2011

Role of Vascular Endothelial Growth Factor, Placental Growth Factor and Cytokines on Outer Blood Retinal Barrier Breakdown.

Sangeetha Sukumaran

Dublin Institute of Technology

Follow this and additional works at: http://arrow.dit.ie/scienmas

Part of the Biotechnology Commons, Laboratory and Basic Science Research Commons, Medicine and Health Sciences Commons, and the Other Cell and Developmental Biology Commons

Recommended Citation

Role of Vascular Endothelial Growth Factor, Placental Growth Factor and Cytokines on outer Blood Retinal Barrier breakdown

Sangeetha V Sukumaran

BSc. (Hons) Biochemistry, Molecular Biology and Biotechnology
School of Biological Sciences
Dublin Institute of Technology
Republic of Ireland

Thesis submitted in fulfilment of the requirements for the degree of

MPhil in Biochemistry

Supervisors

Dr. Brenda Brankin, Dr. Gwilym Williams

Submitted: July 2011
I certify that this thesis, which I now submit for examination for the award of M.Phil is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

This thesis was prepared according to the regulations for postgraduate study by research of the Dublin Institute of Technology and has not been submitted in whole or in part for an award in any other Institute or University.

The work reported on in this thesis confirms to the principles and requirements of the Institute’s guidelines for ethics in research.

The Institute has permission to keep, to lend or to copy this thesis in whole or in part, on condition that any such use of the material of the thesis be duly acknowledged.

Signature: Date:
Abstract

The Blood Retinal Barrier is composed of an inner BRB (iBRB) and outer BRB (oBRB). The iBRB is formed by retinal microvascular endothelial cells. The oBRB is formed by a monolayer of Retinal Pigment Epithelial (RPE) cells which lines and supports the functions of the photoreceptor layer. The tight junctions in the oBRB regulate ion and macromolecular transport along the paracellular layer. Neovascular Age Related Macular Degeneration (ARMD) is associated with alterations of the oBRB. Vascular Endothelial Growth Factor (VEGF) levels are high in neovascular ARMD and may promote oBRB breakdown. Low grade inflammation also plays a role in ARMD with infiltration of the BRB by macrophages and lymphocytes. Inflammation induced accumulation of macrophages, followed by secretion of pro-inflammatory cytokines Tumour necrosis factor – α (TNF-α) or Interleukin-1β (IL-1β), may affect oBRB function.

The aim of this thesis was to investigate the effect of the VEGF family of growth factors and cytokines TNF-α and IL-1β on oBRB function. The human RPE line ARPE-19 was employed as an in vitro model of the oBRB. Two-Dimensional gel electrophoresis was employed to study the effect of growth factors on the RPE proteome. The barrier properties of the oBRB were evaluated by expression of the TJ proteins occludin or Zo-1, or claudins-1, 2, 3 and 4, determined by western blotting analysis. Claudins 2, 3 and 4 were found to be significantly up-regulated by TNF-α, while interleukin 1 β-treated RPE showed increased expression of Claudins 1 and 3.

Immunofluorescence imaging showed junctional loss of occludin and ZO-1 in VEGF, TNF-α and IL-1β treated RPE. Placental growth factor (PIGF), a member of the VEGF family, has been found to be produced by hypoxia-stimulated RPE, and treatment with PIGF was shown to cause a disruption of junctional integrity of occludin in RPE. Cytokine induced regulation of Zo-1, occludin and claudins may lead to oBRB breakdown in ARMD, affecting photoreceptor function and leading to vision loss.

These findings will help in identifying inflammatory mediators important in the pathogenesis of ARMD, and molecular targets for control of ARMD related inflammation and disease progression.
Many people helped me in completing this degree. First and foremost, I would like to express my profound gratitude to Dr. Brenda Brankin for all her invaluable support, supervision and timely feedbacks she gave me, which enabled me to progress in my research and successfully complete this project and Dr. Gwilym Williams for his feedbacks and comments on this research work. My heartfelt thanks to both my supervisors for their patience and helping me write my thesis.

