2007-01-01

Sensors for the detection of hazardous emissions

Aidan O'Dwyer

Technological University Dublin, aidan.odwyer@dit.ie

Follow this and additional works at: https://arrow.dit.ie/engscheleart

Part of the Process Control and Systems Commons

Recommended Citation


This Conference Paper is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie, brian.widdis@dit.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Sensors for the detection of hazardous emissions

Aidan O’Dwyer,
School of Control Systems and Electrical Engineering,
Dublin Institute of Technology, Kevin St., Dublin 8.
aidan.odwyer@dit.ie

This contribution will detail recent developments in sensor technology for the detection of hazardous emissions. The accurate measurement of such emissions is necessary if they are to be controlled to the appropriate regulations; this latter topic is the subject of a related contribution at the colloquium (Hazard emissions monitoring and control).

Firstly, recent developments in gas analysers will be outlined, to measure, for example, reactive and condensable gases such as HCl, NH₃ and formaldehyde [1], [2]. The measurement of emissions of other harmful pollutants (such as NOₓ, for example) is also increasingly important; such measurements are required in steam power plants, for example, in which heat is used to create steam, which, in turn, spins a turbine generator that creates electricity. The heat used to convert water to steam most commonly comes from the burning of a carbon based fuel, such as natural gas or oil; emission of pollutants are the inevitable result. NOₓ emissions cause a wide variety of health issues, such as respiratory damage from the resulting particles, and environmental problems, such as ground level ozone (smog), acid rain, water quality deterioration and global warming [3]. Sensors to measure NOₓ emissions will be treated in detail [3-6].

However, online measurement devices can be costly. An alternative is to use “virtual sensors”, in which variables are estimated based on their correlation with other, more easily measured, quantities [7-8]. The contribution will conclude by considering such sensors.

References: