studied extensively. The toxicity of silica nanoparticles has also received significant attention because of their use in food\(^{111}\), food packaging\(^{112}\), sunscreen\(^{113}\), clothing\(^{114}\) and detergents\(^{115}\) to improve texture, kill microbes, or enhance shelf life, among other uses. Surface modifications using silica are easy due to the presence of silanol groups on the silica layer that are compatible with a variety of functional groups. The free silanol groups (Si-OH) can be used as scaffolds for attaching other molecules such as drugs and enzymes for use in biological applications. The hydroxyl groups present on the surface of silica coated NPs also gives them a hydrophilic character, which enhances their biocompatibility. More importantly, silica provides a chemically inert surface on IONPs giving them high stability against aggregation and oxidation.\(^{116,117}\)
Figure 2.9: TEM images of IONPs whose surface has been coated with silica at various thicknesses, depending on the amount of precursor added to the solution. (A) 10 mg (B) 60 mg (C) 1000 mg of TEOS added to solution. (D) HRTEM image of the iron oxide nanoparticle uniformly coated with a 6 nm thin amorphous silica shell. Reproduced with kind permission from ref.173

Several methods have been reported for coating IONPs with silica; these include the sol-gel process, Stöber methods, non-transferred arc plasma and reverse micelle method.118

Since its discovery in 1968 by Werner Stöber and co-workers, the Stöber process has been researched extensively and various modifications of the method published. The Stöber process permits controlled growth of silica particles. The Stöber method involves hydrolysis followed by condensation of tetraethoxy silicates in alcohol under alkaline
conditions resulting in a coreshell structure. Naked NPs are mixed together with an aqueous solution and an alkoxy silane in alcohol. Ammonia was used as a morphological catalyst. Scheme 2.3 shows a summary of the reactions.

(a) Hydrolysis \[\text{Si-}[\text{OC}_2\text{H}_5]_4 + 4 \text{H}_2\text{O} \rightarrow \text{Si-(OH)}_4 + 4 \text{C}_2\text{H}_5\text{OH} \]

(b) Alcohol condensation \[\text{Si-(OH)}_4 + \text{Si-[OC}_2\text{H}_5]_4 \rightarrow \equiv\text{Si-O-Si} \equiv + 4 \text{C}_2\text{H}_5\text{OH} \]

(c) Water condensation \[\text{Si-(OH)}_4 + \text{Si-(OH)}_4 \rightarrow \equiv\text{Si-O-Si} \equiv + 4 \text{H}_2\text{O} \]

Scheme 2.3: Summary of reactions in Stöber process for the synthesis of silica nanoparticles

The coating thickness, which can be 5 – 200 nm, is controlled by varying the reaction conditions. The main disadvantage of this method is that it results in polydisperse particles that limit its use *in vivo*.\(^{65, 118, 119, 120, 121}\)

The reverse micelle method (inverse microemulsion) represents a more convenient and versatile method to coat IONPs with silica. It allows for the control of coating thickness and roughness by manipulating process parameters.\(^{122, 123}\)

Jang *et al.* completed a study which compared the stability and toxicity of silica coated IONPs vs uncoated IONPs. The silica-coated nanoparticles were stable and demonstrated enhanced resistance to acidity compared to uncoated nanoparticles. A study on the cytotoxicity indicated that at concentrations of up to 250 µg/mL, both silica coated and uncoated nanoparticle IONPs did not significantly decrease cell viability.\(^{124}\)

Magnetite can be stabilized prior to coating. Zare *et al.* reported the coating of NPs with polyvinylpyrrolidone (PVP) prior to silica coating.\(^{125}\)

Arpanaeia *et al.* studied the effect of using sodium citrate as a stabilizer on silica coated NPs. Sodium citrate-modified and non-modified magnetite nanoparticles synthesized at
pH 9 were coated with amorphous silica via the Stöber method. Results indicated that the stabilized silica coated NPs were more homogenous and had a narrower size distribution. This is because the presence of the citrate groups prevents the NPs from aggregating. On the other hand unmodified NPs showed stronger magnetic properties. This was attributed to the presence of the nonmagnetic layer on the surface of magnetite. 126

2.4.3. Natural Coatings

2.4.3.1. Chitosan

Chitosan is a natural polymer available from various sea species. It is cationic, biocompatible, hydrophilic, biodegradable, non-immunogenic, non-toxic and non-antigenic. Chitosan has limited solubility under basic conditions; however, it contains several free amino groups that are protonated under acidic conditions, making it cationic; this increases solubility and is responsible for the biocompatibility of chitosan. Chitosan nanoparticles have been developed and several studies on their use for intracellular drug delivery reported.127, 128 Chitosan-coated IONPs have demonstrated superparamagnetic properties and promising drug release profiles by the use of an external magnet, and therefore could be an effective coating for use in targeted therapy.129 The limited solubility of chitosan at basic pH makes it difficult to coat IONPs in situ because of the basic conditions required to precipitate IONPs.130

Y. Ding et al recently reported the synthesis of chitosan polymerised IONPs loaded with the anticancer drug 5-fluorouracil via emulsion chemical cross-linking.131 In this study, the chitosan swelling effect (degradation of the chitosan matrix) was investigated at different pH. The drug release rate was rapid in acidic buffer solution as opposed to neutral and basic buffer solution. The study also demonstrated how the thicker polymer diameters slowed down the release of the drug.131
2.4.3.2. Dextran

Dextran, a branched polysaccharide, comprising of glucose sub units up to 150 kDa has been used successfully for many applications in vivo and in vitro. It is non-toxic, biocompatible, biodegradable and inexpensive. Dextran-coated SPIONPs (DSPIONPs) are a well-established platform for the synthesis of imaging agents for applications in diagnostic imaging by MRI, positron emission tomography and photodynamic therapy. Superparamagnetic iron oxide ferumoxtran-10 (Combidex) is approved for clinical use as an MRI contrast agent.132, 133, 134

In a recent study, Peng et al developed DSPIONPs loaded with Dox (Dox-DSPIONPs) and evaluated cytotoxicity of free Dox, DSPIONPS and Dox-DSPIONPs. The DSPIONPS (up to 2000 μl/mL) showed no cytotoxicity. The IC\textsubscript{50} values for free Dox and Dox-DSPIONPs were 1.36 μg/mL and 0.533 μg/mL respectively, indicating that Dox-DSPIONPs had reduced cytotoxicity compared to free Dox. In the same study, it was found that Dox was released from Dox-DSPIONPs conjugate after being taken up by cells, released in the cytoplasm, entered the nuclei and eventually intercalated DNA base pairs. Further evaluation in vitro showed pH dependency of release of DOX.133

Lima et al synthesized SPIONPs via thermal decomposition in the presence of oleic acid to yield crystalline, monodisperse NPs with a mean diameter of 18 nm. Functionalisation with Dextran or PEG resulted in particles with a hydrodynamic diameter of 170 ± 70 nm and 120 ± 40 nm respectively. Cytotoxicity studies revealed that SPIONPS coated with PEG were non-toxic up to 100 μg/mL, Dextran coated NPs presented low toxicity at concentrations as high as 400 μg/mL. In vivo experiments determined the amount of PEG coated and Dextran coated SPIONPS accumulating in the liver, lung, tumour and skin. The majority of nanoparticles accumulated in the lungs and liver. This suggests that when
adsorbed, IONP distribution takes place mainly via RES leading to high concentrations in the liver, lungs and the spleen.135

Several researchers have reported treating IONPs with epichlohydrin to promote Dextran to form cross-linked iron oxide nanoparticles (CLIOs). Dextran molecules have weak interactions with IONPs, which are prone to detachment after administration \textit{in vivo}. The CLIOs prevent Dextran dissociation and reduce opsonisation thereby increasing the circulation time and blood half-life. Moreover, cross-linking introduces functional groups e.g. amine and acid groups these can be used for conjugation with targeting ligands or therapeutics.20, 128, 136, 136

\subsection*{2.4.3.3. Surfactants}

SPIONPS may be coated with surfactants. Surfactants usually have a hydrophobic and hydrophilic segment. The hydrophilic segment is adsorbed onto the surface of the nanoparticles, while the hydrophobic segment faces outwards to the solvent to produce a steric effect, thus improving the dispersion state of nanoparticles. The hydrophilic end groups can be –OH, -COOH, -PO (OH)\textsubscript{2}, -S(=O)\textsubscript{2}OH.7

Various surfactants have been investigated to date and these include sodium oelate, modified polyacrylic acid, sodium hyaluronan, sodium citrate, Triton-X-100 etc. (Figure 2.10). Some surfactants which have been used for IONPs are discussed in this section.138-140
Filippousi et al evaluated three different surfactants, cationic cetyltrimethylammonium bromide (CTAB) surfactant, the nonionic polyvinylpyrrolidone, K30 (PVP) surfactant, and the anionic sodium cholate (S.C.) surfactant. These surfactants vary in terms of molecular weight, as well as polar head group and charge. He found that these distinctions between the surfactants had an impact on morphological, structural and magnetic properties of the resulting coated adduct.141 Li et al recently reported the synthesis of double-layered sodium alpha-olefin sulfonate SPIONPS. They were stable, maintained their original crystallinity and exhibited high water solubility and superparamagnetic properties.142

Tietze et al developed IONPs stabilised with lauric acid and loaded with anti-cancer drug mitoxantrane. The delivery system efficiently delivered chemotherapeutic drug mitoxantrane to the tumour tissue of rabbits.143

Oleic acid (OA) is a commonly used surfactant for modifying IONPs and consists of a non-polar hydrophobic tail and a polar carboxylic acid head group. It forms a very strong
bond between its carboxylic head group and the amorphous IONP surface. OA modified IONPs are biocompatible and OA has been reported to have anti-bacterial activity. Zhang et al. characterized OA modified NPs using Fourier transform infra-red and X-ray photoelectron spectroscopy and found that the OA molecules were adsorbed on the magnetic nanoparticles via chemisorption.144-145

Coating with OA makes IONPs dispersible only in organic solvents and incompatible with an aqueous environment thus their use in the biological system is limited. In a recent study by Pawar et al, OA coated IONPs were further coated with chitosan to make them suitable for biological applications. The OA-chitosan coated IONPs showed superparamagnetic behavior at room temperature, high magnetization values, high colloidal stability and low cytotoxicity.146

Ligand exchange of oleic acid with dopamine and tiron has been previously investigated. Ligand exchange is an approach based on the mixing of hydrophobic IONPs with a hydrophilic molecule. The hydrophilic ligand displaces the hydrophobic layer on the IONPs, due to its affinity towards IONPs surface resulting in aqueous-stable nanoparticles. Blum et al used ligand exchange of oleic acid for tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) and dopamine. Tiron is a cheap, commercially available capping agent that forms strong complexes with iron. Dopamine is also commercially available and can be further functionalized with acids through amide bonds. The IONPs retained their shape, size and superparamagnetic properties after ligand exchange.147 More recently, Blum et al used a single step mechanochemical approach to convert hydrophobic OA-coated SPIONPS to water compatible Tiron-capped.148 A separate study by Lee et al using dopamine capped SPIONPS confirmed the presence of dopamine quinone, a highly reactive compound that is believed to be neurotoxic. (Scheme 2.4)149, 150, 151
2.4.3.4. Sugars

There have also been reports on the use of sugars to stabilise IONPs, e.g. sucrose by Patsula et al.152 Herea et al reported a modified hydrothermal, single step reaction under alkaline conditions for MNPs coated with glucose-derived polymerization products using glucose and iron salts as starting materials.153

Several other reports have been published on using mannose, maltose, lactose and galactose to stabilize IONPs.7

2.5. Conjugation

Iron oxide nanoparticles do not possess suitable surface properties for specific applications. Functionalisation with organic groups on their surface can allow them to be conjugated to other molecules. When conjugated with a drug payload, NPs can act as efficient, precise drug delivery systems. The conjugate should be able to carry a drug or multiple drugs without compromising its functionality once attached. Moreover, the drug loaded nanoparticles should release the drug at the target site at a desired rate.

Drugs are usually associated with IONPs \textit{via} direct binding to the iron oxide surface or by encapsulation of both the drug and IONP within a biodegradable polymer matrix. Direct binding can be achieved by covalent or non-covalent linkage.154
2.5.1. Covalent Linkage

Covalent linkage involves linking the therapeutic agent to the nanoparticle via an amino or hydroxyl functional group already present on the surface of the nanoparticles. The covalent bond should be cleavable on demand, stable in the bloodstream and should not alter the drug’s structure. Iodoacetyls, maleimides and pyridyl disulfides have also been used as linkers. Figure 2.11 shows examples of functional groups that have been used for targeted delivery with IONPs.

![Functional groups used for covalent conjugation on targeted delivery](image)

Covalent drug loading involves many synthetic procedures. However, by selecting an appropriate linker, it is possible to ensure drug release only occurs in specifically targeted areas. Covalent bonds which are pH sensitive have been exploited for controlled release. (Table 2.5)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Notes</th>
<th>Drug Loaded and release trigger</th>
<th>Optimum Release</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amide</td>
<td>Very robust and can improve the thermal stability of anti-cancer drugs. Amide bond can be cleaved at low pH.</td>
<td>Methotrexate/Citric acid pH</td>
<td>70% (pH 4, 37 °C, 48 h)</td>
<td>155</td>
</tr>
<tr>
<td>Hydrazine</td>
<td>Most used pH sensitive bond.</td>
<td>DOX/PEI pH</td>
<td>33% (pH 4.5, 37 °C, 24 h)</td>
<td>156</td>
</tr>
<tr>
<td>Schiff’s base</td>
<td>Stable at physiological pH, low pH facilitates hydrolysis of bond and high temperature accelerates hydrolysis</td>
<td>DOX pH</td>
<td>57.8% (pH 5.7, 50 °C, 8 h)</td>
<td>157</td>
</tr>
<tr>
<td>(Imine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulfide bridges</td>
<td>Can be cleaved in the presence of reducing agents such as glutathione which is over expressed in cancer cells.</td>
<td>O^6 – benzylguanine Reduction</td>
<td>100% (pH 5, 37 °C, 100 mM glutathione)</td>
<td>158</td>
</tr>
</tbody>
</table>

Table 2.5: Examples of covalent IONP-drug conjugates
2.5.2. Non-covalent

Non-covalent interactions include electrostatic, absorption, coordination, hydrophobic/hydrophilic and affinity interactions (Table 2.6).

<table>
<thead>
<tr>
<th>Non-covalent</th>
<th>Notes</th>
<th>Drug matrix</th>
<th>Release kinetics</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophobic</td>
<td>The hydrophobic zone created by coating acts as a reservoir and is destabilised in acidic environments</td>
<td>DOX/Oleic acid</td>
<td>70% (pH 6.5, 37 °C)</td>
<td>159</td>
</tr>
<tr>
<td>Electrostatic and hydrophobic</td>
<td>DOX absorbed through hydrophobic and electrostatic interactions.</td>
<td>DOX/PEG</td>
<td>75% (pH 5.5, RT, 25 h)</td>
<td>160</td>
</tr>
<tr>
<td>Coordination</td>
<td>pH sensitive metal to ligand coordination</td>
<td>DOX</td>
<td>67.2% (pH 4, 37 °C, 24 h)</td>
<td>161</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>DOX/PEG/liposome</td>
<td></td>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>

Table 2.6: Non covalent drug interactions

The choice of chemistry depends on the IONP surface and the ligand. Non-covalent binding has several synthetic advantages, i.e. no modification step required and therefore fewer synthetic steps, resulting in reduced potential for toxicity, and better cost effectiveness.
2.6. Release

The release mechanism of a magnetically tagged drug further enhances its selective destruction of tumours. It has been observed in several studies that the drug payload is quickly released in vivo following administration before it reaches its target. This is referred to as the “burst effect”. Recently, stimuli responsive polymer coated SPIONs have become popular in the field of targeted delivery for cancer therapy. These polymers can undergo structural and physical transitions with change in the environmental conditions, e.g. pH, ionic strength, light, temperature, magnetic or electric properties.\(^{162}\)

2.6.1. pH triggered

The slightly acidic pH in the tumour region and endosomes makes a pH responsive mechanism a good approach. Therefore, drug delivery systems that release the drug payload at low pH are preferred.

Several polymers undergo rapid dissolution when the pH of the medium is less than 6.5 and hence are expected to release their contents once within the acidic tumour microenvironment and endo/lysosome compartments of cells.\(^{163}\) Fang et al evaluated the drug release rate of SPIONPs with a biodegradable, pH sensitive poly (beta-amino ester), copolymer loaded with DOX. The model showed higher release rates at lower pH compared to physiological pH.\(^{164}\) Kievet et al conjugated DOX to PEI coated IONPs via the pH sensitive hydrazine bond. The highest Dox release was achieved at pH below 6.\(^{165}\) Gautier et al studied the in vitro release of DOX from DOX loaded PEG-SPIONPs. The results demonstrated that the PEG layer delays drug release at physiological pH 7.4. However, lowering the pH to 4 accelerated the release of the drug by up to 85% in one hour.\(^{89}\)
Recently Prabha et al developed β-cyclodextrin (β-CD) – polyethyleneglycol (PEG) – polyethyleneimine (PEI) coated IONPs with particle size range or 151-300 nm for drug delivery applications. The IONPs were loaded with 5-fluorouracil (5-FU), a low molecular weight antineoplastic used for solid tumours like stomach, colon, breast cancer etc. The loading capacity and in vitro release behaviour of 5-FU from the nanocomposites was evaluated in a phosphate buffer at pH 1.2 and 6.8 and at temperatures 37 °C and 45 °C. Drug release was faster at pH 6.8 than at pH 1.2. This was attributed to a high polymer swelling effect which is a consequence of high pH. Increasing the temperature also resulted in faster release rate. The amount of drug encapsulated in this study ranged from 10-50%. In this study, it was also noted that slowest release rate was observed where the least amount of drug was loaded onto the nanocomposites. This was attributed to the additional free void spaces that the drug molecules had to travel through.102 Peng et al developed dextran coated SPIONPs conjugated to DOX (Dox-DIONP). DOX release in vitro assays were carried out at pH 5, 6 and 7 to simulate lysosomal, endosomal and extra cellular components of the tumour microenvironment respectively. A high release rate was observed at pH 5 and the lowest release rate observed at physiological pH 7. The optimum release was at acidic pH, this was attributed to degradation of dextran at acidic pH.133

Zhu et al reported the synthesis of IONPs attached to cystamine tert-acylhydrazine (CTA). The disulfide and acylhydrazine groups were attached onto the surface of SPIONPs through the coordination of CTA sulfur groups with Fe\textsubscript{3}O\textsubscript{4} nanoparticles. DOX and PEG were conjugated onto the surface of IONPs nanoparticles via pH-sensitive acylhydrazone link. Accordingly, a multifunctional pH-sensitive SPIO nanocomposite system with long circulation, magnetic targeting and controlled release ability was successfully constructed. Under an acidic environment, the drug release of the nanocarrier
was accelerated greatly, attributed to the cleavage of pH-sensitive acylhydrazone linkages.166

The findings from these studies suggest that the release of DOX under neutral conditions i.e. in blood plasma and normal tissue would be minimal, thereby reducing the systemic distribution of DOX during drug delivery.

Nigam \textit{et al.} developed citric acid functionalized (citrate-stabilized) IONPs (CA-IONPs) loaded with DOX (Figure 2.12) and evaluated the potential of the conjugate as a carrier system.167

\textit{Figure 2.12: Structure of citrate stabilized IONP}

The positively charged DOX was bound to the surface of the negatively charged CA-IONPs \textit{via} electrostatic interactions. Drug release profiles were investigated at pH 5 and pH 7.3. The optimum release was obtained at pH 5. A sustained release of 60\% of drug molecules was observed over 50 hours. At acidic pH, the carboxyl groups on the nanoparticle surface becomes partially neutralised due to the presence of protons. This leads to weakening of the electrostatic forces, resulting in the release of the drug. This is a slow process, which results in long, sustained release of the drug load.167
2.6.2. Hyperthermia

Cancer cells are susceptible to heat, a change in temperature from 37 °C to 43 °C is sufficient to kill cancer cells provided this temperature be maintained for a sufficient period. Moreover, when the temperature is above 46 °C, tissues undergo thermal necrosis, also known as thermoablation.

MNPs, in an alternating magnetic field, can be used to target a specific tumour location and deliver a toxic dose of heat. This heat has been proposed as a mechanism to trigger release of chemotherapeutic agents, a concept known as magnetic hyperthermia. By killing cancer cells and damaging proteins and structures within cells, hyperthermia may shrink tumours. To be efficient, magnetic hyperthermia requires that MNPs have a sufficiently high specific absorption rate (SAR), to deposit heat quickly onto cancer cells while minimizing damage on healthy tissue. SAR is dependent on physical properties such as size, saturation magnetization of the nanoparticles, particles structure and interparticle interactions.\(^{168}\)

As the size of IONPs decreases, the saturation magnetization also tends to decrease, thereby reducing heating efficiency. To overcome this, the use of core/shell IONPs has been proposed by several researchers. It has been reported that core/shell IONPs provide high saturation magnetization and increases hysteresis losses, enhancing its use for hyperthermia.
Nemati et al developed core/shell IONPs with average sizes of 8, 12, 14 nm and studied how size affected their heating properties for magnetic hyperthermia. Their results indicated that the bigger the core/shell IONPs had better heating efficiency and magnetic properties. Moreover, these IONPs retained their core/shell morphology for longer periods, making them more suited for biological applications.

Temperature responsive polymers have become popular for controlled drug release. The drug release is dependent upon the change in temperature. Below what is known as a critical solution temperature (CST), thermoresponsive polymers are soluble in water and, after heating, they become insoluble and form an emulsion. Much work has focused on raising the lower critical solution temperature (LCST), i.e. the critical temperature below which the components of a mixture are miscible for all compositions. Polymers which become insoluble upon heating, have a so-called lower LCST. Below the LCST, the polymer is hydrophilic. However, above this temperature the polymer becomes hydrophobic and cloudy. (Figure 2.14).
Chapter 2
Magnetically tagged drugs for cancer treatment

Figure 2.14: Image of poly-SPIONs below and above LCST162

The thermos-responsive nature of the polymer means that upon reaching LCST, the polymer becomes hydrophobic and shrinks, releasing its aqueous content and expelling DOX at the same time.

Kakwere \textit{et al} developed thermo-responsive polymer-coated (N-isopropylacrylamide polymer), (Figure 2.15) cubic-IONPs loaded with DOX to obtain thermo-responsive, biocompatible nanohybrids171.

Figure 2.15: IONPs functionalized with thermoresponsive polymer (PNIPAAM)
In this study, the LCST was 47 °C. The drug release was assessed at 25, 37 and 50 °C (above the LCST). The DOX loaded IONPs exhibited a negligible drug release below 37 °C. However, at higher temperatures (50 °C), they showed a consistent release of DOX by exploiting the capability of the IONPs to generate heat under an alternating magnetic field.171 Rastogi \textit{et al.} also studied the drug release profile of PNIPAAM-PEGMA IONPs loaded with DOX, with an LCST of 44 °C. The optimum release was observed at hyperthermia temperature (45 °C) and a slightly acidic pH 5.5, with 72.42 ± 5.25% of the drug released over 48 h.172

2.6.3. Dual Responsive Release:

Dual responsive release systems, where temperature and/or pH are used to trigger drug release have also been reported. They offer advanced features for the targeted delivery of drug molecules \textit{via} the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour, which offers spatial and temporal control over the release of a drug load.

Wadajkar \textit{et al.} investigated the drug release of DOX loaded poly (\textit{N}-isopropylacrylamide-chitosan) (PAC)-coated MNPs linked to DOX. The drug release was investigated by incubating the drug-loaded nanoparticles at different temperature (37 °C and 40 °C) and pH (6 and 7.4). Enhanced drug release was obtained at 40 °C and at pH 6. This shows that a combination of external heat and low pH would result in enhanced drug release. In this case, the presence of chitosan further enhanced the pH responsiveness.169

Hervault \textit{et al.} developed magnetic, thermo sensitive nano-carriers conjugated to anti-cancer drug DOX \textit{via} acid-cleavable imine linker. A PEG based polymer P (DEGMA-co-PEGMA-b-[TMSPMA-co-VBA]) consisting of two monomers di (ethylene glycol)
methyl ether methacrylate (DEGMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) was used.

The use of two PEG chains of different length provides temperature-responsive behaviour to the polymer, with the possibility to tune the LCST by varying the molar ratio PEGMA: DEGMA.

DOX was conjugated to the nano-carriers through an imine bond, also called a Schiff base bond, between the primary amine group of DOX and the aldehyde group of P(DEGMA-co-PEGMA b-[TMSPMA-co-VBA]). The drug release studies were performed at 25 °C, 37 °C (<LCST) and 50 °C (LCST). For each temperature, one sample was held at pH = 7.4 and another at pH = 5.7. The optimal release was found at pH 5.7 and temperature of 50 °C. At physiological pH and temperature, the release of DOX was low. The acidic pH facilitated the hydrolysis of the imine bond. In this case the accelerated temperature has two effects, facilitating the burst effect upon reaching LCST and temperature-accelerated hydrolysis of the imine bond.\(^{157}\)

In this multi-stimulus system, the drug release could be triggered as a consequence of magnetic drug targeting, hyperthermia and tumour acidic pH.

2.7. Limitations of the use of IONPs

2.7.1. Toxicity

The increasing applications of IONPs are accompanied by concerns about their toxicological properties and long term effect on human health and aquatic life. Over the last number of years, efforts have been made to investigate the potential effects of IONPs and address the safety issues associated with their use. Many studies have demonstrated that at concentrations of 100 µg/mL or higher, IONPs may cause low toxicity or cytotoxicity. Several \textit{in vitro} studies have demonstrated that silver and zinc based
nanoparticles are more toxic than IONPs. The toxicity of IONPs cannot be properly established yet since results from in vitro studies are often contradictory; in vivo and human epidemiological studies are scarce.

A study by Sundarraj et al on mice indicated that IONPs can cross the blood testes barrier causing testicular cytotoxicity due to oxidative stress and apoptosis. A study by Zhu et al on zebrafish demonstrated that IONPs caused serious delays in embryonic hatching; causing malformation in some zebrafish embryos and larvae and eventual mortality.

It has been suggested that most NP toxicity in vivo is a result of the production of reactive oxygen species (ROS) such as singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS are important in certain physiological processes such as respiration and cell signalling. However, an outburst of ROS results in what’s known as oxidative stress. Oxidative stress causes oxidative damage of biomolecules and disruption of cell signalling mechanisms.

Several studies have suggested that area and surface chemistry influence nanoparticle toxicity. Passivation of the IONPs by surface functionalization may enhance their resistance to lysosomal acidity, prevent agglomeration and also modulate dissolution kinetics, thereby reducing the overall toxicity. Dextran, silica, and PEG coated IONPS have shown reduced cytotoxicity in in vitro tests. There have been reports of NP size, and shape-related toxicity. Nanoparticle size and shape can be controlled during synthesis. (See Section 2.3.).

Several techniques are used to assess the toxicity on nanoparticles in vitro and they are shown on Table 2.7.
These *in vitro* techniques are used for initial evaluation of NPs, to identify specific characteristics and as indicators of toxicity. They shed light on changes in membrane integrity, metabolic activity, and genetic material of cells upon reacting with IONPs. However, they have limitations such as their interaction with assay components and they cannot be used as a good prognostic indicator of long term physiological effects.180 Even though some IONPs are approved for use as MRI agents, translation to use in other *in vivo* applications such as drug delivery is limited due to concentration dependent toxicity. Very little correlation has been made between *in vitro* and *in vivo* studies due to the inability of *in vitro* studies to mimic the complex environment *in vivo*. Researchers have found that some toxic responses found *in vitro* are not reproduced *in vivo*. This could be attributed to homeostasis which regulate the changes in pH, chemical composition and ionic strength in the blood.181 Before registration of any drug for FDA approval on clinical trials, *in vivo* studies explaining absorption, distribution, metabolism and elimination should be completed, and this remains a challenge.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro assays</td>
<td>• For cell viability, proliferation and differentiation</td>
</tr>
<tr>
<td>Microscopy</td>
<td>• Electron and atomic force microscopy for intracellular localization</td>
</tr>
<tr>
<td>In vitro hemolysis assays</td>
<td>• Effects of nanoparticle exposure on red blood cells,</td>
</tr>
<tr>
<td></td>
<td>• Evaluates hemoglobin release in the plasma as an indicator of red blood cell lysis</td>
</tr>
<tr>
<td>Genotoxicity assays</td>
<td>• Evaluates the ability of NPs to damage chromosomes and/or DNA</td>
</tr>
</tbody>
</table>

Table 2.7: Currently used *in vitro* toxicity testing techniques181
Chapter 2

Magnetically tagged drugs for cancer treatment

The diverse potential applications of nanotechnology mean that it will inevitably yield considerable benefits to society. However, as the nano industry grows and the use of nanoparticles increase, so will the quantities released to the environment. The aquatic environment is particularly at risk because it acts as a sink for most environmental contaminants. Like in humans, NPs are likely to have different effects in aquatic life compared to their bulkier counterparts. Also, their small size means they can pass barriers that prohibit entry of bulkier particles.

<table>
<thead>
<tr>
<th>Analytical Tool</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductively Coupled Plasma</td>
<td>Can determine nanoparticles composition, concentration, size, size distribution, and agglomeration</td>
<td>Acid digestion during sample preparation means sample cannot be used further</td>
</tr>
<tr>
<td>TEM</td>
<td>Good resolution for visualisation of individual particles.</td>
<td>Resolution is limited to two dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive preparation is required which may alter cells</td>
</tr>
<tr>
<td>Confocal</td>
<td>Less invasive sample preparation</td>
<td>May require fluorescent tags which alter particle behavior</td>
</tr>
<tr>
<td>Coherent anti-Stokes Raman</td>
<td>Three-dimensional visualisation of metal oxide nanoparticles in intact biological tissue</td>
<td>Limited in its ability to resolve sub-cellular structure.</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>Requires little sample preparation</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.8: Analytical tools currently used for analysis (adapted from Scown et al)\(^{182}\)

The diverse potential applications of nanotechnology mean that it will inevitably yield considerable benefits to society. However, as the nano industry grows and the use of nanoparticles increase, so will the quantities released to the environment. The aquatic environment is particularly at risk because it acts as a sink for most environmental contaminants. Like in humans, NPs are likely to have different effects in aquatic life compared to their bulkier counterparts. Also, their small size means they can pass barriers that prohibit entry of bulkier particles.
One of the factors making it challenging to determine the toxicity in aquatic life and in vivo is the lack of techniques and equipment to trace, measure, visualise and quantify the nanoparticles. Table 2.8 shows equipment currently used and their limitations.

Overall, the toxicity of nanoparticles is not fully understood. Current literature suggests that nanoparticles have potential adverse effects. More detailed studies in their physicochemistry and their interaction with other systems is required. Standardized approaches are also required in order to classify nanoparticles according to their hazard. Testing every nanoparticle type with every given size and coating, in every aquatic test media would not be time or cost effective and current efforts are focused on developing standard test methods and analytical tools for effective tracing and quantification of nanomaterials.182

2.7.2. Other limitations

Another limitation for using IONPs as nano-carriers for in vivo targeting is creating suitable magnetic field gradient is required for effective targeting and localization. The magnetic force should be strong enough to overcome resistance of blood flow from veins and arteries. Also, the magnetic field diminishes rapidly as a function of distance from the target tissue. This limits the targeting ability in vivo, and means that only areas close to the surface of the skin can be targeted. Efforts are being made to engineer a magnetic field that penetrates to a greater depth.

Lack of appropriate surface engineering on nanoparticles results in premature release of the drug load before it reaches its target site, known as the “burst effect”. The heterogeneous and complex structure of tumours make them very difficult to target. The EPR vary substantially between tumours and patients. Even parts of a tumour vary in terms of vascular permeability. This presents problems in specific targeting.
2.8. Conclusion

This review has discussed cancer, the current treatment methods and their limitations. Several drug delivery mechanisms for specific targeting of anti-cancer drugs have been discussed and their current developments. IONPs in targeted drug delivery have been discussed in detail; their synthesis, surface modification and conjugation to chemotherapeutics. Targeted release is important as it ensures that the drug payload is released at a specific site and therefore enhancing drug selectivity. Different release mechanisms that ensure the drug payload is released at a specific site have been discussed.

The use of IONPs for targeted delivery is a promising field, however there are still no FDA approved IONP drug delivery system on the market. Further research is required to understand how IONPs behave in vivo and address toxicity in vivo and to aquatic life.

2.9. References

12. health.gov.ie (accessed 27/17/2016)

31. Cancer in Ireland 2013: Annual report of the National Cancer Registry

34. Leuschner, C.; Kumar, C. S. S. R.; Hansel, W.; Soboyejo, W.; Zhou, J.; Hormes,
 Birner, P.; Döme, B.; Lang, G.; Klepetko, W.; Ankersmit, H. J.; Hoetzenecker, K.
 Birner, P.; Döme, B.; Lang, G.; Klepetko, W.; Ankersmit, H. J.; Hoetzenecker, K.
 106–114.
 (15), 1615–1626.
42. Yang, H.-W.; Hua, M.-Y.; Liu, H.-L.; Tsai, R.-Y.; Chuang, C.-K.; Chu, P.-C.;
 Wu, P.-Y.; Chang, Y.-H.; Chuang, H.-C.; Yu, K.-J.; Pang, S.-T. ACS Nano. 2012,
 6 (2), 1795–1805.
 131–139.
Chapter 2 Magnetically tagged drugs for cancer treatment

Chapter 2 Magnetically tagged drugs for cancer treatment

Chapter 2
Magnetically tagged drugs for cancer treatment

Chapter 2 Magnetically tagged drugs for cancer treatment

Chapter 2 Magnetically tagged drugs for cancer treatment

3 Synthesis of analogues of gymnastatins as potential anticancer agents

To date, there has been little research in the literature reporting the synthesis and anticancer activity of gymnastatins. This chapter describes synthetic work carried out towards the preparation of analogues of gymnastatin N. Two synthetic strategies were utilised and they are discussed in detail.

3.1 Synthetic Strategy 1

Two analogues of gymnastatins were prepared from octanal 1a using the methodology presented in Scheme 3.1.

![Figure 3.1: Retrosynthetic analysis of gymnastatin N analogue](image)
The starting material is commercially available octanal 1a. The first step is a Wittig reaction which installs an alkene and extends the chain length. This is followed by a base catalysed hydrolysis to yield the corresponding acid 3. Coupling between the resulting acid and commercially available O-benzyl-L-tyrosine using HATU and DIEA to yield amide 4 is the key step. A reaction between the amide with N,N-dimethylformamide dimethyl acetal converts the acid moiety in the tyrosine unit to a methyl ester 5. The final step is the removal of the benzyl protecting group using boron trichloride dimethyl sulfide complex to yield the target compounds 6 and 6a.

Scheme 3.1: Overview of synthesis of synthesis of 6 and 6a
3.1.1 The preparation of esters

The first step in this synthetic strategy was a Wittig reaction using (carbethoxyethylidene)triphenylphosphorane (Scheme 3.2). Commercially available octanal 1a was used as a starting material.

\[\text{Scheme 3.2: Wittig reaction} \]

(Carbethoxyethylidene)triphenylphosphorane was added to a solution of octanal 1a in THF and the mixture was left stirring for 6 hours under argon. The reaction was monitored by TLC and upon completion was quenched and the product was purified using column chromatography.

The success of the Wittig reaction was confirmed by \(^1\)H NMR. The disappearance of the aldehyde proton at 9.50 ppm and an additional signal in the alkene region of the \(^1\)H NMR spectrum confirmed the installation of an alkene. The quartet at 4.10 ppm confirmed the presence of R-CH\(_2\) corresponding to the ethyl group of the ester. Furthermore, the presence of the methyl group α to the carbonyl was confirmed by the observed singlet at 1.85 ppm in the \(^1\)H NMR.

The mechanism for this reaction is illustrated in Scheme 3.3. The phosphorane attacks the carbonyl group of the octanal generating a negatively charged oxygen which attacks the positively charged phosphorus forming a very unstable 4-membered ring called an oxaphosphetane. The ring fragments to form an alkene as well as triphenylphosphine oxide (P=O) whose formation is the driving force of this reaction.\(^1\)\(^-\)\(^2\)
3.1.2 **Base catalysed hydrolysis**

The next step involved a base catalysed hydrolysis of 2 to form an acid. This reaction was initially attempted using KOH in methanol under reflux for 2 hours (Scheme 3.4).

![Scheme 3.4: Base catalysed hydrolysis using KOH in methanol](image)

This method afforded the product, however the high temperatures promoted isomerisation and formation of other side products which were difficult to remove and resulted in a low yield. LiOH in THF/methanol/water at room temperature represented a milder route to the target compounds (Scheme 3.5). However, this reaction typically involves longer reaction times of up to 24 hours.
Scheme 3.5: Base catalysed hydrolysis of ester 2

The formation of the acid was confirmed by 1H NMR disappearance of the quartet at 4.16 ppm corresponding to the R-CH$_2$ group of the ethyl group of the ester. Furthermore, the identity of the product was confirmed by the broad peak at 12.05 ppm representing the OH of the carboxylic acid. The presence of the OH was further confirmed by a D$_2$O shake and HSQC.

The mechanism for the base-catalysed hydrolysis is presented in Scheme 3.6. The lithium hydroxide provides a nucleophilic hydroxide which attacks the carbonyl on the ester creating a tetrahedral intermediate. The intermediate collapses, reforming the carbonyl and the ethoxide leaves resulting in a carboxylic acid.1

Scheme 3.6: Base catalysed hydrolysis reaction mechanism

3.1.3 Amide coupling

Coupling between acid 3 and commercially available protected tyrosine thereby installing an amide bond was the key step. The amide functionality is a common feature in natural products. It is found in proteins which play a crucial role in most biological processes such as enzyme catalysis, transport (haemoglobin), immune protection (antibodies) and support (collagen). Amide bond formation presents difficulties such as low yields,
racemisation, degradation and purification issues. This is overcome by using different coupling reagents which not only activate the acid but also reduce racemisation, optimise the reaction and reduce the formation of by-products.1,3-4

In this work, several procedures were attempted to form an amide link between the acid side chain and the tyrosine. Initially, cheap Boc protected \textit{O}-benzyl-L-tyrosine was used as the reagent (Scheme 3.7).

\textit{Scheme 3.7: Attempted amide coupling using N-Boc- \textit{O}-benzyl-L-tyrosine}

Several coupling reagents, e.g. diphenylphosphinic acid, EDC and oxalyl chloride, in different reaction conditions were used to form an amide link but no product was formed or in the case of oxalyl chloride, (entries 1a-1c), a very low yield was achieved. (Table 3.1)
Table 3.1: Attempted amide coupling reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Coupling reagent</th>
<th>Additive</th>
<th>Base</th>
<th>Reaction time/ hours</th>
<th>Temp/ ° C</th>
<th>Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Oxalyl chloride</td>
<td>--</td>
<td>Et$_3$N</td>
<td>6 – 24</td>
<td>RT 50</td>
<td>< 10%</td>
</tr>
<tr>
<td>1b</td>
<td>Oxalyl chloride</td>
<td>DMF</td>
<td>Et$_3$N</td>
<td>6 – 24</td>
<td>50</td>
<td>< 10%</td>
</tr>
<tr>
<td>1c</td>
<td>Oxalyl chloride</td>
<td>DMF</td>
<td>Et$_3$N</td>
<td>6 – 24</td>
<td>70</td>
<td>< 10%</td>
</tr>
<tr>
<td>2a</td>
<td>EDC</td>
<td>--</td>
<td>DMAP</td>
<td>12 – 24</td>
<td>RT</td>
<td>0</td>
</tr>
<tr>
<td>2b</td>
<td>EDC</td>
<td>--</td>
<td>DIEA</td>
<td>12 – 24</td>
<td>RT</td>
<td>0</td>
</tr>
<tr>
<td>2c</td>
<td>EDC</td>
<td>HOBt,</td>
<td>DMAP</td>
<td>12 – 24</td>
<td>RT</td>
<td>0</td>
</tr>
</tbody>
</table>

It was postulated that NH was not sufficiently reactive. The next attempt involved the use of O-benzyl-L-tyrosine (Figure 3.2). This approach involves a primary amine which is more reactive. In addition, the need for a Boc deprotection will be avoided.

![O-benzyl-L-tyrosine](image)

Figure 3.2: O-benzyl-L-tyrosine

The first approach towards amide formation using O-benzyl-L-tyrosine was using an acid chloride. There were two options for this, the use of thionyl chloride or oxalyl chloride.
Oxalyl chloride was used as it is milder, more selective and requires lower temperatures. Triethylamine was used as a base to maintain basic pH conditions during the reaction, CH₂Cl₂ was used as the solvent. The reaction (Scheme 3.8) was monitored by ¹H NMR.

Scheme 3.8: Attempted amide coupling using oxalyl chloride

The reaction shown in Scheme 3.8 using oxalyl chloride resulted in a poor yield (< 10%). Increasing the temperature to 50 °C resulted in isomerisation of the alkenes, and formation of side products and did not improve the yield. Adding catalytic DMF to accelerate the reaction did not improve yield. We decided to explore other coupling reagents to improve yields and reduce isomerisation.

The next approach was using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Scheme 3.9.)

Scheme 3.9: Attempted amide coupling using EDC

In this reaction, the carbodiimide reacts with the carboxylic acid to form the O-acylisourea anhydride, which reacts with the amine to yield the desired amide. A urea by-product which is water soluble and can be eliminated by aqueous work up is also formed.
4-Dimethylaminopyridine (DMAP) was used as a nucleophile to enhance selectivity. The reaction did not go to completion even after 48 hours.

3.1.4 Coupling with HATU

The failure of EDC and oxalyl chloride meant considering alternative routes. HATU was the obvious choice. HATU is one of the most efficient coupling reagents and was first reported by Carpino et al in 1993.\(^5\) It has proven to be efficient in difficult sterically hindered couplings and gives minimal racemisation. The first test reaction with HATU gave 82% yield, with no side products or racemisation and the crude mixture was purified by column chromatography.\(^4,6\) (Scheme 3.10)

![Scheme 3.10: Amide coupling using HATU](image)

This reaction was carried out using DMF as a solvent and DIEA was used as a base. The product was purified using column chromatography. The identity of the product was confirmed by \(^1\)H NMR. A signal was present at 171 ppm in the \(^{13}\)C NMR assigned to the carbonyl of the amide group. A multiplet at 7.20 ppm and a singlet at 4.80 ppm corresponding to the benzyl protecting group were present. An NH stretch and an amide band were also present, at 1511 and 1611 cm\(^{-1}\), respectively in the IR spectrum. Furthermore, LRMS showed a signal at \(m/z = 438.2\), calculated for C\(_{27}\)H\(_{35}\)NO\(_4\) [M+H]\(^+\): 438.3 corresponding to the parent ion.
The mechanism for the amide bond formation using HATU is outlined below. The reaction is initiated by the removal of the proton of the acid to form a carboxylate anion (Scheme 3.11).

\[
\begin{align*}
R\text{OH} & \xrightarrow{\text{DIEA}} R\text{O}^- \\
\end{align*}
\]

Scheme 3.11: Deprotonation of acid

The carboxylate anion attacks the HATU forming an unstable isouronium salt. The OAt anion attacks the isouronium salt affording an active OAt active ester. Addition of an amine (nucleophile) to the OAt ester results in acylation.⁴

\[
\begin{align*}
\text{R O}^- & \xrightarrow{\text{NH}_2\text{N}^-} \text{N}^-\text{O}^- \quad \xrightarrow{\text{N}^-\text{O}^-} \\
\end{align*}
\]

Scheme 3.12: Proposed reaction mechanism for amide formation using HATU
3.1.5 Methylation of acid side group

In this step the acid group on the tyrosine unit was converted to a methyl ester using N,N,N,N-dimethylformamide dimethyl acetal. The effect of the presence of a methyl ester rather than acid side group on the anti-cancer activity of the gymnastatin analogues was of interest. To this end, a reaction was set up as shown in Scheme 3.13 to convert the acid side group on the tyrosine unit to a methyl ester.

\[
\text{Scheme 3.13: Methylation of acid moiety in tyrosine unit}
\]

Amide 4 was dissolved in DMF and to the solution was added N,N-dimethylformamide dimethyl acetal and the reaction stirred at room temperature for 16 hours. The identity of the product was confirmed by a \(^1\)H NMR CH\(_3\) signal at 3.1 ppm and a \(^{13}\)C NMR signal at 52.3 ppm. Furthermore, removal of the acid side group results in significant change in the polarity of the molecule. Therefore, TLC was also used to confirm that the acid group had been removed. Furthermore, LRMS showed a signal at \(m/z = 452.2\) calculated for C\(_{28}\)H\(_{37}\)NO\(_4\) [M+H]\(^+\): 452.3.