I would like to thank Dr. Mary Hunt, assistant Department head (School of Biological Sciences) for her continuous encouragement and advice. I specially thank Dr. John Kearney for his help with statistical analysis of data collected for this project. I would also like to thank Dr. Louis Armstrong, Head of Dept. (School of Biological Sciences) for this research opportunity.

I thank Fighting Blindness for funding this project.

To all the technicians and staff in School of Biological Sciences and School of Chemistry.

To all my colleagues at Lab 230 and my friends outside of DIT for their support and continued encouragement.

To my family
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>One Dimensional</td>
</tr>
<tr>
<td>2-D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced Glycation End-products</td>
</tr>
<tr>
<td>AJ</td>
<td>Adherens Junction</td>
</tr>
<tr>
<td>AMD / ARMD</td>
<td>Age Related Macular Degeneration</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variations</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood Brain Barrier</td>
</tr>
<tr>
<td>BCIP / NBT</td>
<td>5-bromo 4-chloro 3’-indoil phosphate / nitro-blue tetrazolium</td>
</tr>
<tr>
<td>BRB</td>
<td>Blood Retinal Barrier</td>
</tr>
<tr>
<td>BRMEC</td>
<td>Bovine Retinal Micro-vascular Endothelial Cells</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CLDN</td>
<td>Claudin</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-di amidino-2-phenyl indole</td>
</tr>
<tr>
<td>DR</td>
<td>Diabetic Retinopathy</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>FITC</td>
<td>Flourescein iso-thio cyanate</td>
</tr>
<tr>
<td>GuK</td>
<td>Guanylate Kinase</td>
</tr>
<tr>
<td>HaCaT</td>
<td>Human keratinocytes</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse Radish Peroxidase</td>
</tr>
<tr>
<td>iBRB</td>
<td>Inner Blood Retinal Barrier</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin – one Beta</td>
</tr>
<tr>
<td>IPG</td>
<td>Immobilized pH gradients</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>KDa</td>
<td>Kilo Daltons</td>
</tr>
<tr>
<td>MAGUK</td>
<td>Membrane Associated Guanylate Kinase</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemotactic protein one</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madine Darby Canine Kidney</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribo nucleic acid</td>
</tr>
<tr>
<td>NPDR</td>
<td>Non-proliferative Diabetic Retinopathy</td>
</tr>
<tr>
<td>NRK</td>
<td>Normal Rat Kidney</td>
</tr>
<tr>
<td>oBRB</td>
<td>Outer Blood Retinal Barrier</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet Derived Growth Factor</td>
</tr>
<tr>
<td>PDR</td>
<td>Proliferative Diabetic Retinopathy</td>
</tr>
<tr>
<td>PEDF</td>
<td>Pigment Epithelium Derived Factor</td>
</tr>
<tr>
<td>PIGF</td>
<td>Placental Growth Factor</td>
</tr>
<tr>
<td>PVR</td>
<td>Proliferative Vitreo Retinopathy</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for AGEs</td>
</tr>
<tr>
<td>RMEC</td>
<td>Retinal Microvascular Endothelial Cells</td>
</tr>
<tr>
<td>RP</td>
<td>Retinitis Pigmentosa</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal Pigment Epithelium</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of Mean</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>TEER</td>
<td>Trans Epithelial Electrical Resistance</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight Junction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor – Alpha</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethyl Rhodamine Iso-thio cyanate</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vasculo Endothelial Growth Factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>ZO</td>
<td>Zonula Occludens</td>
</tr>
</tbody>
</table>
Declaration (i)

Abstract (ii)

Acknowledgements (iii)

Abbreviations (iv)

Contents (v)

