1999

The Dynamic Properties of Confined Antiferroelectric Liquid Crystal Investigated by Photon Correlation Spectroscopy

Yuri Panarin
Dublin Institute of Technology, yuri.panarin@dit.ie

C. Rosenblat

F.M. Aliev

Follow this and additional works at: https://arrow.dit.ie/engscheleart2

Part of the Electrical and Computer Engineering Commons

Recommended Citation

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
The Dynamic Properties of Confined Antiferroelectric Liquid Crystal Investigated By Photon Correlation Spectroscopy

Yu.P. Panarin (a1), C. Rosenblat (a2) and F.M. Aliev (a3)

DOI: https://doi.org/10.1557/PROC-559-27
Published online: 01 February 2011

Abstract

Dynamic light scattering was used to examine ferrielectric liquid crystalline phases in porous media. Whereas in larger pores (200 Å) ferrielectric phases were observed, they were not found in the smallest pores (200 Å). Additionally, the temperatures of SmC - SmA phase transition were found to be suppressed in the pores relative to bulk, while SmCA - SmC, phase transition is not affected by the confinement. These observations have been explained by the structural aspects of antiferroelectric liquid crystalline materials in a confined geometry and show the importance of long range electrostatic interaction for existence of ferrielectric phases.

Copyright

COPYRIGHT: © Materials Research Society 1999

Linked references

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

 • CrossRef Google Scholar

 • CrossRef

 • CrossRef

 • CrossRef Google Scholar

 • CrossRef Google Scholar