3.1.6 Benzyl deprotection

3.1.6.1 Debenzylation using Pd/C H\(_2\)

The final step in this synthetic route was the removal of the benzyl ether protecting group. Benzyl ethers are usually removed by hydrogenation over a palladium catalyst which cleaves the benzylic C-O bond. The presence of easily reducible functional groups makes hydrogenation difficult. Caine and Bindra et al however reported the selective removal
of a benzyl ether protecting group in the presence of alkenes. To this end, this reaction was attempted on a small scale (Scheme 3.14). This did not yield the desired product as the alkenes were also reduced during the reaction.

Scheme 3.14: Attempted O-Benzyl deprotection using H₂, Pd/C

3.1.6.2 Pd (OAc)₂ / Et₃SiH

When hydrogenation using Pd/C and H₂ did not yield the desired compound, other methods for selectively removing the benzyl protecting group while leaving the alkene intact were explored.

Coleman et al. reported the selective cleavage of benzyl protecting group in the presence of acyl chlorides, bromides, cyclopropanes and alkenes using triethyl silane catalysed with Pd(OAc)₂.¹¹

This reaction was attempted as illustrated in Scheme 3.15 below.

Scheme 3.15: Attempted O-benzyl deprotection

However, this procedure did not result in debenzylation or reduction of the alkene, only the starting material was recovered.
3.1.6.3 Debenzylation using BCl₃

Boron trichloride is a Lewis acid that can be used to cleave ethers, acetals, and in some cases, esters. Boron trichloride is toxic and difficult to handle. Its complex with dimethyl sulfide (BCl₃.S(CH₃)₂), also used to cleave ethers, is solid, stable in air, and easier to handle.

![boron trichloride](image1)

![boron trichloride dimethyl sulphide complex](image2)

In this work, the deprotection of the benzyl ether was attempted using boron trichloride dimethyl sulfide (2 M in CH₂Cl₂). There have been several reports on the selective removal of benzyl ethers using (BCl₃.S(CH₃)₂) in the presence of other functional groups, e.g. olefins, at temperatures as low as -83 °C in dry CH₂Cl₂. This reaction was attempted with a view to selectively remove the benzyl protecting group illustrated in Scheme 3.16.

![Scheme 3.16](image3)

Scheme 3.16: Benzyl deprotection using boron trichloride dimethyl sulfide complex

Initially the reaction was attempted using a procedure reported in the literature. BCl₃.S(CH₃)₂ was added to a solution of amide 4 in dry CH₂Cl₂ under argon at -78 °C. The reaction was maintained at this temperature for 3 hours. After three hours, the reaction was not complete. The unreacted starting material was recovered and the reaction attempted using several reaction conditions. (Table 3.2). The reaction only went to
completion when 8 equivalents of BCl$_3$.S(CH$_3$)$_2$ were used. The reaction mixture was initially left stirring at -15 °C for 1 hour and warmed to room temperature and left stirring overnight (entry 6).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Temperature</th>
<th>Duration/h</th>
<th>Eq. of BCl$_3$.S(CH$_3$)$_2$</th>
<th>*Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-78 °C</td>
<td>3</td>
<td>5</td>
<td><10%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-78 °C for 1 h to RT</td>
<td>3</td>
<td>5</td>
<td>< 20%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-78 °C for 1 hour to RT</td>
<td>16</td>
<td>5</td>
<td>< 40%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-15 °C</td>
<td>3</td>
<td>5</td>
<td>< 40%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-15 °C for 1 hour to room temperature</td>
<td>16</td>
<td>5</td>
<td>< 70%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-15 °C for 1 hour to room temperature</td>
<td>16</td>
<td>8</td>
<td>Complete</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2: Debenzylation reaction conditions using BCl$_3$.S(CH$_3$)$_2$. Yields reported are estimates calculated from NMR integration

It was concluded that 8 eq. BCl$_3$.S(CH$_3$)$_2$ was required for the complete debenzylation of amide 6a.

When NMR indicated that the reaction had gone to completion, the reaction was quenched with ice cold methanol and CH$_2$Cl$_2$. The crude product was purified using column chromatography. NMR analysis revealed an unexpected singlet at 3.6 ppm integrating to 3 protons. This suggested the presence of a methyl group within the
structure. LCMS analysis was used to determine the mass of the parent ion. The \(m/z \) confirmed that the compound had a molecular weight 15 g/mol greater than expected. There were two possibilities: methylation of the acid side group on the tyrosine unit or the methylation of the OH on the phenol (Scheme 3.17).

![Scheme 3.17: Possible sites of methylation highlighted in red](image)

After analysis using HMBC, it was confirmed that methylation at the acid group rather than the hydroxyl group at the phenol took place. A singlet was observed at 8.20 ppm and this was attributed to the phenolic OH. The OH was further confirmed by D\(_2\)O shake and HSQC.

When it was confirmed that the methylation occurred on the acid side group, we set out to determine if quenching the reaction with methanol was responsible for methylation. To this end, the reaction was repeated and quenched with ethanol rather than methanol. It was confirmed by NMR that ethylation had occurred at the acid side group. The singlet that was associated with the methyl group during methylation was absent. NMR analysis showed signals at 4.04 ppm and 1.10 ppm corresponding the ethyl group of the ethyl ester.
Further analysis using HMBC confirmed the ethylation of the acid to form 6b. (Figure 3.3)

![Figure 3.3: Assigned HMBC spectrum of 6b](image)

These findings suggested that an acid chloride intermediate is formed, by conversion of the acid side group to an acid chloride. Quenching the reaction with methanol and ethanol results in methylation and ethylation respectively. (Scheme 3.18)
Scheme 3.18: Debenzylation reactions using $\text{BCl}_3\cdot\text{S(CH}_3)_2$

To preserve the acid side-group the reaction was quenched using brine to yield $6a$. The successful synthesis of $6a$ was confirmed by $^1\text{H NMR}$ analysis by the absence of a singlet around 3.5 ppm. The signal corresponding to the acid did not appear on the $^1\text{H NMR}$ spectrum. HRMS was used to further confirm the structure of $6a$.

Further analysis of the compounds 6, $6a$ and $6b$ using HRMS confirmed this reaction pathway.
Entry	Reaction quenched with	Chemical formula	Calculated mass	Found mass
6 | Methanol | \((C_{21}H_{31}NO_4)\) | \([M+H]^+\): 362.2331, | Found: 362.2345.

6a | Brine | \((C_{20}H_{29}NO_4)\) | \([M+Na]^+\): 370.1994, | Found: 370.2001

6b | Ethanol | \((C_{22}H_{33}NO_4)\) | \([M+H]^+\): 376.2488, | Found: 376.2475

Table 3.3: HRMS analysis of 6, 6a and 6b (samples ran by Jimmy Muldoon in UCD Dublin)

The general mechanism for the reaction between an acid chloride and an alcohol (ROH) is illustrated in Scheme 3.19. It involves a straightforward nucleophilic substitution at the carbonyl.

\[
\text{Scheme 3.19: General mechanism of the reaction between an acid chloride and an alcohol}
\]

The methylation of the acid group during this step meant that the methylation of the acid group step (section 3.1.5) could be eliminated.
3.2 Synthetic Strategy 2

Scheme 3.20 shows an overview of the synthesis of gymnastatin analogues with varying chain lengths, and an additional alkene.

\[\text{Figure 3.4: Retrosynthetic analysis of gymnastatin analogues} \]
Herein, an eight step procedure towards the synthesis of analogues of gymnastatin N is discussed. The starting materials and the reagents are commercially available and cheap. The first step is a Horner-Wadsworth-Emmons (HWE) reaction which extends the chain length by two carbons and installs an alkene. This is followed by a reduction to the corresponding alcohols using diisobutyl aluminium hydride. Oxidation of the alcohols using Dess-Martin periodinane yields the corresponding aldehydes. A Wittig reaction further extends the chain and installs a methyl alkene. This is followed by a base catalysed hydrolysis to yield the corresponding acids. Coupling between the resulting acids and
Chapter 3

Synthetic gymnastatin analogues

Commercially available O-benzyl-L-tyrosine using HATU and DIEA installing an amide bond is the key step. The final step is the deprotection of the benzyl ether to form the target compounds. The details of each of the procedures are discussed below.

3.2.1 The preparation of esters

The first step was a Horner-Wadsworth-Emmons (HWE) reaction, which involved a reaction between aldehydes and a phosphonate to obtain an alkene. The aldehydes used were cheap and commercially available heptanal, octanal and nonanal. The aldehydes used in this step defined the R-group for each reaction. Triethyl phosphonoacetate was the reagent of choice as it afforded the desired product with regioselectivity resulting in the formation of E-isomer (Scheme 3.21).

![Scheme 3.21: The synthesis of alkenes](image)

Triethyl phosphonoacetate was added to a solution of sodium hydride in THF and the mixture stirred under argon at 0 °C for 10 minutes. The appropriate aldehyde 1a-c was added dropwise and the resulting mixture stirred for 4 hours. TLC and the disappearance of the aldehyde proton in 1H NMR analysis were used to monitor the reaction. The mixture was quenched with ammonium chloride solution and extracted with ether. The phosphorus containing side product is water soluble and therefore was easily removed in the quenching step. The product was then purified by column chromatography.
Chapter 3

Synthetic gymnastatin analogues

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>C5H${11}$</td>
<td>92</td>
</tr>
<tr>
<td>7b</td>
<td>C6H${13}$</td>
<td>89</td>
</tr>
<tr>
<td>7c</td>
<td>C7H${15}$</td>
<td>88</td>
</tr>
</tbody>
</table>

The formation of the ester was confirmed by 1H NMR by the disappearance of the doublet at 9.00 ppm corresponding to the aldehyde functional group of the starting material. The presence of 2 signals in the alkene region of 1H NMR confirmed the installation of an alkene. Furthermore, the quartet at 4.20 ppm confirmed the presence of R-CH$_2$ corresponding to the ethyl group of the ester. The formation of the E alkene was confirmed by measuring the coupling constants of the alkenyl protons. ($J = 15$-16 Hz).

The reaction mechanism is outlined below. The reaction begins with deprotonation of triethyl phosphonoacetate using NaH (Scheme 3.22) to give a carbanion.

![Scheme 3.22: Deprotonation of triethyl phosphonoacetate](image)

Nucleophilic attack of the carbanion on to the carbonyl group generates a negatively charged oxygen which attacks the positively charged phosphorus forming a very unstable 4-membered ring, an oxaphosphetane. The ring fragments to form an alkene and P=O. (Scheme 3.23) The P=O bond has a bond energy of 575 kJmol$^{-1}$ and is one of the strongest bonds in chemistry. Its formation is the driving force of this reaction.1
3.2.2 The preparation of the alcohols

There were two options for the reduction of the ester to an alcohol; lithium aluminium hydride (LiAlH₄) and diisobutylaluminium hydride (DIBAL-H). LiAlH₄ is a powerful reducing agent, however, it is difficult to handle. Lithium borohydride has been used as a milder alternative, however it reduces esters to alcohols very slowly. DIBAL-H was used for the preparation of alcohols 8a-8c as it is easy to handle and involves quicker reaction times (< 2 h). DIBAL-H reduces esters to aldehydes at low temperatures, however at higher temperatures the ester is further reduced to an alcohol.¹⁸

The ester reduction was initially attempted using 1.2 equivalents of DIBAL-H in CH₂Cl₂ at 0 °C and at room temperature. No product was formed and the starting material was recovered. Increasing the temperature and reaction times resulted in isomerisation. Using excess DIBAL-H resulted in partial reduction and an emulsion was formed which was very difficult to separate resulting in low yields. The reaction went to completion with good yields when the temperature was maintained at -4 °C and 2 equivalents DIBAL-H used (Scheme 3.24).
The successful reduction of the ester to the alcohol was confirmed by 1H NMR by the disappearance of the quartet at 4.16 ppm and the triplet at 1.45 ppm corresponding to the ethyl group of the ester. The loss of 1H NMR signal at 166.8 ppm and of the IR peak at 1720 cm$^{-1}$ corresponding to the carbonyl of the ester also confirmed the successful reduction. Furthermore, the presence of the hydroxyl group was confirmed by the broad peak at 3321 cm$^{-1}$ on the IR spectrum.

\[\text{Scheme 3.24: The synthesis of alcohols} \]

The appropriate ester 7a-7c in CH$_2$Cl$_2$ was cooled to -4 °C and stirred under argon after which DIBAL-H in CH$_2$Cl$_2$ was added and the resulting mixture stirred for 2 hours. The reaction mixture was quenched using 1M HCl and extracted using ethyl acetate.

Although the reaction went to completion, the initial yields were very low. DIBAL-H is an aluminium hydride which when used in excess, results in the formation of an aluminium salt emulsion between the aqueous and organic layer. This makes the work-up very difficult and results in very low yields. To overcome this, a saturated aqueous solution of Rochelle’s salt was prepared. This was added to the completed reaction mixture and the solution vigorously stirred in an ice bath for 5 minutes. This broke up the emulsion and the crude mixture was purified using flash chromatography.
<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>C5H11</td>
<td>84</td>
</tr>
<tr>
<td>8b</td>
<td>C6H13</td>
<td>85</td>
</tr>
<tr>
<td>8c</td>
<td>C7H15</td>
<td>91</td>
</tr>
</tbody>
</table>

The mechanism for DIBAL-H reduction is shown in Scheme 3.25. The reduction of the ester is initiated by the attack of the nucleophilic hydrogen on the carbonyl to give a tetrahedral intermediate. The tetrahedral intermediate collapses and loses an alkoxide to form an aldehyde. The aldehyde is further reduced to form another tetrahedral intermediate with negatively charged oxygen which is protonated during the work up to form the alcohol product.

![Scheme 3.25: Reaction mechanism for DIBAL-H reduction](image)

3.2.3 The preparation of aldehydes

Dess-Martin periodinane (DMP) was used to oxidise the alcohols to aldehydes 9a-9c. The use of DMP as an oxidising agent was first reported in 1983 by Martin et al. It oxidises
primary alcohols to aldehydes and secondary alcohols to ketones. Despite its cost, DMP is an efficient oxidising agent compared to 2-iodoxybenzoic-acid (IBX), DMSO and chromium based oxidising agents (pyridinium chlorochromate or pyridinium dichromate).\(^\text{12}\) Its advantages include short reaction times of between 0.5 – 2 hours, mild reaction conditions, good solubility in most organic solvents and high yields. The iodo by-product is easily separated from the product via work up. DMP is commercially available, however it can be prepared from IBX. Dess et al reported the first synthesis of DMP in 1983. In 1993, Ireland and Liu reported an improved procedure for the preparation of DMP illustrated in Scheme 3.26. Due to the risks associated with its synthesis, commercially available DMP was used.\(^\text{13-14}\)

\[\text{Scheme 3.26: Improved procedure for preparation of Dess-Martin Periodinane using iodobenzoic acid as reported by Ireland.}\(^\text{14}\)]

The oxidation of alcohols 8a-8c is outlined in Scheme 3.27. The reactions went to completion in less than 90 minutes in good yield. The aldehydes had to be used straight away or stored at -20 °C. When stored at higher temperatures for a few hours or purification attempted, the aldehydes degraded or hydrolysed to corresponding acids.

\[\text{Scheme 3.27: The synthesis of aldehydes}\]
The appropriate alcohol 8a-8c in CH₂Cl₂ was cooled to 0 °C. Dess-Martin periodinane in CH₂Cl₂, also at 0 °C, was added and the reaction mixture stirred for 1.5 hours under argon. The reaction mixture was quenched using 1M NaOH and extracted using ether. The product was used immediately without further purification or stored at -20 °C under argon.

The successful oxidation of the alcohol to the aldehyde was confirmed by ¹H NMR by the loss of the doublet of doublets at 4.10 ppm corresponding to the CH₂ α to the hydroxyl group. Furthermore, the presence of a doublet at 9.50 ppm in the ¹H NMR confirmed the presence of an aldehyde.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>C₃H₁₁</td>
<td>94</td>
</tr>
<tr>
<td>9b</td>
<td>C₆H₁₃</td>
<td>90</td>
</tr>
<tr>
<td>9c</td>
<td>C₇H₁₅</td>
<td>91</td>
</tr>
</tbody>
</table>
The proposed mechanism is illustrated in Scheme 3.28.

Scheme 3.28: Proposed reaction mechanism for oxidation of alcohol to aldehyde using
Dess-Martin periodinane

The lone pair of electrons on the alcohol attacks the iodine on the periodinane resulting in a positively charged oxygen. The acetoxy group deprotonates the alcohol to form AcOH. Another molecule of AcOH is lost. The I-O bond breaks resulting in a neutral iodine species and an aldehyde is formed. The reaction is quenched using NaOH which hydrolyses the side product acetoxyiodinane into 2-iodosobenzoate which together with acetic acid are removed during the work-up.15

3.2.4 The preparation of esters

A Wittig reaction in the presence of (carbethoxyethylidene) triphenylphosphorane increased the chain length by addition of another alkene according to Scheme 3.29.
Chapter 3

Synthetic gymnastatin analogues

Scheme 3.29: The synthesis of alkenes

The appropriate aldehyde 9a-c in CH$_2$Cl$_2$ and (carbethoxyethylidene) triphenylphosphorane were stirred under argon for 6 h before being quenched with ammonium chloride and extracted with diethyl ether and the volatiles removed in vacuo.

The crude product was purified using column chromatography.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a</td>
<td>C5H${11}$</td>
<td>81</td>
</tr>
<tr>
<td>10b</td>
<td>C6H${13}$</td>
<td>75</td>
</tr>
<tr>
<td>10c</td>
<td>C7H${15}$</td>
<td>72</td>
</tr>
</tbody>
</table>

The success of the Wittig reaction was confirmed by disappearance of the doublet at 9.50 ppm in the 1H NMR corresponding to the proton of the aldehyde. The presence of an additional signal in the alkene region of 1H NMR confirmed the installation of an additional alkene. The quartet at 4.10 ppm confirmed the presence of R-CH$_2$ corresponding to the ethyl group of the ester. Furthermore, the presence of the methyl group α to the carbonyl was confirmed by the 1H NMR singlet at 1.85 ppm.

The proposed mechanism for this reaction is similar to that presented in section 3.1.1.
3.2.5 The preparation of acids

The next step involved a base catalysed hydrolysis of the esters to form an acid using LiOH in THF/methanol/water at room temperature.

$$\text{Scheme 3.30: The synthesis of acids}$$

The procedure in Scheme 3.30 was employed for the synthesis of acids. After 24 hours, 1M HCl was added to the reaction mixture followed by extraction using ether. This reaction was difficult to reproduce as a salt was formed in most cases. The acid was instead obtained by flushing the salt through silica gel several times. This lowered the yield but gave a clean acid product. The formation of the acid was confirmed by 1H NMR. The quartet at 4.16 ppm corresponding to the R-CH$_2$ of the ethyl group of the ester was no longer present. Furthermore, the identity of the product was confirmed by the broad peak at 12 ppm representing the OH proton. This was further confirmed by a D$_2$O shake.

The proposed mechanism for this reaction is similar to the one presented in section 3.1.2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>C5H${11}$</td>
<td>80</td>
</tr>
<tr>
<td>11b</td>
<td>C6H${13}$</td>
<td>89</td>
</tr>
<tr>
<td>11c</td>
<td>C7H${15}$</td>
<td>70</td>
</tr>
</tbody>
</table>
3.2.6 Amide coupling

Coupling of acids 11a-11c with O-benzyl protected tyrosine was carried out as previously described in section 4.1.4 via amide coupling using HATU, DIEA and DMF. (Scheme 3.31)

Scheme 3.31: Amide coupling using HATU

The reaction was monitored by NMR and was complete in 16 h. The identity of the product was confirmed by NMR. An NH signal (doublet) was observed at 6.8 ppm and confirmed by a D$_2$O shake. LRMS was also used to confirm the identity of the product. (Table 3.4)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>% Yield</th>
<th>Calc (M+H)$^+$</th>
<th>Found m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>12a</td>
<td>C5H${11}$</td>
<td>80</td>
<td>450.3</td>
<td>450.2</td>
</tr>
<tr>
<td>12b</td>
<td>C6H${13}$</td>
<td>85</td>
<td>464.6</td>
<td>464.2</td>
</tr>
<tr>
<td>12c</td>
<td>C7H${15}$</td>
<td>72</td>
<td>478.3</td>
<td>478.2</td>
</tr>
</tbody>
</table>

Table 3.4: Yields and LRMS results for amide products.

The mechanism for this reaction is discussed in section 3.1.4.

3.2.7 Benzyl deprotection

The final step was the removal of the benzyl protecting group. This was carried out as previously described in section 3.1.6.2 using boron trichloride methyl sulfide complex in
CH₂Cl₂. The reaction was quenched using brine or methanol, to preserve the acid side group, or install a methyl ester side group, respectively.