Chapter 1: Introduction

1.1 Inner Blood Retinal Barrier 1
1.2 Outer Blood Retinal Barrier 2
1.3 Retinal Pigment Epithelium 3
1.4 Tight Junctions 4
1.5 Tight Junction Proteins 5
1.6 Occludin 6
1.7 The Claudin family of Tight Junction Proteins 9
1.8 Zonula Occludens (ZO) proteins 15
1.9 Adherens Junctions 16
1.10 Ocular diseases and abnormal RPE 16
 1.10.1 Age Related Macular Degeneration (AMD) 17
 1.10.2 Retinitis Pigmentosa 19
1.11 Diseases of the iBRB – Diabetic Retinopathy (DR) 20

Aims and Hypothesis 22

 (i) Hypothesis 24
 (ii) Aims 25

Chapter 2: Materials and Methods

2.1 Materials 26
 2.1.1 Materials for cell culture and cell treatment 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.1</td>
<td>Cell types used</td>
<td>26</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>Materials</td>
<td>26</td>
</tr>
<tr>
<td>2.1.1.3</td>
<td>Solutions used</td>
<td>27</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Materials for Protein analysis</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Materials for SDS-PAGE</td>
<td>28</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Solutions used</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Materials for Western Blotting</td>
<td>29</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>Antibodies used</td>
<td>30</td>
</tr>
<tr>
<td>2.1.4.2</td>
<td>Solutions used</td>
<td>30</td>
</tr>
<tr>
<td>2.1.4.3</td>
<td>SDS-PAGE Resolving gel preparations</td>
<td>30</td>
</tr>
<tr>
<td>2.1.4.4</td>
<td>4% Stacking gel preparation</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Materials for Immunofluorescence</td>
<td>31</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Materials for Immunohistochemistry</td>
<td>31</td>
</tr>
<tr>
<td>2.1.6.1</td>
<td>Solutions used</td>
<td>32</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Materials for 2-D Electrophoresis</td>
<td>32</td>
</tr>
<tr>
<td>2.1.7.1</td>
<td>Solutions used</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Methods</td>
<td>35</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Cell Culture</td>
<td>35</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Growth Factor Treatment and extraction</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Protein Analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.2.4</td>
<td>1-D Electrophoresis</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Western blotting protocol</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Chromogenic detection</td>
<td>39</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Enhanced chemiluminescence</td>
<td>39</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Densitometric analysis</td>
<td>39</td>
</tr>
</tbody>
</table>
2.2.6 Viability Assay 40
2.2.7 Statistical analysis 40
2.2.8 Immunoflorescence 41
2.2.9 Immunohistochemistry 42
 2.2.9.1 Tissue rehydration 42
 2.2.9.2 De-waxing and antigen retrieval 42
 2.2.9.3 ABC staining method 42
 2.2.9.4 Rehydration 43
2.2.10 2-D Electrophoresis 43
 2.2.10.1 Acetone precipitation 43
 2.2.10.2 IPG strip rehydration 43
 2.2.10.3 Iso-electric focusing (IEF) 44
 2.2.10.4 IPG strip equilibration 45
 2.2.10.5 Electrophoresis 45
 2.2.10.6 Coomassie blue staining 46
 2.2.10.7 Silver Staining 47

Chapter 3: Standardisation of techniques for detection of protein expression
3.1 Two-dimensional (2-D) Electrophoresis 48
3.2 Western Blotting 55
3.3 Immunoflorescence 59

Chapter 4: Effect of Growth Factors on outer Blood Retinal Barrier
4.1 Introduction 65
 4.1.1 VEGF Structure and function 65
 4.1.2 Placental Growth Factor 67
4.2 Aims 67
Chapter 4: Effects of Cytokines on the Outer Blood-Retinal Barrier

4.3 Cell culture and growth factor treatment

4.4 Results and Discussion

1. **4.4.1** Occludin expression in RPE treated with VEGF
 - 69
2. **4.4.2** ZO-1 expression in RPE treated with VEGF
 - 73
3. **4.4.3** Occludin expression in RPE treated with PI GF
 - 77