Scheme 3.32: O-benzyl deprotection using boron trichloride dimethyl sulfide complex

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>13a</td>
<td>C₅H₁₁</td>
<td>-CO₂H</td>
<td>95*</td>
</tr>
<tr>
<td>13b</td>
<td>C₆H₁₃</td>
<td>-CO₂H</td>
<td>85*</td>
</tr>
<tr>
<td>13c</td>
<td>C₇H₁₅</td>
<td>-CO₂H</td>
<td>73*</td>
</tr>
<tr>
<td>14a</td>
<td>C₅H₁₁</td>
<td>-CO₂Me</td>
<td>80</td>
</tr>
<tr>
<td>14b</td>
<td>C₆H₁₃</td>
<td>-CO₂Me</td>
<td>79</td>
</tr>
<tr>
<td>14c</td>
<td>C₇H₁₅</td>
<td>-CO₂Me</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 3.5: Yields of final compounds. * not purified

Difficulties were encountered in the purification of the target compounds containing the acid side group 13a–13c. The compounds degraded during purification. The yields and characterisation reported are of the crude product.
3.2.8 Methyl ester derivative compound characterisation

The yields of the reactions are illustrated in Table 3.5. The spectrum of 14a is used in this section to characterise the final compound. The 1H NMR and COSY spectra of 14a are shown in Figure 3.5.
Figure 3.5: Assigned 1H NMR and COSY of 14a in CD$_3$CN

The successful debenzylation was confirmed by 1H NMR. The characteristic protons of the benzyl protecting group at 7.30 and 4.90 ppm were no longer present. The distinctive splitting pattern of the para-disubstituted benzene ring is observed in the aromatic region. A doublet corresponding to the secondary amide was observed at 7.20 ppm. The NH was confirmed by disappearance on D$_2$O shake, and by HSQC. Furthermore, the NH signal
coupled with the proton at position 13 was evident in the COSY (Figure 3.5.). The alkenyl protons were observed in the alkenyl region. The proton at position 13 was observed at 4.60 ppm as a quartet. Furthermore, the presence of the OH resulting from debenzylation was confirmed by a broad peak observed at 8.2 ppm. HSQC and a D$_2$O shake confirmed that this was an OH signal. A diastereotopic splitting pattern was observed at 3.0 ppm corresponding to the –CH$_2$ at position 15. The singlet at 3.70 ppm represents a methyl group corresponding to the methyl ester on the tyrosine unit.

3.3 Conclusion

A library of eight novel gymnastatin analogues were prepared with various chain lengths. The compounds consisted of an unsaturated side chain linked to a tyrosine unit using an amide bond. The side chain was prepared by a HWE, reduction, oxidation, Wittig and hydrolysis reactions. The resulting acid was coupled to a benzyl protected tyrosine using HATU. Additional functionality was added to the tyrosine unit by methylation of the acid side group to prepare methyl ester derivatives. The final compounds were obtained by removal of the benzyl protecting group. The resulting final compounds were characterised using NMR, IR and HRMS.

Prior to this work, there are few reports in the literature on the synthesis of compounds of this nature. While three compounds with an acid side group were isolated, they were very difficult to purify. Future work within the group will involve purification of these compounds using preparative HPLC.

3.4 References

4. Biological evaluation of gymnastatin analogues

4.1. Introduction

This chapter documents the biological evaluation of the library of synthesised gymnastatins. This includes cytotoxic evaluation in the A549 cancer cell line. It begins with the background of the cell line used and the techniques used for measuring cytotoxicity. This is followed by the results and discussion of the biological evaluation using two assays, the MTT and the alamar blue assay.

The last section of this chapter details preliminary work carried out on the evaluation of some compounds as potential Plk1 inhibitors. This is followed by a discussion of the preliminary results obtained from an ELISA assay targeting Plk1.

4.1.1. Cell lines

The compounds prepared were evaluated in the A549 cancer cell line. The A549 cell line is a continuous cell line derived from a human pulmonary adenocarcinoma. It was isolated in 1973 from cancerous lung tissue in the tumour of a 58-year-old caucasian male. It was later characterised as a representative of the alveolar type II pneumocytes of the lung cell. The alveolar epithelium comprises two cell types: the alveolar type I (ATI) and alveolar type II (ATII) cell. ATI cells are squamous cells that cover around 95% of the alveolar surface. ATII cells cover the remaining 5%. ATII cells play an important role within the lung and have been described as defenders of the alveolus. The A549 cell line is a useful model for the isolated ATII pneumocyte. It was selected for this work because of its facile manipulation. A549 cells are also a robust cell line providing a good starting point for an inexperienced researcher in this area.1-3
4.1.2. Cytotoxicity assays

As an initial screen for potential drug candidates it is common to establish whether the drug candidates exhibit a cytotoxic effect. Cell based assays are often used to screen compounds to determine if test molecules show direct cytotoxic effects that will lead to cell death. There are a variety of assays used to estimate the number of viable cells at the end of an experiment. Most cytotoxicity assays are based on colorimetric assays involving the use of an organic dye. Many assays employed are based on the metabolic activity of healthy cells. The results are determined using UV-vis or fluorescence spectroscopy. The absorbance or fluorescence intensity corresponds to the metabolic activity of the cells. Damaged or dead cells have lower metabolic activity and thus generate a lower signal compared to healthy, undamaged cells. \(^4\)\(^7\)

To evaluate the response of A549 cells to the synthesised analogues of gymnastatins, the alamarBlue \textregistered (AB) and MTT assays were used. The AB and MTT assays were conducted on separate plates. Briefly, cells were seeded into 96 well plates and incubated for 24 hours. The cells were exposed to varying drug concentrations at different time points from 24 to 72 hours. The details of each of the assays are discussed below.

4.1.3. MTT assay

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), 1 is a yellow water soluble tetrazolium salt which is actively absorbed into cells. It is reduced to a purple formazan dye 2 in the mitochondria of viable cells by the cleavage of the tetrazolium ring by dehydrogenase enzymes. \(^1\)\(^2\) The reaction is illustrated in Scheme 4.1.
Scheme 4.1: Reduction of MTT 1 by mitochondrial enzymes to give the formazan dye 2.

Cells lose their ability to reduce tetrazolium compounds shortly after death. Therefore, the ability of cells to reduce MTT is used as an indicator of mitochondrial activity which is interpreted as a measure of cell viability. The absorbance of the treated sample at 570 nm is proportional to the quantity of viable cells in the sample.\(^8\)

4.1.4. AlamarBlue®

AB monitors the reducing environment of a living cell. Its active ingredient, resazurin (7-hydroxy-10-oxidophenoxazin-10-ium-3-one) is a redox indicator. It is non-toxic, water soluble and stable in culture media. Viable cells with active metabolism reduce the blue, non-fluorescent, resazurin 3 into the resorufin product which is pink and fluorescent.\(^9\) (Scheme 4.2)

Scheme 4.2: Reduction of resazurin sodium salt (3) to strongly fluorescent resorufin sodium salt (4) in the presence of viable cells
The quantity of resofurin produced is proportional to the number of viable cells which can be quantified using a microplate reader at 560 nm excitation and 590 nm emission.10-12

4.1.5. Methodology

The A549 cell line was maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplement, with 10% fetal bovine serum (FBS) and 5 mM L-glutamine in appropriate asceptic conditions, at 37 °C in 5% CO\textsubscript{2} humidified incubator.

Fig 4.1 shows the characteristic growth pattern of cells. The plot shows cell density \textit{versus} the time spent in each phase by the cell in culture.

\begin{center}
\includegraphics[width=0.5\textwidth]{characteristic_growth_curve}
\end{center}

\textit{Figure 4.1: Characteristic growth curve of cells}

The lag phase is the period just after the cells have been seeded. It is characterised by slow growth as the cells adapt to the media and the new environment. This is followed by the log phase. During the log phase, also called the logarithmic phase, the cells have adapted and proliferate exponentially. The cells enter stationary phase when all the media has been used up, or growing cells have occupied all of the available substrate. At this stage, proliferation is greatly reduced and eventually stops entirely. Cells have to be subcultured/seeded/passaged before they reach the stationary phase.
A standard procedure available in the laboratory was used for cytotoxic evaluation. Cells were harvested for experiments when they were in the “log” phase of growth. The cells were then seeded into 96 well plates at densities ranging from 3×10^4 to 1.2×10^5 depending on the duration of exposure (24, 48 and 72 h). The cells were incubated for 24 hours to allow for attachment. Drug solutions were prepared in DMSO (up to 1% v/v). Final test solutions were prepared by serial dilution of a 700 μM working stock solution. Following attachment, the cells were exposed to five different drug concentrations in eight replica wells. The final concentration was achieved by addition of the drug solution to the medium containing cell suspensions in the wells. Three replica plates were used for each experiment.

Following exposure, the cells were incubated in appropriate aseptic conditions at 37 °C in 5% CO₂ humidified incubator for 24, 48 and 72 hours. At the appropriate times, the assays were terminated by discarding the test solutions from plates and rinsing each plate using PBS. This was followed by the addition of fresh unsupplemented media and MTT solution. The cells were further incubated for 3 hours, during which time, the mitochondria in viable cells absorbed and metabolised MTT. The supernatant was then removed and each well was washed with PBS to remove any unmetabolised MTT. The water-insoluble formazan salt was solubilised using DMSO and shaken for 10 minutes. The well plate was subsequently placed in a Genios plate reader and absorbance 570 nm was recorded. Figure 4.2 summarises the steps involved in the MTT assay.
Cells are incubated for the specified time period with test chemical

Test solution is discarded and replaced with MTT stock solution

Incubation in appropriate aseptic conditions at 37 °C in 5% CO₂ for 3 hours

Wells are rinsed with PBS and the formazan salt is solubised with DMSO

Plate is shaken for 10 minutes

Absorbance read at 570 nm

Figure 4.2: Summary of MTT assay procedure

For the alamar blue® assay, a slight variation of this procedure was used. Following exposure for the appropriate time, the test chemical was removed and replaced with AB dye stock solution. The plates were incubated for three hours after which time the plates were placed in a microplate reader and read at 560 nm excitation and 590 nm emission.

This experimental procedure was performed in triplicate for each drug at each time point. The percentage viability was calculated using the following equation:

\[
% \text{ viability} = \frac{\text{absorbance of treated cells}}{\text{absorbance of untreated control cells}} \times 100
\]

The cell viability was used to generate a concentration-response curve which was used to calculate the EC₅₀ at each time point. The EC₅₀ is defined as the concentration at which 50% of the cell population exhibited the desired response from the drugs, in this case, cell death. The % cell viability \textit{versus} concentration plot and the dose response curve for 3b at 72 hours are outlined in Figure 4.3 below as a representative example.
Figure 4.3: A % viability of treated A549 cells versus the concentration of 3b. % Viability values are calculated from three independent experiments and are shown +/- the standard deviation. B Dose response curve for 3b in A549 cells at 72 hour exposure.

Fig 4.3 shows the viability of A549 cells treated with 3b over a range of concentrations. It can be seen that the drug reduces cell viability in a dose-dependent manner. The sigmoidal dose-response curve is the average response over three independent experiments.

All drug solutions were prepared in DMSO. DMSO is a widely used organic solvent due to its amphiphilic properties, high polarity and liquid state over a large temperature range. In cell culture, DMSO is widely used as a vehicle. It has been used as a solvent vector in many studies including the study of paclitaxel anticancer properties by Fujimoto.13 Most literature procedures recommend maintaining DMSO concentration below 1% v/v.

To assess the cytotoxicity of DMSO, an MTT assay was performed for various concentrations of DMSO (0.5 to 10%) at two timepoints, 24 h and 72 h. The study demonstrated that at a concentration of 1% or lower, DMSO was non-toxic to A549 cells. (Figure 4.4).
4.1.6. Results of cytotoxic evaluation Gymnastatin analogues in A549 cells

The analogues of gymnastatin 1a-4b (Figure 4.5) were assessed for cytotoxicity in A549 cells at concentrations 21.9 µM to 350 µM. A negative and positive control were included in each plate. All compounds assessed had good solubility in DMSO.

4.1.6.1. Statistics

Cytotoxicity data are the average of at least three experiments expressed as a mean percentage viability relative to the control (100 % media) ± standard deviation (SD). The results have been statistically analysed using one-way analysis of variance (ANOVA) followed by a post-ANOVA Dunnett’s test using GraphPad Prism software ®. Test results are considered relevant when P < 0.05 (denoted with *) and very significant when P < 0.01 (denoted with #) for the Dunnett’s analysis (see Appendix). Statistical data was calculated using Microsoft excel. EC\textsubscript{50} values were calculated using GraphPad Prism software ®.

4.1.6.2. MTT Assay

Initially all compounds were evaluated for potential anticancer activity using the MTT assay. The results of the evaluation are reported as EC\textsubscript{50} values calculated as described in...
section 5.1.5. The results for the cytotoxic assessment of analogues synthesised are summarised in Table 4.1 followed by the discussion of the results. Figure 4.5 shows a legend of the compounds evaluated using MTT assay at three different time points.

Figure 4.5: Legend for Table 4.2
<table>
<thead>
<tr>
<th>Compound</th>
<th>EC\textsubscript{50} μM (+/- s. d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
</tr>
<tr>
<td>1a</td>
<td>> 350 a</td>
</tr>
<tr>
<td>1b</td>
<td>> 350 a</td>
</tr>
<tr>
<td>2a</td>
<td>> 350 a</td>
</tr>
<tr>
<td>2b</td>
<td>> 350 a</td>
</tr>
<tr>
<td>3a</td>
<td>> 350 a</td>
</tr>
<tr>
<td>3b</td>
<td>> 350 a</td>
</tr>
<tr>
<td>4a</td>
<td>> 350 a</td>
</tr>
<tr>
<td>4b</td>
<td>> 350 a</td>
</tr>
</tbody>
</table>

a EC\textsubscript{50} could not be determined due to little or no activity at the concentrations used.

Table 4.1: (MTT Assay) EC\textsubscript{50} (μM) of compounds against A549 at three time points: 24, 48 and 72 hours post exposure. EC\textsubscript{50} values are expressed as mean +/- standard deviation (s.d.) of at least three experiments.

It can be seen from the EC\textsubscript{50} values presented in Table 4.1 that the compounds containing the methyl ester side group in the tyrosine moiety showed time and dose dependent activity against A549 cells. For all methyl ester containing compounds, the best activity was observed after 72 hours of exposure. It is interesting to note that increasing the chain length resulted in increased activity. Analogue 4b which exhibited the longest chain length showed the best activity (91.4 μM) after 72 hours of exposure. The compound with
the shortest chain length showed the least activity (227 μM) against the A549 cell line. Fig 4.6 compares the dose response of compounds containing a methyl ester on the tyrosine unit.

![Graph A](image1.png)
![Graph B](image2.png)
![Graph C](image3.png)

Figure 4.6: Comparison of the dose-response of compounds containing methyl ester side group (1b-4b) at three timepoints 24, 48 and 72 hours (A, B, C respectively)

At 24 hours there was no significant activity for any of the compounds evaluated. After 48 hours there was some activity at concentrations above 87.5 μM, most notably 3b and 4b which showed a viability of less than 60%. After 72 hours of exposure, all compounds showed activity at 175 and 350 μM. Compound 4b, possessing the longest chain length
clearly showed the most activity (< 30% viability). This initial data seems to suggest that the activity is dependent on the chain length.

To assess the importance of the additional alkene, a comparison between compounds 1b and 2b is shown below.

![Graph A](image1)

Figure 4.7: Comparison of the dose-response of compounds 1b and 2b (A and B respectively) at three time points 24, 48 and 72 hours.

There was no significant difference in activity between the two compounds assessed. Compound 2b had a slightly lower EC$_{50}$ (216.7 μM) compared to 1b (EC$_{50}$ = 227.5 μM).

129
Both compounds only showed significant activity after 72 hours at a concentration of 175 μM or above. While the activity of these compounds was disappointing, it did suggest that the additional alkene did not offer significant benefit to the activity in this assay.

Figure 5.8 shows a comparison of compounds containing the acid side group in the tyrosine unit. These compounds were also evaluated at three different timepoints.

![Comparison of compounds containing acid side group](image)

Figure 4.8: Comparison of the dose-response of compounds containing acid side group (1a-4a) at three timepoints 24, 48 and 72 hours (A, B, C respectively)

It was disappointing to note that compounds **1a-4a** did not show significant activity at concentrations tested (350 μM), even after 72 hours of exposure. While these results were
disappointing, they suggested that the presence of an acid side group did not impact the cytotoxicity in this assay.

Overall the results for the activity of synthetic gymnastatin analogues using the MTT assay were disappointing, with the exception of 4b. At this stage, it was decided to use a different assay to determine if the drugs targeted a different part of the cell.

4.1.6.3. **Alamar Blue® Assay**

The compound showing the best activity for MTT 4b as well as 1b and 4a were assessed using alamar blue. 4a was chosen to evaluate the potential effect of the acid group on activity. 1b was chosen in order to assess the effect of the chain length and presence of an additional alkene.

AB does not necessarily specifically indicate a mitochondrial dysfunction like the MTT assay. There have been reports which have suggested that cytosolic and microsomal enzymes also contribute towards the reduction. AB remains a suitable indicator of the cellular health and viability.11-14 AB was used to examine if some of the compounds assessed using the MTT assay targeted other parts of the cell other than the mitochondria.

A legend for the compounds evaluated using the AB assay is presented in Figure 4.9.
Evaluation of compounds 1b, 4a, and 4b gave a different outcome. A significant difference in activity between compounds assessed using MTT versus AB was observed. All compounds assessed performed better in the AB assay compared to the MTT assay. (Figure 4.10).
Figure 4.10: Comparison of the dose-response of compounds 1b, 4a, and 4b (A, B and C respectively) assessed using AB assay at two timepoints, 48 and 72 hours.

As can be seen in Figure 4.10, the compounds assessed showed significant cytotoxicity at high concentrations. The compounds were evaluated at 48 and 72 hours. Compound 1b showed significant activity at 350 μM, however at lower concentrations, lower activity
was observed. However, the activity was still higher than the activity observed when the MTT assay was used. Interestingly, compound 4a, which contains an acid side group showed a vast improvement in cytotoxicity in the AB assay. 4a showed moderate activity at lower concentrations and 48 hours exposure time. However, at 350 μM good activity was observed at 48 hours and at 72 hours. Compound 4b showed the best activity of the compounds evaluated using the AB assay. Compound 4b exhibited significant cytotoxicity after 24 hours of exposure. The cytotoxicity observed was almost 50% better than that observed in the MTT assay. Table 4.2 shows a comparison of the EC50 values from AB and MTT assays for compounds 1b, 4a and 4b.
<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$ μM (± s. d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlamarBlue®</td>
<td>MTT</td>
</tr>
<tr>
<td>48 h</td>
<td>72 h</td>
</tr>
<tr>
<td>1b</td>
<td>160.5 (1.5)</td>
</tr>
<tr>
<td>4a</td>
<td>309.5 (1.5)</td>
</tr>
<tr>
<td>4b</td>
<td>51.8 (1.3)</td>
</tr>
</tbody>
</table>

Table 4.2: (Alamar Blue Assay) EC$_{50}$ (μM) of compounds against A549 at three time points: 48 and 72 hours post exposure. EC$_{50}$ values are expressed as mean +/- standard error of at least three experiments.

Overall, all three compounds performed better in the AB assay. The compounds containing the methyl ester were still more active than those containing the acid side group. From these results, it can be suggested that the methyl ester is responsible for the activity of these compounds. Increasing the chain length also resulted in increased activity.

This structure activity relationship could be because of the hydrophilic/hydrophobic nature of the compounds. It is well known that in order to be transcellularly absorbed, a drug must possess a degree of lipophilicity. This is a requirement in order for a drug to pass through the lipophilic environment of the cell membrane. There are several examples.
where polar, ionisable groups of molecules have been masked with an ester to increase lipophilicity and promote membrane permeability. The more hydrophobic a molecule is, the faster it crosses the cell membrane. The methyl ester containing compounds are hydrophobic and acid containing compounds hydrophilic. An increase in the chain length also adds to the hydrophobicity of the compounds.15-16

4.2. ELISA Assay

4.2.1. Gymnastatins and Plk1

Gymnastatin N and a range of analogues were screened against Plk1 by Phoon \textit{et al.} and their IC\textsubscript{50} values measured. The same compounds were also tested against Cdk 2, another serine/threonine kinase to eliminate common inhibitors. Only the samples which had 5 times more potency against Plk1 \textit{versus} Cdk 2 were selected for further assessment. Table 4.4 shows a selection of the IC\textsubscript{50} values of the compounds assessed. The assays were performed in well plates using heparin as a sample.17
<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>Plk1 IC<sub>50</sub> (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>>208</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>>268</td>
</tr>
</tbody>
</table>

Table 4.3: Plk1 study of Gymnastatin N (24) and its analogues

The natural product Gymnastatin N (entry 1) was identified as a Plk1 inhibitor. The methyl ester (entry 2) and fully saturated (entry 3) analogues showed a decrease in the
bioactivity compared to Gymnastatin N (entry 1). This structure activity relationship suggested the importance of the carboxylic acid group and conjugated diene functionalities in the bioactivity against Plk1. A shorter chain length analogue (Entry 4) which contained a tyrosine unit and a conjugated diene exhibited the highest potency. \(^\text{17}\)

We set out to determine if the compounds prepared inhibited Plk1. Of particular interest were the compounds containing the acid side group which did not show significant activity in cytotoxicity assays.

4.2.2. Methodology

The details of sample preparation are detailed in Chapter 6. In summary, A549 cells were exposed to drug solutions at EC\(_{50}\) values calculated from the MTT assay. The cells were exposed to the drug concentration at 5 time points, 1, 2, 4, 6 and 18 hours, in 6 well plates. A control well was included for each experiment. Following trypsinisation, the cell suspension was centrifuged and the resulting pellet washed with PBS three times. The pellet was lysed using a sonicator and the resulting suspension centrifuged further to pellet any debris. The supernatant was transferred to a micro centrifuge tube and stored at – 80 °C until required for use.