4.5 Viability Assay

Chapter 5: Effect of Cytokines on the Outer Blood Retinal Barrier

5.1 Introduction

5.2 Tumor necrosis factor alpha (TNF-α)

5.3 Interleukin -1 beta (IL-1β)

5.4 Aims

5.5 Cell culture and cytokine treatment

5.6 Results and Discussion

1. **5.6.1** Occludin expression in RPE cells treated with TNF-α
 - 87
2. **5.6.2** ZO-1 expression in RPE cells treated with TNF-α
 - 89
3. **5.6.3** Claudin-2 expression in RPE cells treated with TNF-α
 - 92
4. **5.6.4** Claudin-3 expression in RPE cells treated with TNF-α
 - 94
5. **5.6.5** Claudin-4 expression in RPE cells treated with TNF-α
 - 96
6. **5.6.6** β-catenin expression in RPE cells treated with TNF-α
 - 98
7. **5.6.7** Occludin expression in RPE cells treated with IL-1β
 - 101
8. **5.6.8** ZO-1 expression in RPE cells treated with IL-1β
 - 104
9. **5.6.9** Claudin-1 expression in RPE cells treated with IL-1β
 - 107
10. **5.6.10** Claudin-3 expression in RPE cells treated with IL-1β
 - 109

5.7 Viability Assay

Chapter 6: Discussion

Chapter 1

Introduction
The Blood Retinal barrier (BRB) located in the eye provides a selective barrier for regulation of the retinal milieu and for maintaining the specialised environment of the neural retina. The concept of a retinal barrier impermeable to dyes, with possible structural similarity to the Blood Brain Barrier (BBB), was proposed as early as 1913 by Schnaudigal (Cunha-Vaz et al 1966, Schnaudigal O.V 1913). Unlike BBB, the BRB is comprised of two layers – inner and outer. The inner layer (iBRB) is composed of the Retinal Microvascular Endothelial cells (RMECs) and the outer layer (oBRB) comprises the Retinal Pigment Epithelial (RPE) cells. Together, the BRB layers regulate the passage of ions, water and protein in and out of the retina, in response to the varying metabolic demands of the retina (Cunha-Vaz et al., 2010). The barrier property of the BRB is due to the presence of ‘tight junctions’ (TJs) which seal the paracellular space from the outer environment. The TJs are formed by interaction between membrane proteins in the adjacent cells in the BRB.

The oBRB regulates permeability of molecules from choroid into the retinal microenvironment. RMEC and RPE cells secrete cytokines, growth factors and other key molecules essential for maintenance of retinal homeostasis (Holtkamp et al. 1999). The integrity of the BRB is critical to normal visual function (Gardner et al, 1999). Abnormal permeability change or breakdown of BRB is the hallmark of several pathological conditions that affect the neural retina.

1.1. Inner Blood Retinal Barrier

The iBRB is structurally similar to the Blood Brain Barrier (BBB) with the RMECs surrounded by retinal pericytes and macroglial cells (Hosoya and Tomi, 2005). The RMECs
form complex TJs which functions to prevent the free diffusion of substances between circulating blood and neural retina (Hosoya and Tachikawa, 2009). The selectively permeable TJs in RMECs ensure correctly regulated hemodynamics and delivery of oxygen and metabolites (Pournaras et al., 2008). Breakdown of the iBRB is the major cause of vision loss in ocular disorders such as diabetic retinopathy, sickle cell disease and cystoid macular edema (Brankin et al. 2005, Vinores et al. 1999). Retinal vascular changes resulting in increased retinal vascular permeability represent a major pathological change in diabetic retinopathy (Ma et al. 2005).

1.2 Outer Blood Retinal Barrier

The Outer Blood Retinal Barrier (oBRB) is formed by a monolayer of RPE cells which lies between the neural retina and Bruch’s membrane, separating it from the choroid. The oBRB faces the photoreceptor layer of the eye on its apical side. The Bruch’s membrane separates the RPE from the chorio-capillaries on the basolateral side. The long apical microvilli of RPE cells surround the light sensitive outer segments of the photoreceptor cells establishing a complex of close structural interaction (Strauss, 2005). The oBRB regulates passage of ions and macromolecules into the photoreceptor layer and transports water and metabolic end products from the sub-retinal space to blood. The RPE layer also assists in development of retinal structures by secreting a host of growth factors required for endothelial and photoreceptor cell differentiation (Strauss, 2005, Adamis et al. 1993). Breakdown of the oBRB in conditions such as Age Related Macular Degeneration (ARMD) and Retinitis Pigmentosa leads to degradation of the photoreceptor cell layer (Cunha-Vaz et al. 2010, Vinores et al. 1995).

1.3 Retinal Pigment Epithelium

The Retinal Pigment Epithelium (RPE) is a highly specialized tissue that serves an indispensable and multifunctional role within the eye (Strauss 2005). It comprises a monolayer of pigmented cells lining the basal surface of the photoreceptor layer of the neural retina (Fig. 1.1). Apart from forming the oBRB, the RPE cells also regulate the functioning of the neural retina. RPE is required for transportation of nutrients and ions between the retina and choriocapillaries (Kevany and Palczewski, 2010, Rizzolo et al 2007(a)). The RPE cells play an important role in the visual cycle by regenerating 11-cis-retinal from trans-retinal (Strauss 2005). The reduction in delivery of retinal to photoreceptors has been found to cause photoreceptor dystrophy (Seeliger et al, 1999). The photoreceptor cells require a delicate balance of proteins, lipids and metabolites in order to function properly. Disturbance of this balance leads to retinal degeneration (Strauss 2005). The photoreceptor cells undergo a daily renewal process in order to prevent the toxic effects of accumulated photo-oxidative products, by shedding 10% of their volume in the form of discs (Kevany and Palczewski, 2010). These discs are phagocytosed by RPE cells. Breakdown in the ability of the RPE to degrade the photo-oxidative products is believed to be the underlining cause for degenerative disorders such as ARMD (Nandrot et al, 2004) and Usher’s syndrome (Fig 1.1).
Fig: 1.1 Photoegulatory function of RPE barrier (Image provided by Dr. Brenda Brankin)

1.4 Tight Junctions

The interaction between protein complexes of adjacent cells gives rise to two types of membrane barrier junctions – Tight Junctions (TJ) and Adherens Junctions (AJ). Among other components, TJs are required in the oBRB to regulate the trans-epithelial movement of ions and other molecules into the paracellular space (Balda and Matter, 2000). TJs provide a continuous seal around the apical region of the lateral membranes of adjacent cells (Citi, 1993). When viewed under the microscope using freeze fracture electron microscopy, TJs appear as a ‘necklace’ of strands encircling the cells (Rizzolo et al, 2007(b)). The TJs lie on the apical side of the cells, close to AJs which bind the adjacent cells in the monolayer (Rizzolo et al., 2007 (a)). TJs constitute a barrier both to the passage of molecules and ions through the epithelium, and also to the free movement of proteins and lipids between the apical and basolateral domains of the epithelium (González-Mariscal et al., 2003). A decrease in epithelial transport of chloride ions has been reported to cause retinal degeneration (Jentsch et al, 2002). However, their function is not merely limited to their barrier properties. TJs play an important role in vesicle targeting, cytoskeletal dynamics proliferation and
transcription signalling while also defining cell polarity (Anderson et al., 2004, Tsukita et al., 2001).

Fig 1.2 Illustration showing positioning of tight junctions and adherens junctions (Source: Mark and Davis, 2002)

Paracellular transport can be achieved through TJs either through membrane pores formed by transmembrane proteins, or via breakdown of TJs, as in the case of pathological conditions (Anderson and Van Itallie, 2008). The charge-selective claudin-based pores in TJs are about 0.4nm in radius and a second non charge selective transport mechanism is achieved through the large discontinuities in the barrier (Anderson and Van Itallie, 2009).