The Plk1 ELISA assay used in this work employs the quantitative sandwich enzyme immunoassay technique. The plates were pre-coated with an antibody specific for Plk1. Samples, controls and blanks were introduced into respective wells. The plate was incubated at 37 °C for 90 minutes. The samples were discarded and biotin-detection antibody was added followed by further incubation for 1 hour. A biotinylated detection antibody specific for Plk1 and Streptavidin horseradish peroxide (SABC) were added successively to each microplate well and incubated. The plate was then washed to remove any non-specific binding that may have occurred. A substrate solution was then added. Only wells containing Plk1 exhibit a colour change. The assay was terminated by adding
a sulfuric acid solution and the change in optical density measured in a plate reader at a wavelength of 450 nm. The optical density value is proportional to the concentration of Plk1 in the sample. The percentage Plk1 inhibition of cells exposed to the drugs was calculated using the following equation:

\[
\% \text{ Plk1 inhibition} = \frac{\text{optical density of treated cells}}{\text{optical density of untreated cells (control)}} \times 100
\]

4.2.3. Results

To assess the activity of compounds prepared against Plk1, the compounds outlined in Table 4.4 were used. A549 cells were treated with drug concentrations equal to the calculated EC\(_{50}\) from Section 4.16 and assessed at different time points.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC(_{50}) calculated from MTT/μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>350</td>
</tr>
<tr>
<td>1b</td>
<td>227.5</td>
</tr>
<tr>
<td>2a</td>
<td>350</td>
</tr>
<tr>
<td>2b</td>
<td>216.7</td>
</tr>
<tr>
<td>4a</td>
<td>350</td>
</tr>
<tr>
<td>4b</td>
<td>91.4</td>
</tr>
</tbody>
</table>

Table 4.4: Compounds and their EC\(_{50}\) values for Plk1 inhibition study.

The experiments were done at time points shown in Table 4.5 to give an indication as to how long it took for the inhibition to occur. The different time points used could also be used to estimate the stages of the cell cycle where Plk1 inhibition is prominent.
Table 4.5: Time spent in each phase of a 24 hour cell cycle.\(^2\)

<table>
<thead>
<tr>
<th>Time/hours</th>
<th>Stage of the cell cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M Phase</td>
</tr>
<tr>
<td>2</td>
<td>G(_2) – M phase</td>
</tr>
<tr>
<td>4</td>
<td>G(_2)</td>
</tr>
<tr>
<td>6</td>
<td>S phase</td>
</tr>
<tr>
<td>16</td>
<td>G(_1)</td>
</tr>
</tbody>
</table>

Figure 4.11: % Plk11 inhibition of A549 cell exposed to compounds (A): containing methyl ester side group (B): containing acid side group.

As can be seen in Figure 4.14 (A), compounds containing the methyl ester inhibited Plk1 at concentrations tested, with two exceptions (4b at 2 hours, 1b at 6 and 18 hours). Care should be taken when comparing the inhibition between samples as they were tested at different concentrations. It is interesting to note that compound 4b did not perform as well as it did in the MTT and AB assays.
It was disappointing to note that the compounds containing the acid side group did not perform as expected. According to a study by Phoon et al., discussed in Section 4.2.4, the conjugated diene and the free acid were responsible for the activity against Plk1. However, in our study, compounds containing the free acid did not show significant inhibition against Plk1. Also, there was no significant difference in inhibition between compounds with a single alkene (1a and 2a) and compounds with a conjugated diene (4a, 4b).

In this assay, the drugs permeating the cell membrane should not have been an issue as the cells have been lysed and therefore the cell membrane removed.

In summary, the results on the Plk1 inhibition were not illuminating. They did not show a clear pattern of inhibition at different time points. The results do however show that the compounds containing the acid side group do not inhibit Plk1, and compounds with the methyl ester side group inhibit Plk1.

4.3. Conclusion

A library of compounds was assessed for toxicity against the A549 lung cancer cell line. All compounds were assessed using the MTT assay. Compounds containing the methyl ester side group showed the best activity, while compounds containing the acid side group did not show any activity at concentrations and time points tested. Compounds 1b, 4a and 4b were further evaluated using the AB assay. There was an improvement in cytotoxicity observed in all the three compounds. Of all compounds assessed, 4b showed the best activity. It was observed that compounds containing a methyl ester on the tyrosine side unit and longer chain compounds performed the best.

Several compounds were screened against Plk1 at concentrations equal to their respective EC\textsubscript{50} values calculated from the MTT assay (Section 4.1.6). The best activity was observed in compounds containing the methyl ester side group. Future work should
involve cell imaging using organelle specific dyes to identify the subcellular localisation of the compounds prepared. This, as well as flow cytometry will be carried out within the group as future work.

The level of activity observed would suggest that the compounds and their analogues are worthy of further investigation. It is well known that cellular response may vary between cell lines. It would be interesting to evaluate these compounds against various cell lines e.g. Caco-2, HeLa and BEAS-2B. The different responses between different cell lines and different assays would increase the understanding of the mechanism of action of these compounds.

4.4. References

Chapter 5

5. Conclusion and Future Work

This chapter summarises the outcomes of this research and details suggestions for future work.

The aim of this work was to prepare analogues of gymnastatin N and assess them for biological activity. Eight analogues of gymnastatin N were successfully prepared starting with commercially available aldehydes. The aldehyde used in the first step defined the chain length of the final product. To begin with, a side chain was prepared using a series of HWE, reduction, oxidation, Wittig and hydrolysis reactions. For the short chain analogues, the side chain was prepared by a Wittig followed by a hydrolysis reaction. The resulting acid was coupled with a commercially available benzyl protected tyrosine. Several difficulties were encountered during the amide coupling, however, successful coupling was achieved using HATU and DIEA.

The selective removal of the benzyl protecting group presented difficulties, however, boron trichloride methyl sulfide complex successfully removed the benzyl protecting group while leaving the alkenes intact. Also, quenching the reaction with methanol resulted in methylation of the acid side group. This meant that the methylation step could be eliminated.

Several difficulties were encountered in the purification of target compounds containing the acid side group. However, the compounds had 95% purity which was deemed sufficient for biological evaluation. Future work should be aimed at purification of the acid side group using preparative HPLC.

The prepared gymnastatin analogues were evaluated for anti-cancer activity using MTT assay. A selection of the prepared compounds were further assessed using the AB assay. The compounds containing a methyl ester side group showed more activity than
compounds containing the acid side group. It was also observed that increasing the chain length also resulted in increased activity against the cancer cells. The presence of an additional alkene did not result in significant improvement of activity. Furthermore, preliminary results of the activity of compounds using an ELISA assay showed that the compounds containing the methyl ester side group inhibited Plk1, where the compounds with the acid side group showed no inhibition. A more thorough biological evaluation of these compounds is required in order to evaluate their activity against other cell lines e.g. Caco-2 and HeLa cells which can be readily obtained in our laboratory.

An investigation to assess the selectivity of these compounds should also be carried out. For example, evaluation against BEAS-2B, a healthy cell line isolated from normal human bronchial epithelium obtained from autopsy of non-cancerous individuals.

To understand the subcellular localisation and drug distribution of these compounds, cell imaging experiments should be done. These should be done at times and concentrations when the drugs are known to display cytotoxicity. The mechanism of cell death induced by the prepared analogues can also be determined by flow cytometry.

In this thesis, iron oxide nanoparticles and their use in targeted drug delivery for cancer treatment have been reviewed. Future work will include conjugation of the synthesised gymnastatin analogues to iron oxide nanoparticles at the phenol functionality. Work on conjugating iron oxide nanoparticles to organic compounds is already ongoing within the group.
6 Experimental Procedures

6.1 Part A: Synthetic Procedures

6.1.1 General Experimental

All reagents and dry solvents were purchased from Sigma-Aldrich and Apollo Scientific and were used without further purification. Argon and hydrogen were obtained from BOC gases and were used without further purification.

1H NMR and 13C NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer at room temperature in deuterated solvents. Chemical shifts (σ) are given in parts per million (ppm) and coupling constants (J) are expressed in Hertz (Hz). An arbitrary numbering system is employed to aid assignment of NMR signals. High resolution mass spectrometry was carried out in University College Dublin by Dr Jimmy Muldoon on a Waters/Micromass LCT Mass Spectrometer with 40 % water (with ~1 % formic acid) and 60 % methanol. All samples were prepared in MeOH. Infrared (IR) spectra were recorded on a Perkin Elmer Spotlight 400N FT-IR spectrometer with UATR accessory.

Thin layer chromatography (TLC) was carried out on aluminium sheets pre-coated with silica gel 60 and visualised under a 254 nm UV lamp and stained with anisaldehyde solution (1.7 mL anisaldehyde, 0.7 mL glacial acetic acid, 2.3 mL concentrated sulfuric acid in 62.5 mL ethanol). Column chromatography separations were performed using Davisil silica gel LC60A (35-70 µm).
6.1.2 Synthesis of short chain gymnastatin analogues

6.1.2.1 Wittig reaction

\[\text{Ethyl-} (E)-2\text{-methyldec-2-enoate (2)} \]

To a solution of octanal 1a (7.8 mmol, 1 g, 1 eq.) in CH\(_2\)Cl\(_2\) (30 mL) at 0 °C was added a solution of (carbethoxyethylidene)triphenylphosphorane (8.6 mmol, 3.1 g, 1.1 eq.) in CH\(_2\)Cl\(_2\) (20 mL), also at 0 °C. The reaction mixture was left stirring at room temperature under argon for 6 hours before being quenched with ammonium chloride. The reaction mixture was transferred to a separating funnel and diluted with diethyl ether (40 mL). The organic layer was collected and the aqueous layer was extracted two more times with ether. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The crude mixture was purified by flash chromatography using as the eluent, petroleum ether 9:1 ethyl acetate and the target compound 2 was isolated as a yellow oil.

Ethyl (E) 2-methyldec-2-enoate (2)

\[\text{Yield} = 79.8\%, \text{ } R_f = 0.5 \text{ (petroleum ether 9:1 ethyl acetate)} \]

\[\delta_{	ext{H}} / \text{ppm} \quad (400 \text{ MHz}; \text{CDCl}_3) \quad 6.764 \ (1\text{H}, \text{ m}, \text{ H}_8), \ 4.19 \ (2\text{H}, \text{ q}, \ J = 7.2 \text{ Hz}, \text{ H}_{10}), \ 2.15 \ (2\text{H}, \text{ q}, \ J = 7.2 \text{ Hz}, \text{ H}_7) \ , \ 1.75(3\text{H}, \text{ s}, \text{ H}_9), \ 1.35 \ (13\text{H}, \text{ m}, \text{ H}_{2,3,4,5,6,11}), \ 0.88 \ (3\text{H}, \text{ t}, \ J = 7.2 \text{ Hz}, \text{ H}_1) . \]

\[\delta_{	ext{C}} / \text{ppm} \quad (100 \text{ MHz}; \text{CDCl}_3) \quad 168.3 \ (C=O), \ 143.1 \ (C=C), \ 127.6 \ (C=CO), \ 60.3 \ (C=O), \ 31.8 \ (\text{CH}_2), \ 29.5(\text{CH}_2), \ 29.3 \ (\text{CH}_2), \ 29.1 \ (\text{CH}_2), \ 28.7 \ (\text{CH}_2), \ 28.6 \ (\text{CH}_2), \ 22.6 \ (\text{CH}_2), \ 14.3 \ (\text{CH}_2), \ 14.1 \ (\text{CH}), \ 12.3 \ (\text{CH}_3). \]

\[\nu_{\text{max}} / \text{cm}^{-1} \quad \text{(neat)} \quad 2956, \ 2925, \ 2856, \ 1710, \ 1650, \ 1464, \ 1367, \ 1266, \ 1140, \ 1098 \]

6.1.2.2 Hydrolysis

\[\begin{align*}
\text{2-Methyl-(E)-dec-2-enoic acid (3)} & \quad \text{To a stirring solution of LiOH (24.5 mmol, 587 mg,} \\
& \quad \text{15 eq.) in ice-cold water (8 mL) was added a solution of 2 (1.63 mmol, 301 mg, 1 eq) in} \\
& \quad \text{MeOH (4 mL) and THF (4 mL), also at 0 °C. The reaction mixture was warmed to RT} \\
& \quad \text{and stirred for 16 hours. The reaction was then cooled to 0 °C and ice cold HCl (1M)} \\
& \quad \text{added slowly to the rapidly stirring solution until pH 1. The reaction mixture was} \\
& \quad \text{transferred to a separating funnel and diluted with diethyl ether (20 mL). The organic} \\
& \quad \text{layer was collected and the aqueous layer extracted two more times with ether. The} \\
& \quad \text{organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles} \\
& \quad \text{were evaporated under vacuum using a rotary evaporator. The target compound 3 was} \\
& \quad \text{isolated as yellow solid and used without further purification.}
\end{align*} \]
Yield 94% yield.

δ_H/ppm (400 MHz; CDCl₃) 11.92 (1H, s, H₁₀), 6.92 (1H, m, H₈), 2.19 (2H, q, J = 7.2 Hz, H₇), 1.83 (3H, s, H₉), 1.37 (10H, m, H₂₋₆), 0.89 (3H, t, J = 7.2 Hz, H₁).

δ_C/ppm (100 MHz; CDCl₃) 169.2 (C=O), 142.7 (C=C), 126.0 (C-CO), 32.6 (CH₂), 31.2 (CH₂), 28.6 (CH₂), 28.4 (CH₂), 22.1 (CH₂), 17.6 (CH₃), 12.4 (CH₃).

6.1.2.3 Amide Coupling

[2-Methyl-(E)-dec-2-enamido]-3-[4-(benzyloxy) phenyl] propanoic acid (4) To a solution of acid 3 (2.35 mmol, 432 mg, 1 eq.) in dry DMF (10 mL) was added HATU (2.35 mmol, 823 mg, 1 eq.) and the resulting solution was stirred for 10 minutes at room temperature under argon. DIEA (7.10 mmol, 1.7 mL, 3 eq.) was added and the resulting solution was stirred for 20 minutes before O-benzyl-L-tyrosine (2.82 mmol, 874 g, 1.2 eq.) was added. The reaction mixture was stirred at room temperature for 16 hours. The solvent was removed in vacuo and the crude mixture was purified by flash column chromatography using as the eluent petroleum ether 8.5:1.5 ethyl acetate. The product was isolated as a sticky, yellow oil in 86% yield.
\[\delta H/\text{ppm} \quad (400 \text{ MHz; MeOD}) \quad 7.68 \quad (5 \text{H, m, } H_{1-5}), \quad 7.08 \quad (2 \text{H, d, } J = 8.4 \text{ Hz, } H_{7-8}), \quad 6.90 \quad (2 \text{H, d, } J = 8.4 \text{ Hz, } H_{9-10}), \quad 6.33 \quad (1 \text{H, m, } H_{16}), \quad 6.19 \quad (1 \text{H, d, } J = 7.2 \text{ Hz, } H_{14}), \quad 5.02 \quad (2 \text{H, s, } H_6), \quad 4.84 \quad (1 \text{H, m, } H_{12}), \quad 3.19 \quad (2 \text{H, m, } H_{11}), \quad 2.10 \quad (2 \text{H, q, } J = 7.2 \text{ Hz, } H_{17}), \quad 1.77 \quad (3 \text{H, s, } H_{15}), \quad 1.34 \quad (10 \text{H, m, } H_{18-22}), \quad 0.88 \quad (3 \text{H, t, } J = 6.8 \text{ Hz, } H_{23}).
\]

\[\delta C/\text{ppm} \quad (100 \text{ MHz; MeOD}) \quad 174.0 \quad (\text{C}=\text{OOH}), \quad 171.4 \quad (\text{C}=\text{O}), \quad 158.0 \quad (\text{C}=\text{Ar}), \quad 138.4 \quad (\text{C}=\text{C}), \quad 136.9 \quad (\text{C}=\text{Ar}), \quad 130.5 \quad (\text{C}=\text{Ar}), \quad 129.6 \quad (\text{C}=\text{Ar}), \quad 128.6 \quad (\text{C}=\text{Ar}), \quad 128.1 \quad (\text{C}=\text{Ar}), \quad 127.9 \quad (\text{C}=\text{Ar}), \quad 127.4 \quad (\text{C}=\text{Ar}), \quad 115.0 \quad (\text{C}=\text{C}), \quad 70.1 \quad (\text{CH}_2), \quad 53.5 \quad (\text{CH}), \quad 36.3 \quad (\text{CH}_2), \quad 32.5 \quad (\text{CH}_2), \quad 31.8 \quad (\text{CH}_2), \quad 29.3 \quad (\text{CH}_2), \quad 28.4 \quad (\text{CH}_2), \quad 14.1 \quad (\text{CH}_3), \quad 12.4 \quad (\text{CH}_3).
\]

\[\nu_{\text{max}}/\text{cm}^{-1} \quad (\text{CHCl}_3 \text{ film}) \quad 3427, \quad 2926, \quad 2856, \quad 1884, \quad 1723, \quad 1660, \quad 1612, \quad 1511, \quad 1455, \quad 1384, \quad 1240, \quad 1218, \quad 1177, \quad 1025.
\]

LRMS (ES\(^+\)) calculated for C\(_{27}\)H\(_{35}\)NO\(_4\) [M+H\(^+\)]: 438.3, found: 438.2.

6.1.2.4 Methylation of acid side group

To a stirring solution of 4 (0.27 mmol, 119 mg, 1 eq.) in dry DMF (5 mL) was added N,N-dimethylformamide dimethyl acetal (1.36 mmol, 0.2 mL, 5 eq.) under argon. The reaction mixture was stirred at room temperature for 16 h. The solvent was removed in
vacuo and the crude mixture purified by flash chromatography using as the eluent petroleum ether 6: 4 ethyl acetate. The product was isolated as a yellow oil in 72% yield.

[2-methyl-(E)-dec-2-enamido]-3-[4-(benzyloxy)phenyl]propanoate (5)

\[\delta \text{H/ppm (400 MHz; CDCl}_3) \] 7.33 (5H, m, H_{1-5}), 6.94 (2H, d, \text{J}=8.8 \text{ Hz}, \text{H}_7-8), 6.82 (2H, d, \text{J}=8.8 \text{ Hz}, \text{H}_9-10), 6.26 (1H, td, \text{J}=13.6, 6, 1.6 \text{ Hz}, \text{H}_16), 6.06 (1H, d, \text{J}=7.6 \text{ Hz}, \text{H}_14), 4.96 (2H, s, \text{H}_6), 4.82 (1H, m, \text{H}_12), 3.66 (3H, s, \text{H}_13), 3.03 (2H, m, \text{H}_11), 2.06 (2H, q, \text{J}=6.8 \text{ Hz}, \text{H}_17), 1.73 (3H, s, \text{H}_15), 1.24 (10H, m, \text{H}_{18-22}), 0.81 (3H, t, \text{J}=7.2 \text{ Hz}, \text{H}_23).

\[\delta \text{C/ppm (400 MHz; CDCl}_3) \] 172.4 (C=OCH3), 168.7 (C=O), 158.0 (C=Ar), 137.4 (C=C), 136.9 (C=Ar), 130.3 (C=Ar), 130.3 (C=Ar), 130.1 (C=Ar), 128.6 (C=Ar), 128.2 (C=CO), 128.0 (C=Ar), 127.9 (C=Ar), 127.5 (C=Ar), 114.9 (C=Ar), 70.0 (CH2-O), 53.4 (CH-NH), 52.3 (O-CH3), 37.0 (CH2), 31.8(CH3), 29.3(CH2), 29.1(CH2), 28.7(CH2), 28.4(CH2), 22.7(CH2), 14.1(CH3), 12.5(CH3).

LRMS (ES+) calculated for C_{28}H_{37}NO_{4} [M+H]^+: 452.3, found: 452.2.

6.1.2.5 Debenzylation General procedure 1
To a solution of 4 (1 eq.) in dry CH$_2$Cl$_2$ at -15 °C, under argon, was added boron trichloride methyl sulfide complex (2 M in CH$_2$Cl$_2$, 8 eq.), dropwise. The reaction was warmed to room temperature and left stirring overnight. The reaction mixture was quenched with the appropriate solvent and the solvent evaporated in vacuo. The product was purified by flash chromatography.

6.1.2.5.1 Methanol Quench

Methyl-(N-methyl (E)-dec-2-enoyl)tyrosinate (6)

![Chemical Structure](image)

Methyl (N-methyl-(E)-dec-2-enoyl)tyrosinate (6) was prepared using general procedure 1 using 4 (0.09 mmol, 40 mg, 1 eq.) in dry CH$_2$Cl$_2$(5 mL), boron trichloride methyl sulfide complex (2 M in CH$_2$Cl$_2$, 0.73 mmol, 0.37 mL, 8 eq.) under argon. The crude mixture was quenched using methanol (10 mL) and the volatiles removed in vacuo. The product was purified using petroleum ether 3: 7 ethyl acetate and the target compound 6 was isolated as a yellow oil in 80% yield. R$_f$ = 0.39 (petroleum ether 6: 4 ethyl acetate).

δ$_H$/ppm (400 MHz; (CD$_3$)$_2$CO) 8.234 (1H, s, H$_1$), 7.07 (3H, m, H$_{4,5,9}$), 6.76 (2H, d, H$_{2,3}$), 6.31 (1H, m, H$_{11}$), 4.65 (1H, m, H$_7$), 3.66 (3H, s, H$_8$), 3.10 (2H, m, H$_6$), 2.14 (2H, q, H$_{12}$), 1.77 (3H, s, H$_{10}$), 1.34 (10H, m, H$_{13-17}$), 0.88 (3H, t, H$_{18}$).