1.5 Tight junction proteins

TJ barriers in the RPE layer are formed by interaction between several key membrane proteins. The TJs have a surprisingly complex protein composition compared to other cell – cell junctions and nearly 40 different proteins associated with TJs have been identified so far
The earliest TJ associated proteins discovered were the Zonula Occludens (Zo) proteins (Franke, 2009, Balda and Matter 1998). They were later identified as proteins associated with the cytoplasmic domain of claudins (CLDN) and occludin. Occludin was discovered later by Furuse et al (1993) and was shown to be able to create tight junction-like assemblies in normal rat kidney cells (Van Itallie and Anderson 1997). However, it was later discovered that there are other tight junction molecules apart from occludin, as intact TJs have been discovered in occludin -/- mice (Franke 2009, Saitou et al 2000). These mice survived to adulthood, although with several abnormalities (Saitou et al, 2000). Further research led to the identification of two 22kDa proteins which immuno-localized at TJs of living cells. These proteins were later named claudin 1 and 2. Claudins were able to form new TJs when the cDNA was transfected into mouse L fibroblast cells which lacked TJs completely (Franke 2009, Furuse and Tsukita 2006, Furuse et al, 1998).

With the discovery of more members of the claudin family, it was clear that the TJs were more complex structures than they initially appeared to be. Co-culture of mouse L fibroblast cells expressing claudin 1, 2 or 3 revealed that heterotypic TJs were formed by binding of claudin 1/3 or claudin 2/3, but not claudin 1/2 (Furuse, 1999). Occludin and Tricellulin are closely associated with claudins and modulate TJ strand formation (Furuse, 2010).

1.6 Occludin

Occludin was the first TJ protein to be identified and was isolated from chick liver tissue (Furuse et al, 1993). It is a 65kDa tetraspannin protein found localized almost exclusively in
tight junctions (Feldman et al. 2005, Tsukita and Furuse 1998). The tertiary structure of Occludin is made up of four transmembrane domains - a long C-terminal cytoplasmic domain; a short N-terminal cytoplasmic domain; two extracellular loops; and one intracellular turn (Harhaj and Antonetti 2004, Saitou et al., 2000) (Fig 1.2). The first extracellular loop, consisting of a high percentage of 60% tyrosine and glycine, residues is characteristic of occludin, although the exact physiological function remains to be elucidated (Furuse, 2010). The cytoplasmic carboxy-terminal of occludin interacts with Zo-1, establishing a link with the actin cytoskeleton (Fanning et al, 1998).

Through immunoflourescence and immunoelectron microscopy techniques it was established that Occludin is exclusively located at the TJs of epithelial and endothelial cells (Blasig et al 2011, McCarthy et al 1996, Furuse et al 1993). The expression of occludin correlates with barrier properties of the tissue (Harhaj and Antonetti, 2004). Very high expression of occludin in tissues such as brain endothelium and RPE results in formation of a very tight barrier. Over-expression of occludin in mouse L fibroblasts which lack TJs and AJs, caused localization of occludin into cell-cell contacts between adjacent cells, although it did not form fully developed strand-like TJs as observed in wild type (Furuse et al, 1998).
Fig: 1.3 – Schematic diagram of transmembrane protein Occludin (Dörfel and Huber, 2012)

Sequencing studies have shown that the membrane topology of Occludin is well conserved across species (Ando-Akatsuka et al, 1996). Occludin spans the plasma membrane of endothelial cells of the BRB. The extracellular domain of Occludin binds to another occludin molecule on the adjacent cell to form the tight junction responsible for permeability barrier (Jin et al 2002). The cytoplasmic terminal of Occludin associates with Zo-1 and helps in membrane localization of the protein while the second extracellular domain helps in stabilizing Occludin in the tight junction (Medina et al 2000)

Occludin is naturally present in TJs in multicellular organisms and plays a role in maintaining the structural integrity of TJs. Over-expression of occludin in MDCK cells has been found to increase the trans-epithelial electrical resistance (TEER) (Tsukita and Furuse 1998, Balda et
An Occludin knock-out study performed by Saitou et al. (1998) on embryonic stem cells showed the presence of intact tight junctions, structurally similar to that seen in wild type embryonic stem cells. This indicated that Occludin was not indispensable for maintenance of TJ integrity, and that other tight junction membrane proteins were able to compensate for lack of Occludin expression in tight junctions. However, Occludin -/- mice displayed several abnormalities, including testicular atrophy, gastric hyperplasia, thinning of compact bone and calcium deposits in the brain (Saitou et al., 2000). This suggested that the role of Occludin and TJs cannot be defined as being merely of structural nature. A knock-out study performed by Schulzke et al. (2005) showed that the permeability of intestinal epithelia, measured using TEER and tests of barrier function, did not significantly alter from that of the wild type. However, the glandular structure of gastric corpus mucosa in occludin -/- mice exhibited a complete loss of parietal cells, and also mucus cell hyperplasia, resulting in a loss of ability to secrete acid. This demonstrated that occludin was essential for differentiation of gastric epithelia.

The role of Occludin in the formation of tight junctions has been investigated widely. When occludin expression was induced in NRK (Normal Rat Kidney) cells and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions, it co-localized with Zo-1 to form cell-cell adherens-like junctions (Van Itallie and Anderson, 1997).

1.7 The Claudin Family of Tight Junction Proteins

Among the several molecular components of TJs now identified, the claudins, a family of at least 24 different proteins, are now believed to comprise the backbone of TJs (Overgaard et al.
2011, Lal-Nag and Morin, 2009, Furuse and Tsukita, 2006, Firth 2002). Claudins are tetra-spanning transmembrane proteins of molecular weight range between 20-25kDa, with two extracellular and one intracellular loop. They have been broadly classified into two groups based on the degree of sequence similarity – "classic claudins" which include claudins 1 to 10, 14, 15, 17 and 19 and "non-classic claudins" which include claudins 11 to 13, 16, 18 and 20 to 24 (Krause et al, 2009). Of these, 23 have been identified to have functional significance in humans (Katoh and Katoh, 2003). Occludin was the first protein identified to localize at TJs (Tsukita et al., 2008). Until the discovery of Claudins, occludin was considered to be solely involved in TJ formation. However, targeted disruption of the occludin gene in embryonic stem cells did not prevent formation of intact TJs (Saitou et al., 1998), which indicated involvement of other proteins in barrier formation. This led to the discovery of two membrane proteins of ~22kDa weight, which bore no sequence similarity to Occludin. The first two Claudins identified - Claudin-1 and Claudin-2 - were isolated from fractions of chick liver (Harhaj and Antonetti 2004, Furuse et al., 1998). The intrinsic ability of Claudins to form TJs was observed when their expression in fibroblasts was found to induce the formation of singular TJ strands in the otherwise non-adherent cell line (Furuse et al., 1998 (a)).
Claudins are integral membrane proteins containing four hydrophobic transmembrane domains and two extracellular loops (Fig 1.3) (Gupta and Ryan 2010). The carboxy- and amino-terminal domains are cytoplasmic and interact with Zo-1 in the cytoplasm. The amino terminus is relatively short while the carboxy-terminus is variable in length in claudins (Lal-Nag and Morin, 2009). The first extracellular loop has several charged amino acids and is thought to influence paracellular charge selectivity (Lal-Nag and Morin 2009, Colegio et al 2002). Two highly conserved cysteine residues in the first extracellular loop (Fig 1.3) are thought to play an important role in protein stability by forming intramolecular disulphide bonds (Angelow and Yu 2009, Angelow, Ahlstrom and Yu, 2008). Phosphorylation of serine or threonine residues in the carboxy-terminal of claudins may play a role in membrane localization of claudins to form TJs (Furuse, 2010).
Claudins 1 and 2 have been identified as being most crucial for formation of the tight junctional barrier (Furuse et al. 1998(b)). Introduction of claudin-1 and claudin-2 genes into TJ-lacking fibroblasts caused the formation of a network of TJ like strands very similar to epithelial and endothelial TJs (Furuse M et al 1998). Co-expression of different claudins into fibroblasts revealed that TJ strands are comprised of mosaics of different claudins, forming homotypic and heterotypic interactions between cells and homomeric and heteromeric complexes in individual cells, although their compatibility is dependant on the right combination of claudins (Furuse, 2010).