δ$_C$/ppm (100 MHz; (CD$_3$)$_2$CO)) 173.2 (C-OMe), 169.3 (C=O), 157.2 (C-Ar), 136.5 (C=C), 131.7 (C-Ar), 131.1(C-Ar), 128.8 (C-CO), 116.0 (C-Ar), 55.0(C-NH), 52.2 (O-
\(\text{CH}_3 \), 37.3 (CH\(_2\)-Ar), 32.6 (CH\(_2\)), 30.4 (CH\(_2\)), 30.3 (CH\(_2\)), 29.5 (CH\(_2\)), 29.3 (CH\(_2\)), 28.8 (CH\(_2\)), 23.3 (CH\(_2\)), 14.4 (CH\(_3\)), 12.7 (CH\(_3\)).

\(\nu_{\text{max}}/\text{cm}^{-1} (\text{CHCl}_3 \text{ film}) \) 3313, 3020, 2953, 2925, 2855, 1736, 1659, 1614, 1595, 1500, 1438, 1363, 1267, 1216, 1173, 1124, 1105.

HRMS (ES\(^+\)) calculated for C\(_{21}\)H\(_{31}\)NO\(_4\) [M+H\(^+\)]\(^\dagger\): 362.2331, found: 362.2345.

6.1.2.5.2 BCl\(_3\) reaction quenched with Ethanol

Ethyl-(N-methyl-(E)-dec-2-enoyl)tyrosinate (6b)

Ethyl-(N-methyl-(E)-dec-2-enoyl)tyrosinate (6b) was prepared using general procedure 1 using 4 (0.10 mmol, 45 mg, 1eq.) and boron trichloride methyl sulfide complex (2 M in CH\(_2\)Cl\(_2\), 0.82 mmol, 0.41 mL, 8 eq.) under argon. The reaction mixture was quenched using ethanol (10 mL) and the solvent removed \textit{in vacuo}. The product was purified using petroleum ether 6: 4 ethyl acetate and the target compound 8a was isolated as a yellow oil in 75% yield. \(R_f = 0.44 \) (petroleum ether 6: 4 ethyl acetate).

\(\delta_{\text{H}}/\text{ppm} \) (400 MHz; CD\(_3\)CN) 6.95 (2H, d, \(J = 8.8 \text{ Hz} \), H\(_{4,5}\)), 6.64 (2H, d, \(J = 8.8 \text{ Hz} \), H\(_{2,3}\)), 6.47 (2H, d, \(J = 7.6 \text{ Hz} \), H\(_{10}\)), 6.12-6.16 (1H, m, H\(_{12}\)), 4.45-4.50 (1H, m, H\(_7\)), 4.03 (2H, q, \(J = 7.2 \text{ Hz} \), H\(_8\)), 2.94 (2H, m, H\(_6\)), 2.04 (2H, m, \(J = 7.2 \text{ Hz} \), H\(_{13}\)), 1.65 (3H, s, H\(_{11}\)), 1.20 (10H, m, H\(_{14-18}\)), 1.11 (3H, t, \(J = 7.2 \text{ Hz} \), H\(_9\)), 0.89 (3H, t, \(J = 6.8 \text{ Hz} \), H\(_{19}\)).

\(\delta_{\text{C}}/\text{ppm} \) (100 MHz; CD\(_3\)CN) 171.7 (C-OOEt), 168.7 (C=O), 155.6 (C-Ar), 136.3 (C=C), 130.4 (C-Ar), 130.2 (C-Ar), 128.0 (C-CO), 114.9(C-Ar), 60.8 (CH\(_2\)O-CH\(_3\)), 54.0 (O-
CH₃), 36.0(CH₂-Ar), 31.4 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 28.3 (CH₂), 27.7 (CH₂), 22.3 (CH₂), 13.3 (CH₂), 13.2 (CH₃), 11.7 (CH₃).

υmax/cm⁻¹ (CHCl₃ film) 3323, 2926, 2856, 1734, 1660, 1615, 1595, 1509, 1447, 1376, 1349, 1269, 1215, 1126, 1028, 827, 756.

HRMS (ES⁺) calculated for C₂₂H₃₃NO₄ [M+H]⁺: 376.2488, found: 376.2475

6.1.2.5.1 BCl₃ reaction quenched with water

N-methyl-(E)-dec-2-enoyl tyrosine (6a)

\[\text{CH₃CH₂CH₃} \] \[\text{N} \] \[\text{C} \] \[\text{O} \] \[\text{OH} \]

\[6a \]

N-methyl-(E)-dec-2-enoyl tyrosine (6a) was prepared using general procedure 1 using 4 (0.14 mmol, 62 mg, 1 eq.) and boron trichloride methyl sulfide complex (2 M in CH₂Cl₂, 1.13 mmol, 0.57 mL, 8 eq.), dropwise, under argon. The reaction was quenched using water (10 mL) and the resulting mixture transferred to a separating funnel and diluted with dichloromethane (15 mL). The organic layer was collected and the aqueous layer extracted two more times with ether. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The crude mixture was purified by flash chromatography using 10% methanol in CH₂Cl₂. The product 11b was isolated as a yellow oil in 65% yield.

δH/ppm (400 MHz; MeOD) 6.90 (2H, d, J = 8.4 Hz, H₄-5), 6.55 (2H, d, J = 8.8 Hz, H₂-₃), 6.13 (1H, t, J = 7 Hz, H₁₁), 4.38 (1H, m, H₇), 2.96 (2H, m, H₆), 2.02 (2H, q, J = 7.2 Hz, H₁₂), 1.66 (3H, s, H₁₀), 1.24 (10H, m, H₁₃-₁₇), 0.81 (3H, t, J = 6.8 Hz, H₁₈).
\(\delta_c/\text{ppm} \) (100 MHz; MeOD) 175.3 (C-OH), 172.2 (C=O), 157.3 (C=O), 138.2 (C-CO), 131.3 (C-Ar), 129.9 (C-Ar), 129.2 (C-Ar), 124.8 (C-Ar), 116.2 (C-Ar), 57.9 (CH-NH), 37.3 (CH\(_2\)-NH), 33.0 (CH\(_2\)), 29.6 (CH\(_2\)), 30.7 (CH\(_2\)), 31.8 (CH\(_2\)), 23.8 (CH\(_2\)), 14.5 (CH\(_3\)), 12.5 (CH\(_3\)).

\(\nu_{\text{max}}/\text{cm}^{-1} \) (CHCl\(_3\) film) 3373, 2926, 2856, 1590, 1509, 1412, 1245.

6.1.3 Synthetic Strategy 2

6.1.3.1 General procedure 2: HWE

To a suspension of NaH (60% in mineral oil) (1.2 eq.) in dry THF at 0 ℃ was added triethyl phosphonoacetate (1.2 eq.) dropwise under argon and the mixture left stirring for 0.5 hours. The reaction temperature was brought to room temperature. The appropriate aldehyde 1a-c (1 eq.) was added slowly and the reaction mixture was left stirring for 4 hours. The reaction mixture was quenched using ammonium chloride (30 mL), transferred to a separating funnel and diluted with diethyl ether (30 mL). The organic layer was collected and the aqueous layer extracted two more times with ether. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The crude mixture was purified by flash column chromatography using as the eluent, petroleum ether 9.5:0.5 ethyl acetate.

Ethyl (E)-non-2-enoate (7a)

Ethyl (E)-non-2-enoate (7a) was prepared using general procedure 2 using NaH (60% in mineral oil) (21 mmol, 0.84 g, 1.2 eq.) in dry THF (60 mL), triethyl phosphonoacetate (26.3 mmol, 5.6 mL, 1.5 eq.) and heptanal 1a (17.5 mmol, 2.5 mL, 1 eq.). The target
compound 7a was isolated as yellow oil (1.46 g) in 88% yield. Rf = 0.48 (petroleum ether 9:1 ethyl acetate).

δH/ ppm (400 MHz; CDCl$_3$) 6.96 (1H, dt, $J = 15.0$, 6.8 Hz, H$_7$), 5.81 (1H, dt, $J = 15.6$, 1.6 Hz, H$_8$), 4.18 (2H, q, $J = 6.8$ Hz, H$_9$), 2.16-2.22 (2H, m, H$_0$), 1.37 (11H, m, H$_{2-5}$, H$_{10}$) 0.88 (3H, t, $J = 6.8$ Hz, H$_1$).

δc/ ppm (100 MHz; CDCl$_3$) 166.8 (C=O), 149.5 (C=C), 121.2 (C=C), 60.1 (CH$_2$-O), 32.2 (CH$_2$), 31.6 (CH$_2$), 29.7 (CH$_2$), 29.0 (CH$_2$), 28.0 (CH$_2$), 22.5 (CH$_2$), 14.2 (CH$_3$), 14.0 (CH$_3$).

νmax/cm$^{-1}$ (neat) 2957, 1720, 1654, 1465, 1367, 1263, 1123, 1096, 1028, 973, 845, 724.

Ethyl (E) dec-2-enoate (7b)

Ethyl (E) dec-2-enoate (7b) was prepared using general procedure 2 using NaH (60% in mineral oil) (10 mmol, 1 g, 1.2 eq.) in dry THF (40 mL), triethyl phosphonoacetate (10 mmol, 1.95 mL, 1.2 eq.) and octanal 1b (8.3 mmol, 0.8 mL, 1 eq.). The target compound 7b was isolated as yellow oil in 92% yield. Rf = 0.5 (petroleum ether 9:1 ethyl acetate).

δH/ ppm (400 MHz, CDCl$_3$) 6.89 (1H, m, H$_8$), 5.74 (1H, m, H$_9$), 4.11 (2H, m, H$_0$), 2.12 (2H, q, $J = 6.8$, 1.6 Hz, H$_7$), 1.31 (13H, m, H$_{2-6}$, H$_{11}$) 0.81 (3H, t, $J = 7.2$ Hz, H$_1$).

δc/ ppm (100 MHz, CDCl$_3$) 165.8 (C=O), 148.5 (C=C), 120.16 (C=C), 59.1 (CH$_2$-O), 31.2 (CH$_2$), 30.7 (CH$_2$), 28.1 (CH$_2$), 28.1 (CH$_2$), 27.0 (CH$_2$), 21.6 (CH$_2$), 13.2 (CH$_3$), 13.3 (CH$_3$).

νmax/cm$^{-1}$ (neat) 1721, 1654, 1463, 1367, 1264, 1166, 1126, 1095, 1042, 979, 855, 723.
ethyl (E)-undec-2-enoate (7c) was prepared using general procedure 2 using NaH (60% in mineral oil) (16.8 mmol, 0.67 g, 1.2 eq.) in dry THF (60 mL), triethyl phosphonoacetate (21 mmol, 4.4 mL, 1.5 eq.) and nonanal 1c (14 mmol, 2.4 mL, 1 eq.). The target compound 7c was isolated as a yellow oil in 89% yield. \(R_f = 0.58 \) (petroleum ether 9:1 ethyl acetate).

\[\delta_H/\text{ppm} \] (400 MHz; CDCl\(_3\)) 6.96 (1H, m, H\(_9\)), 5.82 (1H, m, H\(_{10}\)), 4.19(2H, q, \(J = 7.2 \) Hz, H\(_{11}\)), 2.18 (2H, m, H\(_8\)), 1.38 (2H, m, H\(_7\)) 1.13 (13H, m, H\(_{2-6}\), H\(_{12}\)) 0.88 (3H, t, \(J = 7.2 \) Hz, H\(_1\)).

\[\delta_C/\text{ppm} \] (100 MHz; CDCl\(_3\)) 166.8 (C=O), 149.5 (C=C), 121.2 (C=C), 60.1 (CH\(_2\)-O), 32.2 (CH\(_2\)), 31.8 (CH\(_2\)), 29.4 (CH\(_2\)), 29.2 (CH\(_2\)), 28.0 (CH\(_2\)), 22.7 (CH\(_2\)), 14.3 (CH\(_3\)), 14.1 (CH\(_3\)).

\(\upsilon_{\text{max}}/\text{cm}^{-1} \) (neat) 2925, 2855, 1721, 1655, 1465, 1367, 1264, 1179, 1126, 1042, 979, 722.

6.1.3.2 General procedure 3: Reduction

To a solution of the appropriate ester 7a-c (1 eq.) in dry THF at \(-4^\circ\text{C}\), under argon, was added dropwise DIBAL-H (1M in CH\(_2\)Cl\(_2\)) (2 eq.). The mixture was maintained at this temperature and left stirring for 2 hours before being quenched by HCl (1M) until pH 1.
at 0 °C. The reaction mixture was transferred to a separating funnel and diluted with diethyl ether (30 mL). The organic layer was collected and the aqueous layer extracted two more times with ether. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The crude mixture was purified by flash column chromatography using as the eluent petroleum ether 9:1 ethyl acetate.

(E)-Non-2-en-1-ol (8a)

(E)-Non-2-en-1-ol (8a) was prepared using general procedure 3 using 7a (11 mmol, 2 g, 1 eq.) in dry THF (60 mL) and DIBAL-H (1M in CH₂Cl₂) 13.2 mmol, 13.2 mL, 1.2 eq.). The target compound 8a was isolated as yellow oil in 91% yield. Rf = 0.32 (petroleum ether 9:1 ethyl acetate).

δH/ppm (400 MHz; CDCl₃) 5.67 (2H, m, H₇-₈), 4.10 (2H, d, J = 6 Hz, H₉), 2.04 (2H, q, J =6.7 Hz, H₆), 1.34 (8H, m, H₂-₅), 0.89 (3H, t, J = 6.8 Hz, H₁).

δC/ppm (100 MHz; CDCl₃) 133.6 (C=C), 128.7 (C=C), 63.8 (CH₂-O), 32.2 (CH₂), 30.8 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 22.6 (CH₃), 14.2 (CH₃).

υmax/cm⁻¹ (neat) 3321, 2956, 2924, 2855, 1671, 1458, 1378, 1089, 1003, 723.

(E)-Dec-2-en-1-ol (8b)

(E)-Dec-2-en-1-ol (8b) was prepared using general procedure 3 using 7b (12.5 mmol, 2.491 g, 1 eq.) in dry THF (60 mL) at -4 °C, under argon and DIBAL-H (15 mmol, 15
mL, 1.2 eq.). The target compound 8b was isolated as a yellow oil in 84% yield. R_f = 0.3 (petroleum ether 9.5:0.5 ethyl acetate).

δ_H/ppm (400 MHz; CDCl₃) 5.66 (2H, m, H₉₋₁₀), 4.08 (2H, d, J = 6.8 Hz, H₁₀), 2.04 (2H, q, J = 6.8 Hz, H₇), 1.26 (10H, m, H₂₋₆), 0.88 (3H, t, J = 6.8 Hz, H₁).

δ_C/ppm (100 MHz; CDCl₃) 133.5 (C=C), 128.8 (C=C), 63.8 (CH₂-O), 32.2 (CH₂), 31.8 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 27.4 (CH₂), 22.6 (CH₃), 14.1 (CH₃).

υ_max/cm⁻¹ (neat) 1738, 1457, 1377, 1217, 1089, 1001, 968, 722.

\[(E)\text{-Undec-2-en-1-ol (8c)}\]

\[(E)\text{-undec-2-en-1-ol (8c)}\] was prepared using general procedure 3 using 7c (9.5 mmol, 2 g, 1 eq.) in dry THF (60 mL) and DIBAL-H (11.4 mmol, 11.4 mL, 1.2 eq.) at -4 °C. The target compound 8c was isolated as a yellow oil in 85% yield. R_f = 0.34 (petroleum ether 9:1 ethyl acetate).

δ_H/ppm (400 MHz; CDCl₃) δ ppm: 566 (2H, m, H₉₋₁₀), 4.12 (2H, d, J = 6 Hz, H₁₁), 2.03 (2H, q, J = 6.4 Hz, H₈), 1.43 (12H, m, H₂₋₇), 0.88 (3H, t, J = 6.8 Hz, H₁).

δ_C/ppm (100 MHz; CDCl₃) δ ppm: 133.6 (C=C), 128.8 (C=C), 63.9 8 (CH₂-O), 32.2 (CH₂), 31.9 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 22.7 (CH₃), 14.1 (CH₃).

υ_max/cm⁻¹ (neat) 3500, 2924, 2854, 1654, 1463, 1368, 1266, 969, 722.
6.1.3.3 General procedure 4: Oxidation

To a solution of appropriate alcohol 8a-c (1 eq.) in dry CH₂Cl₂ at 0 °C under argon was added a solution of Dess-Martin periodinane (1.1 eq.) in CH₂Cl₂ also at 0 °C. The reaction was warmed to RT and left stirring for 2 hours before being quenched using 1M NaOH solution. The reaction mixture was transferred to a separating funnel and diluted with diethyl ether (30 mL). The organic layer was collected and the aqueous layer extracted two more times. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The product was used without further purification.

(E)-Non-2-enal (9a)

(E)-Non-2-enal (9a) was prepared using general procedure 4 using 8a (4.93 mmol, 0.7 g, 1 eq.) in dry CH₂Cl₂ (15 mL) and Dess-Martin periodinane (5.92 mmol, 2.5 g, 1.2 eq.) in CH₂Cl₂ (15 mL). The target compound 9a was isolated as a yellow oil and was used without further purification in 91 % yield Rf = 0.47 (petroleum ether 9:5:0.5 ethyl acetate).

δH /ppm ¹H NMR (400 MHz; CDCl₃) 9.50 (1H, d, J = 8 Hz, H₉), 6.86 (1H, dt, J = 15.6, 6.8 Hz, H₇), 6.09-6.15 (1H, m, H₈), 2.35 (2H, m, H₆), 1.39 (8H, m, H₂-₅), 0.89 (3H, t, J = 6.8 Hz, H₁).
(E)-Dec-2-enal (9b)

(E)-Dec-2-enal (9b) was prepared using general procedure 4 using 8b (10 mmol, 1.65 g, 1 eq.) in dry CH₂Cl₂ (20 mL) and Dess-Martin periodinane (11.6 mmol, 5 g, 1.1 eq.) in CH₂Cl₂ (20 mL). The target compound 9b was isolated as a yellow oil and was used without further purification in 94% yield Rᵢ = 0.5 (petroleum ether 9.5:0.5 ethyl acetate).

δH/ppm (400 MHz; CDCl₃) 9.4 (1H, d, J = 8 Hz, H₁₀), 6.79 (1H, dt, J = 15.6, 6.8 Hz, H₈), 6.02-6.08 (1H, m, H₉), 2.10-2.28 (2H, m, H₇), 1.21 (10H, m, H₂-₆), 0.81 (3H, t, J = 7.2 Hz, H₁).

(E)-Undec-2-enal (9c)

(E)-Undec-2-enal (9c) was prepared using general procedure 4 using 8c (5.9 mmol, 1 g, 1 eq.) in dry CH₂Cl₂ (25 mL) and Dess-Martin periodinane (7.14 mmol, 3.1 g, 1.2 eq.) in CH₂Cl₂ (20 mL). The target compound 9c was isolated as a yellow oil and was used without further purification in 90% yield Rᵢ = 0.55 (petroleum ether 9.5:0.5 ethyl acetate).

δH/ppm (400 MHz; CDCl₃) 9.51 (1H, d, J = 7.6 Hz, H₁₁), 6.86 (1H, dt, J = 15.6, 6.8 Hz, H₁₀), 6.09-6.15 (1H, m, H₉), 2.31-2.37 (2H, m, H₇), 1.36 (8H, m, H₂-₇), 0.89 (3H, t, J = 6.4 Hz, H₁).
6.1.3.4 General procedure 5: Wittig

\[
\begin{align*}
\text{R} & - \text{C}_6\text{H}_{11} \\
\text{Rb} & - \text{C}_8\text{H}_{13} \\
\text{Rc} & - \text{C}_7\text{H}_{15}
\end{align*}
\]

To a solution of appropriate aldehydes \(9a-c\) (1 eq.) in \(\text{CH}_2\text{Cl}_2\) at 0 °C under argon was added a solution of (arbethoxyethylidene)triphenylphosphorane (1.2 eq.) in \(\text{CH}_2\text{Cl}_2\) also at 0 °C. The reaction mixture was left stirring at room temperature for 6 hours before being quenched with ammonium chloride (20 mL). The reaction mixture was transferred to a separating funnel and diluted with diethyl ether (25 mL). The organic layer was collected and the aqueous layer extracted two more times. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator. The crude mixture was purified by flash chromatography using petroleum ether 9:1 ethyl acetate.

Ethyl \(2E, 4E\)-2-methylundeca-2,4-dienoate\ (10a)

\[
\text{Ethyl \(2E, 4E\)-2-methylundeca-2,4-dienoate\ (10a)}
\]

Ethyl \(2E, 4E\)-2-methylundeca-2,4-dienoate\ (10a) was prepared using general procedure 5 using \(9a\) (4.23 mmol, 0.6 g, 1 eq.) in \(\text{CH}_2\text{Cl}_2\) (15 mL) and (carbethoxyethylidene)triphenylphosphorane (5.07 mmol, 1.8 g, 1.2 eq.) in \(\text{CH}_2\text{Cl}_2\) (10 mL). The target compound 10a was isolated as a yellow oil 72% yield, \(R_f = 0.6\) (petroleum ether 9:1 ethyl acetate).
δH/ppm (400 MHz; CDCl3) 7.09 (1H, d, J = 11.6 Hz, H9), 6.26 (1H, m, H8), 6.02 (1H, quin, J = 7.3 Hz, H7), 4.13 (2H, q, J = 7.2 Hz, H11), 2.12 (2H, q, J = 7.2 Hz, H6), 1.86 (3H, s, H10), 1.28 (11H, m, H2-5, 12), 0.81 (3H, t, J = 7.2 Hz, H1).

δC/ppm (100 MHz; CDCl3) 167.8 (C=O), 143.3 (C=C), 138.6 (C=C), 125.9 (C=C), 122.0 (C=CO), 60.4 (CH2-O), 33.3 (CH2), 31.9 (CH2), 29.7 (CH2), 29.4 (CH2), 22.7 (CH2), 14.3 (CH2), 14.1 (CH3), 12.6 (CH3).

υmax/cm⁻¹ (neat) 2957, 2927, 2857, 1703, 1640, 1464, 1367, 1287, 1163, 1101, 970.

Ethyl (2E,4E)-2-methyldodeca-2,4-dienoate (10b)

Ethyl (2E,4E)-2-methyldodeca-2,4-dienoate (10b) was prepared using general procedure 5 using 9b (2.88 mmol, 450 mg, 1 eq.) in CH2Cl2 (30 mL) and (carbethoxyethylidene)triphenylphosphorane (5.75 mmol, 2 g, 2 eq.) in CH2Cl2 (20 mL).

The target compound 14b was isolated as a yellow oil in 81% yield, Rf = 0.68 (petroleum ether 9:1 ethyl acetate).

δH/ppm (400 MHz; CDCl3) 7.08 (1H, d, J = 11.6 Hz, H10), 6.34 (1H, m, H9), 6.06 (1H, quin, J = 7.2 Hz, H8), 4.12 (2H, q, J = 7.2 Hz, H12), 2.11 (2H, q, J = 7.2 Hz, H7), 1.9 (3H, s, H11), 1.22 (13H, m, H2-6, 13), 0.85 (3H, t, J = 6.8 Hz, H1).

δC/ppm (100 MHz; CDCl3): 166.3 (C=O), 144.1 (C=C), 143.8 (C=C), 127.3 (C=C), 124.9 (C=CO), 59.1 (CH2-O), 31.9 (CH2), 30.8 (CH2), 28.7 (CH2), 28.1 (CH2), 28.0 (CH2), 27.7 (CH2), 21.6 (CH2), 13.3 (CH3), 13.1 (CH3).

υmax/cm⁻¹ (neat) 2956, 2926, 2855, 1704, 1639, 1464, 1367, 1229, 1176, 1101, 748.
ethyl (2E,4E)-2-methyltrideca-2,4-dienoate (10c)

ethyl (2E,4E)-2-methyltrideca-2,4-dienoate (10c) was prepared using general procedure 5 using 9c (4.3 mmol, 0.72 g, 1 eq.) in CH₂Cl₂ (10 mL) and (carbethoxyethylidene)triphenylphosphorane (5.14 mmol, 1.86 g, 1.2 eq.) in CH₂Cl₂ (15 mL). The target compound 10c was isolated as a yellow oil in 75% yield, Rᵣ = 0.71 (petroleum ether 9:1 ethyl acetate).

δH/ppm (400 MHz; CDCl₃) 7.01 (1H, d, J = 11.2 Hz, H₁₁), 6.32 (1H, m, H₁₀), 6.01 (1H, quin, J = 7.2 Hz, H₉), 4.03 (2H, q, J = 7.2 Hz, H₁₃), 2.68 (2H, q, J = 7.2 Hz, H₈), 1.77 (3H, s, H₁₂), 1.24 (15H, m, H₂-7, H₁₄), 0.74 (3H, t, J = 7.2 Hz, H₁).

δC/ppm (100 MHz; CDCl₃) 165.3 (C=O), 143.9 (C=C), 139.1 (C=C), 128.7 (C=C), 126.9 (C-CO), 60.8 (CH₂-O), 33.8 (CH₂), 33.5 (CH₂), 30.5 (CH₂), 30.1 (CH₂), 30.0 (CH₂), 29.9 (CH₂), 29.7 (CH₂), 23.3 (CH₂), 14.4 (CH₃), 12.7 (CH₃).

υmax/cm⁻¹ (neat) 2924, 2854, 1705, 1640, 1463, 1367, 1232, 1174, 1103, 1032, 970, 748.

6.1.3.5 General procedure 6 Hydrolysis

R₁ R₂ R₃

10a-c ➔ LiOH, THF Water, MeOH RT, Overnight ➔ 11a-c

R₁ - C₅H₁₁
R₂ - C₆H₁₃
R₃ - C₇H₁₅
To a stirring solution of LiOH cooled in ice-cold water was added a solution of the appropriate ester 10a-c in MeOH and THF, also at 0 °C. The reaction mixture was warmed to RT and stirred for 16 hours. The reaction was then cooled to 0 °C and ice cold HCl (1M) added slowly to the rapidly stirring solution until pH 1. The reaction mixture was transferred to a separating funnel and diluted with diethyl ether (20 mL). The organic layer was collected and the aqueous layer extracted two more times. The organic layers were combined and dried over anhydrous magnesium sulfate. The volatiles were evaporated under vacuum using a rotary evaporator.

(2E,4E)-2-Methylundeca-2,4-dienoic acid (11a)

(2E,4E)-2-Methylundeca-2,4-dienoic acid (11a) was prepared using general procedure 6 using 10a (14.4 mmol, 345 mg, 1 eq.) in MeOH (2 mL) and THF (2 mL), LiOH (14.4 mmol, 345 mg, 15 eq.) in ice-cold water (5 mL). The target compound 11a was isolated as white crystals and used without further purification in 70% yield.

δH/ppm (400 MHz; CDCl₃) 11.03 (1H, s, H₁₁), 7.22 (1H, d, J = 12.4 Hz, H₉), 6.28 (1H, m, H₈), 6.05 (1H, quin, J = 7.2 Hz, H₇), 2.13 (2H, q, J = 7.2 Hz, H₆), 1.85 (3H, s, H₁₀), 1.26 (8H, m, H₂-₅), 0.80 (3H, t, J = 7.2 Hz, H₁).
(2E,4E)-2-Methyldeca-2,4-dienoic acid (11b)

(2E,4E)-2-methyldeca-2,4-dienoic acid (11b) was prepared using general procedure 6 using 10b (4.18 mmol, 1 g, 1 eq.) in MeOH (5 mL) and THF (5 mL), LiOH (63 mmol, 1.5 g, 15 eq.) in ice-cold water (3 mL). The target compound 11b was isolated as a yellow solid and was used without further purification in 80% yield.

δH/ppm (400 MHz; CDCl3) 12.32 (1H, s, H₁₂), 7.07 (1H, d, J = 11.2 Hz, H₁₀), 6.39 (1H, q, J = 7.2 Hz, H₈), 6.12 (1H, q, J = 7.2 Hz, H₆), 2.17 (2H, q, J = 7.2 Hz, H₇), 1.83 (3H, s, H₁₁), 1.22 (10H, m, H₂₋₆), 0.86 (3H, t, J = 7.2 Hz, H₁).

(2E,4E)-2-Methyltrideca-2,4-dienoic acid (11c)

(2E,4E)-2-Methyltrideca-2,4-dienoic acid (11c) was prepared using general procedure 6 using 10c (0.95 mmol, 225 mg, 1 eq.) in MeOH (2 mL) and THF (2 mL), LiOH (14.2 mmol, 342 mg, 15 eq.) in ice-cold water (4 mL). The target compound 11c was isolated as a yellow solid and was used without further purification in 89% yield.

δH/ppm (400 MHz; CDCl3) 11.83 (1H, s, H₁₃), 7.19 (1H, d, J = 13.6 Hz, H₁₁), 6.28 (1H, m, H₁₀), 6.06 (1H, q, J = 7.2 Hz, H₉), 2.12 (2H, q, J = 7.4 Hz, H₈), 1.76 (3H, s, H₁₂), 1.28 (12H, m, H₂₋₇), 0.81 (3H, t, J = 7.2 Hz, H₁).
6.1.3.6 General procedure 7: Amide Coupling

To a solution of the appropriate acid 11a-c, in dry DMF, was added HATU and the resulting solution was stirred for 10 minutes at room temperature under argon. O-Benzyl-L-tyrosine was added and the resulting solution was stirred for 20 minutes before DIEA was added. The reaction mixture was stirred at room temperature for 16 hours. The solvent was removed in vacuo and the crude mixture was purified by flash column chromatography using as the eluent petroleum ether 8.5:1.5 ethyl acetate.

3-[4-(benzyloxy)phenyl]-2-[(2E,4E)-2-methylundeca-2,4-dienamido]propanoic acid (12a)

3-[4-(benzyloxy)phenyl]-2-[(2E,4E)-2-methylundeca-2,4-dienamido]propanoic acid (12a) was prepared using general procedure 7 using 11a (1.12 mmol, 220 mg, 1 eq.), HATU (1.2 mmol, 420 mg, 1.1 eq.), DIEA (3.36 mmol, 1 mL, 3 eq.) and O-Benzyl-L-Tyrosine (1.34 mmol, 498 mg, 1.2 eq.). The target compound 12a was isolated as a sticky, yellow oil in 80% yield.
\[\delta_c /\text{ppm} \ (400\ \text{MHz};\ \text{MeOD})\ 7.23\ (5\ H,\ m,\ H_{1-5,14}),\ 7.01\ (2\ H,\ d,\ J = 8.8\ Hz,\ H_{7-8}),\ 6.76\ (2H,\ d,\ J = 8.8\ Hz,\ H_{9-10}),\ 6.64\ (1H,\ d,\ J = 10.8\ Hz,\ H_{16}),\ 6.23\ (1H,\ m,\ H_{17}),\ 5.87\ (1H,\ m,\ H_{18}),\ 4.89\ (2H,\ s,\ H_6),\ 4.48\ (1H,\ m,\ H_{12}),\ 3.00\ (2H,\ m,\ H_{11}),\ 2.05\ (2H,\ q,\ J = 7.2\ Hz,\ H_{19}),\ 1.73\ (3H,\ s,\ H_{15}),\ 1.21\ (8H,\ m,\ H_{20-23}),\ 0.79\ (3H,\ t,\ J = 7.2\ Hz,\ H_{24}).\]

\[\delta_c /\text{ppm} \ (100\ MHz;\ \text{MeOD})\ 171.4\ (\text{C-OOH}),\ 159.0\ (\text{C-Ar}),\ 142.8\ (\text{C=C}),\ 138.9\ (\text{C-Ar}),\ 135.6(\text{C=C}),\ 131.6\ (\text{C-Ar}),\ 131.5(\text{C-Ar}),\ 129.5\ (\text{C-Ar}),\ 129.0(\text{C-Ar}),\ 128.8\ (\text{C-Ar}),\ 128.6\ (\text{C-Ar}),\ 127.0\ (\text{C=C}),\ 115.7\ (\text{C-Ar}),\ 71.0\ (\text{OCH}_2\text{-Ar}),\ 57.0\ (\text{CH-NH}),\ 37.8\ (\text{CHCH}_2\text{-Ar}),\ 34.2\ (\text{CH}_2),\ 32.9\ (\text{CH}_2),\ 30.2\ (\text{CH}_2),\ 30.0\ (\text{CH}_2),\ 23.7\ (\text{CH}_2),\ 14.5\ (\text{CH}_3),\ 12.9\ (\text{CH}_3).\]

\[\upsilon_{\text{max}} /\text{cm}^{-1} \ (\text{neat})\ 3424,\ 2929,\ 2858,\ 1660,\ 1439,\ 1386,\ 1255,\ 1092,\ 1063,\ 841.\]

LRMS (ES+) calculated for C\textsubscript{28}H\textsubscript{35}NO\textsubscript{4} [M+H]+: 450.3, found: 450.2.

3-[4-(benzyloxy)phenyl]-2-[(2\textit{E},4\textit{E})-2-methyldec\textendash 2,4-dienamido]propanoic acid (12b)

3-[4-(benzyloxy)phenyl]-2-[(2\textit{E},4\textit{E})-2-methyldec\textendash 2,4-dienamido]propanoic acid (12b) was prepared using general procedure 7 using 11b (0.63 mmol, 132 mg ,1 eq.), HATU (0.69 mmol, 242 mg, 1.1 eq.), DIEA (1.89 mmol, 0.6 mL, 3 eq.), \(O\)-Benzy\textendash L-Tyrosine (0.76 mmol, 283 mg, 1.2 eq.) and dry DMF (5 mL). The target compound 12b was isolated as a sticky, yellow oil in 85% yield.

\[\delta_h /\text{ppm} \ (400\ MHz;\ CD_3\text{CN})\ 7.31\ (5H,\ m,\ H_{1-5}),\ 7.07\ (2H,\ d,\ J = 8.4\ Hz,\ H_{7-8}),\ 6.83\ (2H,\ d,\ J = 8.4\ Hz,\ H_{9-10}),\ 6.65\ (1H,\ d,\ J = 11.2\ Hz,\ H_{16}),\ 6.55\ (1H,\ d,\ J = 7.6\ Hz,\ H_{14}),\ 6.29\]
(1H, m, H_{17}), 5.95 (1H, m, H_{18}), 4.97 (2H, s, H_6), 4.50 (1H, m, H_{12}), 3.00 (2H, m, H_{11}), 2.08 (2H, q, J = 7.6 \text{ Hz}, H_{19}), 1.73 (3H, s, H_{15}), 1.25 (10H, m, H_{20-24}), 0.79 (3H, t, J = 7.2 \text{ Hz}, H_{25}).

\delta_c/\text{ppm} (100 \text{ MHz}; \text{CD}_3\text{CN}) \text{ CD}_3\text{CN} 172.0 (\text{C-OOH}), 168.9 (\text{C=O}), 157.3 (\text{C-Ar}), 141.6 (\text{C-Ar}), 137.1 (\text{C-Ar}), 134.0 (\text{C=C}), 130.0 (\text{C-Ar}), 129.2 (\text{C-Ar}), 128.1 (\text{C-Ar}), 127.5 (\text{C-Ar}), 127.3 (\text{C-Ar}), 127.2 (\text{C-Ar}), 125.3 (\text{C=C}), 117.0 (\text{C-Ar}), 114.3 (\text{C-Ar}), 69.2 (\text{OCH}_2\text{-Ar}), 53.9 (\text{CH-NH}), 35.3 (\text{CH}_2), 32.4 (\text{CH}_2), 31.2 (\text{CH}_2), 29.0 (\text{CH}_2), 28.5 (\text{CH}_2), 28.5 (\text{CH}_2), 22.0 (\text{CH}_2), 3.1 (\text{CH}_3), 11.6 (\text{CH}_3).

\upsilon_{\text{max}}/\text{cm}^{-1} \text{ (neat)} 3484, 2929, 2859, 1657, 1505, 1386, 1256, 1091, 1063, 843.

LRMS (ES+) calculated for C\textsubscript{29}H\textsubscript{37}NO\textsubscript{4} [M+H] +: 463.6, found: 464.2.

3-[4-(benzyloxy)phenyl]-2-[(2E,4E)-2-methyltrideca-2,4-dienamido]propanoic acid (12c)

3-[4-(benzyloxy)phenyl]-2-[(2E,4E)-2-methyltrideca-2,4-dienamido]propanoic acid (12c) was prepared using general procedure 7 using 11c (0.7 mmol, 147 mg, 1 eq.), HATU (0.72 mmol, 252 mg, 1.1 eq.), DIEA (2.1 mmol, 0.6 mL, 3 eq.), O-Benzyl-L-Tyrosine (0.84 mmol, 313 mg, 1.2 eq.) and dry DMF (5 mL). The target compound 12c was isolated as a sticky, yellow oil in 72% yield.

\delta_h/\text{ppm} (400 \text{ MHz}; \text{MeOD}) 7.25(5H, m, H_{1-5}), 7.00 (2H, d, J = 8.8 \text{ Hz}, H_{7,8}), 6.76 (2H, d, J = 8.8 \text{ Hz}, H_{9,10}), 6.64 (1H, d, J = 10.8 \text{ Hz}, H_{16}), 6.22 (1H, m, H_{17}), 5.86 (1H, m, H_{18}),
4.91 (2H, s, H₆), 4.41 (1H, m, H₁₂), 3.07 (2H, m, H₁₁), 2.07 (2H, q, J = 6.8 Hz, H₁₉), 1.74 (3H, s, H₁₅), 1.16 (12H, m, H₂₀-2₅), 0.79 (3H, t, J = 6.8 Hz, H₂₆).

υ_{max}/\text{cm}^{-1} (neat) 3329, 2925, 2855, 2487, 1609, 1512, 1381, 1240, 1177, 1026, 975.

6.1.3.7 General procedure 8: Debenzylation using boron trichloride

To a solution of (E)-3-(4-(benziloxy) phenyl)-2-(2-methylundec-3-enamido) propanoic acid (12a) (1 eq.) in dry CH₂Cl₂ at -15 °C was added boron trichloride methyl sulfide complex (2 M in CH₂Cl₂, 8 eq.), dropwise. The reaction was warmed to room temperature and left stirring overnight. The reaction mixture was quenched with CH₂Cl₂/MeOH mixture and the solvent evaporated in vacuo.

methyl [(2E,4E)-2-methylundeca-2,4-dienoyl]tyrosinate (14a)

methyl [(2E,4E)-2-methylundeca-2,4-dienoyl]tyrosinate (14a) was synthesised according to general procedure 8 using 12a (0.222 mmol, 100 mg, 1 eq.), boron trichloride methyl sulfide complex (1.776 mmol, 0.888 mL, 8 eq.). The product was purified using
Chapter 6

Experimental Procedures

172

purified using petroleum ether 4: 6 ethyl acetate and the target compound 14a was isolated as a yellow oil in 80% yield. R\text{f} = 0.54 (petroleum ether 4:6 ethyl acetate).

\(\delta_\text{H}/\text{ppm} \) (400 MHz; (CD\(_3\))\(_2\)CO) 7.13 (1H, d, \(J = 8.8 \) Hz, H\(_9\)), 7.08 (2H, d, \(J = 8.8 \) Hz, H\(_{4,5}\)), 6.83 (1H, d, \(J = 11.2 \) Hz, H\(_{11}\)), (6.76 (2H, d, \(J = 8.8 \) Hz, H\(_{2,3}\)), 6.39 (1H, m, H\(_{12}\)) 5.99 (1H, quin, \(J = 7.2 \) Hz, H\(_{13}\)), 4.68 (1H, m, H\(_8\)), 3.68 (3H, s, H\(_7\)), 3.02 (2H, m, H\(_6\)), 2.09 (2H, m , H\(_{14}\)), 1.86 (3H, s, H\(_{10}\)) 1.36 (12H, m, H\(_{15-18}\)), 0.88 (3H, t, \(J = 6.8 \) Hz, H\(_{19}\)).

\(\delta_\text{C}/\text{ppm} \) (100 MHz; CD\(_3\)CN) 173.1 (C-OMe), 169.3 (C=O), 157.2 (C-Ar), 141.2 (C=C), 134.5 (C=C), 131.1 (C-Ar), 129.1 (C-Ar), 128.8 (C-Ar), 126.8 (C=C), 116.1 (C-Ar), 53.9 (CH-NH), 51.4 (O-CH\(_3\)), 35.8 (CHCH\(_2\)-Ar), 32.4 (CH\(_2\)), 31.1 (CH\(_2\)), 28.4 (CH\(_2\)), 28.3 (CH\(_2\)), 23.3 (CH\(_2\)), 14.4 (CH\(_3\)), 12.9 (CH\(_3\)).

\(\nu_{\text{max}}/\text{cm}^{-1} \) 3324, 2956, 2925, 2855, 1740, 1651, 1615, 1595, 1515, 1445, 1364, 1260, 1216, 1173, 1087, 1020, 971, 801, 751.

HRMS (ES\(^+\)) calculated for C\(_{22}\)H\(_{31}\)NO\(_4\) [M+H] \(^+\) 374.2331, found: 374.2340.

methyl [(2E,4E)-2-methylldodeca-2,4-dienoyl]-L-tyrosinate (14b)

methyl [(2E,4E)-2-methylldodeca-2,4-dienoyl]-L-tyrosinate (14b) was synthesised according to general procedure 8 using 12b (0.323 mmol, 150 mg, 1 eq.), boron trichloride methyl sulfide complex (2.584mmol, 1.292 mL, 8 eq.). The product was purified using petroleum ether 3:7 ethyl acetate and the target compound 14b was isolated as a yellow oil in 79% yield. R\text{f} = 0.46 (petroleum ether 4: 6 ethyl acetate).
Experimental Procedures

\[\delta_H/ppm \] (400 MHz; CDCl\textsubscript{3}) 6.94 (2H, d, \(J = 8.4 \text{ Hz} \), H\textsubscript{4-5}), 6.63 (3H, m, H\textsubscript{2-3,11}), 6.28 (2H, m, H\textsubscript{12}), 5.93 (1H, quin, \(J = 7.6 \text{ Hz} \), H\textsubscript{13}), 4.54 (1H, m, H\textsubscript{8}), 3.62 (3H, s, H\textsubscript{7}), 2.91 (2H, m, H\textsubscript{6}), 2.09 (2H, q, \(J = 7.2 \text{ Hz} \), H\textsubscript{14}), 1.85 (3H, s, H\textsubscript{10}), 1.30 (10H, m, H\textsubscript{15-19}), 0.90 (3H, t, \(J = 7.2 \text{ Hz} \), H\textsubscript{20}).

\[\delta_C/ppm \] (100 MHz; CDCl\textsubscript{3}) 174.9 (C-OOMe), 172.2 (C=O), 157.4 (C-Ar), 143.0 (C=C), 135.9 (C=C), 131.2 (C-Ar), 129 (C-Ar), 129.0 (C-Ar), 128.7 (C-Ar), 126.9 (C=C), 116.3 (C-Ar), 55.9 (CH-NH), 52.7 (O-CH\textsubscript{3}), 37.3 (CHCH\textsubscript{2}-Ar), 33.0 (CH\textsubscript{2}), 30.3 (CH\textsubscript{2}), 30.3 (CH\textsubscript{2}), 30.2 (CH\textsubscript{2}), 23.7 (CH\textsubscript{2}), 14.5 (CH\textsubscript{3}), 12.7 (CH\textsubscript{3}).

v\textsubscript{max}/cm-1 (CH\textsubscript{3}Cl film) 3302, 3028, 2954, 2925, 2855, 1740, 1647, 1615, 1514, 1445, 1365, 1222, 1106, 1085, 971.

HRMS (ES+) calculated for C\textsubscript{23}H\textsubscript{33}NO\textsubscript{4} [M+H]+: 388.2488, found: 388.2499.

Methyl [(2E,4E)-2-methyltrideca-2,4-dienoyl] tyrosinate (14c)

Methyl [(2E,4E)-2-methyltrideca-2,4-dienoyl] tyrosinate (14c) was synthesised according to general procedure 8 using 12c (0.167 mmol, 80 mg, 1 eq.), boron trichloride methyl sulfide complex (1.336 mmol, 0.668 mL, 8 eq.). The product was purified using petroleum ether 3: 7 ethyl acetate. The target compound 14c was isolated as a yellow oil in 72% yield, R\textsubscript{f} = 0.35 (petroleum ether 6: 4 ethyl acetate).

\[\delta_H/ppm \] (400 MHz; CD\textsubscript{3}CN) 7.18 (1H, s, H\textsubscript{1}), 7.05 (2H, d, \(J = 7.6 \text{ Hz} \), H\textsubscript{4-5}), 6.76 (3H, m, H\textsubscript{2-3,11}), 6.68 (1H, d, \(J = 7.6 \text{ Hz} \), H\textsubscript{9}), 6.38 (2H, m, H\textsubscript{12}), 6.06 (1H, quin, \(J = 7.6 \text{ Hz} \), H\textsubscript{10}).
H_{13}, 4.64 (1H, m, H_8), 3.68 (3H, s, H_7), 3.02 (2H, m, H_6), 2.13 (2H, q, J = 7.2 Hz, H_{14}),
1.86 (3H, s, H_{10}), 1.37 (12H, m, H_{15-20}), 0.91 (3H, t, J = 7.2 Hz, H_{21}).

δc/ppm (100 MHz; CD_{3}CN) 171.9 (C-OMe), 168.4 (C=O), 155.5 (C-Ar), 141.4 (C=C),
133.7 (C=C), 129.9 (C-Ar), 127.7 (C-Ar), 127.3 (C=C), 125.3 (C-Ar), 114.8 (C-Ar), 53.9
(CH-NH), 51.4 (O-CH_3), 35.9 (CHCH_2-Ar), 32.4 (CH_2), 31.3 (CH_2), 28.8 (CH_2), 28.7
(CH_2), 28.6 (CH_2), 28.4 (CH_2), 22.1 (CH_2), 13.1 (CH_3), 11.7 (CH_3).

υ_{max}/cm^{-1} (CH_3Cl film) 3306, 2955, 2926, 2856, 1740, 1648, 1615, 1595, 1515, 1445,
1366, 1261, 1216, 1086, 1023, 803, 750.

HRMS (ES^+) calculated for C_{24}H_{35}NO_4 [M+H]^+: 402.2644, found: 402.2631.

6.1.3.8 General procedure 9: Debenzylation using boron trichloride

\[\text{HO}_2\text{C} \quad \text{N} \quad \text{O} \quad \text{R} \] \[\text{BCl}_3 \text{ , DCM} \] \[-15^\circ\text{C}-\text{RT}, 16 \text{ h} \] \[\text{HO}_2\text{C} \quad \text{N} \quad \text{O} \quad \text{R} \]

To a solution of (E)-3-(4-(benzylxylo) phenyl)-2-(2-methylundec-3-enamido) propanoic
acid (12a) (1 eq.) in dry CH_2Cl_2 at -15 °C was added boron trichloride methyl sulfide
complex (2 M in CH_2Cl_2, 8 eq.), dropwise. The reaction was warmed to room temperature
and left stirring overnight. The reaction mixture was quenched with water. The mixture
was transferred to a separating funnel and diluted with dichloromethane. The organic
layer was collected and the aqueous layer extracted three times using dichloromethane.
The organic layers were combined and dried over magnesium sulfate. The volatiles were
evaporated under vacuum using a rotary evaporator.
Methyl [(2E,4E)-2-methylundeca-2,4-dienoyl]tyrosinate (13a) was synthesised according to general procedure 9 using 12a (0.222 mmol, 100 mg, 1 eq.), boron trichloride methyl sulfide complex (1.776 mmol, 0.888 mL, 8 eq.). The product was purified using 10% MeOH in CH₂Cl₂ and the target compound 13a was isolated as a yellow oil.

δH/ppm (400 MHz; MeOD) 6.91 (2H, d, J =8 Hz, H₄-₅), 6.67 (2H, d, J =11.2 Hz, H₁₁), 6.56 (1H, d, J =8 Hz, H₂-₃), 6.24 (1H, m, H₁₂), 5.90 (1H, m, H₁₃), 4.39 (1H, s, H₈), 2.87 (2H, m, H₆), 2.09 (2H, q, J = 7.2 Hz, H₁₄), 1.76 (3H, s, H₁₀), 1.27 (8H, m, H₁₅-₁₈), 0.79 (3H, t, H₁₉).

υmax/cm⁻¹ 3290, 3015, 2956, 2854, 1707, 1614, 1591, 1446, 1386, 1234, 1106, 969, 806, 753.

HRMS (ES⁺) calculated for C₂₁H₂₉NO₄ [M+H]⁺: 360.2175, found: 360.2186.

[(2E,4E)-2-methylundeca-2,4-dienoyl]tyrosine (13b) was synthesised according to general procedure 9 using 12b (0.323 mmol, 150 mg, 1 eq.), boron trichloride methyl sulfide complex (2.584 mmol, 1.292 mL, 8 eq.). The product was purified using 10% MeOH in CH₂Cl₂ and the target compound 13b was isolated as a yellow oil.
δ_H/ppm (400 MHz; MeOD) 6.94 (2H, m, H₄-5), 6.61 (2H, m, H₁₁,2-3), 6.26 (1H, m, H₁₂), 5.92 (1H, m, H₁₃), 4.54 (1H, m, H₅), 2.98 (2H, m, H₆), 2.10 (2H, m H₁₄), 1.76 (3H, s, H₁₀), 1.20 (H₁₅-19), 0.80 (3H, t, H₂₀).

υ_{max/cm}-1 3336, 2970, 2927, 2858, 1595, 1516, 1466, 1380, 1303, 1261, 1161, 1128, 1106, 1026, 816.

HRMS (ES⁺) calculated for C₂₂H₃₁NO₄ [M+H]⁺: 374.2331, found: 374.2338.

[(2E,4E)-2-methyltrideca-2,4-dienoyl]tyrosine (13c)

[(2E, 4E)-2-methyltrideca-2, 4-dienoyl]tyrosine (13c) was synthesised according to general procedure 9 using 12c (0.167 mmol, 80 mg, 1 eq.), boron trichloride methyl sulfide complex (1.336 mmol, 0.668 mL, 8 eq.). The product was purified using 10% MeOH in CH₂Cl₂ and the target compound 13c was isolated as a yellow oil.

δ_H/ppm (400 MHz; MeOD) 6.90 (2H, d, J =12 Hz, H₄-5), 6.67 (2H, d, J =12 Hz, H₁₁), 6.55 (2H, d, J =8.4 Hz, H₂-3), 6.26 (1H, m, H₁₂), 5.89 (1H, m, H₁₃), 4.41 (1H, s-broad, H₈), 2.97 (2H, m, H₆), 2.09 (2H, q, J = 7.2 Hz, H₁₄), 1.76 (3H, s, H₁₀), 1.27 (broad), 0.77-0.82 (3H, t, H₂₁).

υ_{max/cm}-1 3336, 2970, 2929, 1595, 1466, 1379, 1305, 1161, 1128, 1107, 817.

HRMS (ES⁺) calculated for C₂₃H₃₃NO₄ [M+H]⁺: 388.2488, found: 388.2491.
6.1.4 Attempted amide coupling

Amide coupling was attempted using the following procedures.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Coupling reagent</th>
<th>Additive</th>
<th>Base</th>
<th>Reaction time</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxalyl chloride</td>
<td>DMF</td>
<td>Et$_3$N</td>
<td>6 – 24 h</td>
<td>RT, 50 °C, 70 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No DMF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EDC</td>
<td>HOBt</td>
<td>DMAP</td>
<td>12 – 24 h</td>
<td>RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No HOBt</td>
<td>DIEA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1.5 Attempted Debenzylation

6.1.5.1 Debenzylation using H₂

![Debenzylation using H₂ diagram]

A mixture of methyl 2-((E)-2-methyldec-2-enamido)-3-(4-(benzyloxy) phenyl)propanoate (4) (0.45 mmol, 200 mg, 1 eq.), triethylamine, Pd/C (20 mg) and methanol (3 mL) was stirred under hydrogen atmosphere (balloon) at room temperature. The desired product was not formed.

6.1.5.2 Debenzylation using Et₃SiH

![Debenzylation using Et₃SiH diagram]

A solution of Pd (OAc)₂ (0.048 mmol, 1.07 mg, 0.04 eq.), Et₃SiH (0.16 mmol, 0.03 mL, 1.4 eq.) and Et₃N (0.02 mmol, 0.02 mL, 0.14 eq.) in anhydrous CH₂Cl₂ (4 mL) was stirred at room temperature under argon for 15 minutes. A solution of 4 (0.12 mmol, 50 mg, 1 eq.) in CH₂Cl₂ (2 mL) also under argon was added dropwise. The resulting mixture was stirred at room temperature under argon overnight before quenching using ammonium chloride (15 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL) and the
combined organic extracts were washed with brine (15 mL), dried under magnesium sulfate and the volatiles removed in vacuo. No product was formed.

6.2 Part B: Cytotoxicity assays using MTT and Alamar blue

6.2.1 Materials and instrumentation

The A549 cell line was obtained from the lab stock. Dulbecco’s modified Eagles medium, foetal bovine serum (FBS), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), resazurin sodium salt (Alamar Blue® (AB)) were purchased from Sigma Aldrich. All consumables were purchased from VWR. Cell counting was performed using a Beckmann Counter. Absorbance was measured using TECAN GENios multi plate reader.

6.2.1.1 Preparation of PBS solution

PBS solution was prepared by dissolving potassium phosphate monobasic (1.065 g, 7.5 mmol), sodium phosphate monobasic dihydrate (0.389 g, 2.5 mmol) and sodium chloride (8.498 g, 145 mmol) in ultra-pure water. The solution was made up to the mark using ultra-pure water and autoclaved for 20 minutes @ 121.5 °C and 15 psi.

6.2.1.2 Preparation of PBS-EDTA solution

PBS-EDTA solution was prepared by adding ethylenediaminetetraacetic acid (0.1 g, 0.34 mmol) to 500 mL of PBS solution prepared in section 7.1.6.1. The solution was autoclaved for 20 minutes @ 121.5 °C and 15 psi.

6.2.2 Procedures

Cells were maintained in Dulbecco’s modified Eagles’ media supplemented with FBS (10% v/v). Cells were sub cultured every 3-4 days. All cells were incubated at 37 °C in a
humidified atmosphere with 5% CO₂. Cells were harvested when they were in exponential or log phase. The cells were evaluated to ensure health and correct confluence by visualisation using a light microscope. The cells were then trypsinised and suspended in fresh media. Working solutions were prepared before use by preparing a stock solution in DMSO and dilution of the stock using medium (maximum concentration of DMSO used was 1%). Control assays were carried out on all experiments with 100% media (positive control) and 10% v/v DMSO (negative control). Stock solutions of MTT and AB were prepared up to 6 hours in advance and stored in darkness for up to three days. Trypsin was prepared in advance and stored for up to two weeks at 4 °C. Working solutions for MTT and AB were made immediately before use by diluting the stock solution with appropriate medium.

6.2.3 Procedure for trypsinising (splitting) cells

The cells were visually assessed under a light microscope. Old media was decanted from the flask into a waste beaker. The flask was rinsed with PBS to remove any dead cells. To the flask was added trypsin-EDTA solution (3 mL) and the cells were incubated at 37 °C for 5 -10 minutes. Trypsin-EDTA solution was prepared by aseptically adding 10 mL Vercene (EDTA) to an aliquot of trypsin (10 mL). The cells were returned to the laminar hood and sterile media (15 mL) added to neutralise the trypsin. The cell suspension was aseptically decanted into sterilin (25 mL). To a new flask, was added fresh media (15 mL). Cell suspension (500 μL) was added to the flask containing fresh media and the flask sealed. The cells were then incubated at 37 °C in a humidified atmosphere with 5% CO₂. The health of the cells was assessed every 24 hours and trypsinisation carried out every 3 – 4 days. Only cells showing normal health were used for experiments.
6.2.4 Cytotoxicity Assays

6.2.4.1 Procedure for MTT assay

Part A: All experiments were carried out in triplicate. Cell count was performed using a haemocytometer. Stock solutions of cell suspensions were prepared depending on the length of exposure as shown in Table 6.1 below.

<table>
<thead>
<tr>
<th>Exposure duration</th>
<th>Cell suspension concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h</td>
<td>1.2×10^5</td>
</tr>
<tr>
<td>48 h</td>
<td>5×10^4</td>
</tr>
<tr>
<td>72 h</td>
<td>3×10^4</td>
</tr>
</tbody>
</table>

Table 6.1: Cell suspension concentrations for various exposure duration.

The desired cells were seeded into 96-well microtitre plates with 100 µL of the appropriate cell concentration. The cells were incubated for 24 h in order to attach to the plate. Drug stock solutions were prepared in DMSO (1%). Final test concentrations were prepared by diluting the stock solution with medium. The cells were exposed to 5 drug concentrations, including a positive and negative control in 8 replicate wells per plate. Following exposure, the plates were incubated for the desired time; 24, 48 or 72 hours.

Part B: The assay was terminated by discarding supernatant media and rinsing with sterile PBS. MTT stock solution was prepared by adding MTT (20 mg) to sterile PBS (10 mL) followed by filter sterilisation. To each well, was added MTT (100 µL) (10% in unsupplemented fresh media) and the plates further incubated for 3 hours. During this time, viable cells absorbed and metabolised the MTT. After the three hours, the supernatant was removed and the cells washed with PBS to remove unmetabolised MTT. The remaining formazan was solubilised in DMSO (100 µL) and the plates shaken at 240
RPM for 10 minutes. The plates were placed in a plate reader and the absorbance of each solution read and recorded at 570nm. The percentage viability was calculated using corrected absorbance readings as follows:

\[
\text{\% viability} = \frac{\text{average absorbance of treated cells}}{\text{average absorbance of control}} \times 100
\]

6.2.4.2 Procedure for AB assay

Following part A from procedure for MTT assay, the assay was terminated by discarding supernatant media and rinsing with sterile PBS. AB stock solution was prepared by adding 0.5 mL sterile AB dye to 10 mL unsupplemented media. To each well, was added 100 µL of the AB solution and the plates further incubated for 3 hours. The plates were placed in a plate reader and each solution read and recorded using 540 nm excitation and 650 nm emission. The percentage viability was calculated using corrected absorbance readings as follows:

\[
\text{\% viability} = \frac{\text{average absorbance of treated cells}}{\text{average absorbance of control}} \times 100
\]

6.2.5 Preparation of cell suspensions and control and drug solutions

6.2.5.1 Working cell suspensions

Each cell suspension was diluted in supplemented media to give the appropriate cell density, dependent on period of exposure. The cell densities used were 1.2 x 10^5 cells/well for 24 h timepoint, 5 x 10^4 for 48 h timepoint and 3 x 10^4 for 72 h timepoint.

6.2.5.2 Preparation of drug solutions (700 µM)

Drug stock solutions were prepared in DMSO. All final drug solutions contained DMSO at a concentration no greater than 1%. The range of solutions were created by serial dilutions within the plates.
6.2.6 Plate seeding procedure

a) 100 μL of the appropriate cell suspension was added to lanes 1 to 12 of each plate, with 8 replicates per lane.

b) The plates were incubated at 37 °C in a humidified 5% CO₂ atmosphere for 24 hours to allow for attachment.

c) After 24 h, the media was discarded and each well rinsed with 100 μL sterile PBS

d) To lanes 1 - 11 of the plate was added 100 μL supplemented media

e) To lane 12 was added 100 μL of 1% DMSO in supplemented media.

f) To lane 11 was added 100μL of 350 μM drug solution, followed by serial dilutions to lanes 10 – 7.

g) To lane 6 was added 100μL of 700 μM of a different drug solution, followed by serial dilutions to lanes 5 – 2.

h) Contents of each well were mixed by carefully pipetting up and down gently up to three times.

i) The plates were incubated at 37 °C in a humidified 5% CO₂ atmosphere for the desired times (24, 48 or 72 hours).
Figure 6.1: 96-Well plate set up for MTT assay with suspension cells, A549. 2 compounds at 5 drug concentrations were assessed per plate

6.2.7 MTT Exposure and absorbance reading

A stock solution of MTT in sterile PBS (10 mg/5 mL) was prepared and filter sterilised. MTT stock solution was diluted in unsupplemented media (10% v/v). Following exposure for the appropriate time, the test solutions were discarded from plates and each plate was rinsed with 100 μL sterile PBS. 100 μL of the MTT solution was added to each well and the plates were incubated at 37 °C for 3 hours. The supernatant was carefully discarded and the plates rinsed with PBS. 100 μL DMSO was carefully added to each well and the plates shaken at 240 RPM for 10 minutes. The plates were placed in a plate reader and the absorbance of each solution read and recorded at 570 nm.
6.2.8 AB Exposure and absorbance reading

A stock solution of AB in sterile unsupplemented medium (0.5 mL/10 mL) was prepared. Following exposure for the appropriate time, the test solutions were discarded from plates and each plate rinsed with 100 μL sterile PBS. 100 μL of the AB solution was added to each well and the plates were incubated at 37 °C for 3 hours. The plates were placed in a plate reader and each solution read and recorded using 540 nm excitation and 650 nm emission.
6.3 Part C: ELISA Assay

6.3.1 Materials and instrumentation

A FIRELISA Human PLK-1 ELISA Kit Assay purchased from Medical Supply Co. Ltd was used. The A549 cell line used was obtained from the lab stock. Dulbecco’s modified Eagles medium, foetal bovine serum (FBS) were purchased from Sigma Aldrich. All consumables were purchased from VWR. Cell counting was performed using a Beckmann Counter. Absorbance was measured using TECAN GENios multi plate reader.

6.3.2 Preparation of samples and standards

6.3.2.1 Preparation of cell suspensions and seeding procedure

Cell suspension was diluted in supplemented media to give the appropriate cell density. The cell densities used were 5×10^5 cells/well. The desired cells were seeded into 6-well microtitre plates with 2 mL of the appropriate cell concentration. The cells were incubated for 24 h in order to attach to the plate. Drug stock solutions were prepared in DMSO (1%). Final test concentrations were prepared by diluting the stock solution with medium. The cells were exposed to drug concentrations, including a positive control for 5 different time points. Following exposure, the plates were incubated for the desired times.
6.3.2.2 **Plate seeding procedure**

a) 2 mL of the cell suspension was added to each well of each plate.

b) The plates were incubated at 37 °C in a humidified 5% CO₂ atmosphere for 24 hours to allow for attachment.

c) After 24 h, the media was discarded and each well rinsed with 2 mL sterile PBS.

d) To well A1, A3, B1, B2, B3 of the plate was added 2 mL supplemented media.

e) To well A2 was added the appropriate drug solution in supplemented media and the plate incubated.

f) After 12 hours, media was taken out of well A3 and replaced with the appropriate drug concentration.

g) After 2 hours, media was taken out of well B3 and replaced with the appropriate drug concentration.

h) After 2 hours, media was taken out of well B2 and replaced with the appropriate drug concentration.

i) After 1 hour, media was taken out of well B1 and replaced with the appropriate drug concentration.

j) After 1 hour, the plate was removed from the incubator and the media discarded.

Figure 6.2: 6 well plate design for preparation of cell culture supernatant for ELISA assay.
k) Each well was rinsed using sterile PBS and the cells trypsinised according to procedure 7.2.3. using 1 mL trypsin-EDTA and 5mL media.

l) The supernatant was collected for lysis.

6.3.2.3 Preparation of cell culture supernatant

The cell supernatant collected in section 7.3.2.2 was centrifuged @ 4 °C for 20 minutes at 2500 rpm. The supernatant was discarded and the cells rinsed using sterile PBS (2 * 2 mLs). The cell pellet was diluted in 2 mL PBS and lysis performed using a sonicator. (10 seconds blast and 10 seconds rest). The sonication was repeated three times. The cells were further centrifuged @ 4 °C for 20 minutes at 2500rpm to pellet the debris. The clear supernatant was transferred to a cryogenic vial and stored at -78 °C until required for use.

6.3.2.4 Preparation of drug solutions

Drug stock solutions were prepared in DMSO. All final drug solutions contained DMSO at a concentration no greater than 1%. The range of solutions were created by serial dilutions within the plates. Final test concentrations were prepared by diluting the stock solution with medium.

6.3.2.5 Preparation of standard and Assay Procedure

The standards and assay procedure were carried out as per manufacturers manual. The 96 well plate design is shown in Figure 6.3. Lanes 11 and 12 were removed and stored at -80 °C for future work.
Figure 6.3: 96 well plate design for ELISA assay showing different drug solutions (C1-C6) and different time exposures (1, 2, 4, 6 and 18 hours), controls, calibration standards and blank wells.
A. Appendix

Results of the biological evaluation

Cytotoxicity data are the average of at least three experiments expressed as mean percentage viability relative to control (100 %) ± standard deviation (SD). The results have been statistically analysed using one-way analysis of variance (ANOVA) followed by a post-ANOVA Dunnett’s test using GraphPad Prism software ®. Test results are considered relevant when P < 0.05 (denoted with *) and very significant when P < 0.01 (denoted with #) for the Dunnets analysis. Statistical data were calculated using Microsoft excel. EC$_{50}$ values were calculated using GraphPad Prism software ®.
Figure A.1: Legend for Appendices
MTT Assay

Figure A.2: Viability of A549 versus concentration of 1a
Figure A.3: Viability of A549 versus concentration of 1b
Figure A.4: Viability of A549 versus concentration of 2a

Figure A.5: Viability of A549 versus concentration of 2b
Figure A.6: Viability of A549 versus concentration of 3a

Figure A.7: Viability of A549 versus concentration of 3b
Figure A.8: Viability of A549 versus concentration of 4a

Figure A.9: Viability of A549 versus concentration of 4b
Alamar Blue Assay

Figure A.10: Viability of A549 versus concentration of 1b

Figure A.11: Viability of A549 versus concentration of 4a
Figure A.12: Viability of A549 versus concentration of 4b