Other in vivo functions of claudins are being studied using gene knock-outs, over- or under-expression in epithelial cells, and by the study of human disease phenotypes resulting from claudin mutations (Turksen and Troy 2011, Angelow et al. 2008). Other members of the claudin family have been identified to have several other functions including paracellular transport (Will et al 2008). For instance, claudin-16, also known as paracellin-1, is important for electrolyte handling in kidney, apart from playing a structural role in the organ (Weber et al. 2001, Simon et al. 1999). Key functions of claudins identified to date, along with their functions are shown in Table 1.1.
Introduction

Table 1.1 – Overview of properties, distribution, function and pathologies of claudins

<table>
<thead>
<tr>
<th>Claudin</th>
<th>Size (Da)</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claudin - 1</td>
<td>22744</td>
<td>Plays a key role in epidermal TJ barrier formation along with claudin-2. Co-localizes with occludin to forms a permeability barrier. Important in BBB and BRB formation.</td>
</tr>
<tr>
<td>Claudin – 2</td>
<td>24549</td>
<td>Forms discontinuous strands when expressed individually. Co-expressed with claudin-1 and plays an important role in embryonic development and TJ formation. Also functions as cationic pore protein and decreases TEER when over-expressed in SMIE cells.</td>
</tr>
<tr>
<td>Claudin – 3</td>
<td>23319</td>
<td>Over-expressed in ovarian cancers along with claudin-4.</td>
</tr>
<tr>
<td>Claudin – 4</td>
<td>22077</td>
<td>Directly interacts with TJ proteins Zo-1, 2 and 3. Expressed in many foetal and adult tissues, predominantly in intestine, kidney and lung. Claudin-4 is an integral membrane protein and forms an important component of TJs. Over-expression leads to increase in TEER. Over-expressed in several carcinomas, except in pancreas. Cardiovascular and cytoskeletal abnormalities implicated due to claudin-4 gene deletion in Williams-Beuren Syndrome.</td>
</tr>
<tr>
<td>Claudin – 5</td>
<td>23147</td>
<td>Primarily found in human endothelial TJs and colonic epithelium. Co-localizes with occludin and assists in TJ sealing. Plays a significant role in BBB formation.</td>
</tr>
<tr>
<td>Claudin – 6</td>
<td>23292</td>
<td>Present in embryonic kidney, but disappears in adult kidney. Identified as a biomarker for abnormal skin conditions.</td>
</tr>
<tr>
<td>Claudin – 8</td>
<td>24845</td>
<td>Found in colonic epithelia and kidney. Found to reduce paracellular cation permeability. Claudin-8 is down-regulated in Crohn’s disease.</td>
</tr>
<tr>
<td>Claudin – 9</td>
<td>22848</td>
<td>Found in inner ear and embryonic kidney. Thought to play a role in paracellular permeability changes in embryonic epithelia.</td>
</tr>
<tr>
<td>Claudin – 10</td>
<td>24251 (a)</td>
<td>Two claudin-10 variants transcribed from different start sites. Different amino termini. Preferential paracellular permeation of anions (a) or cations (b)</td>
</tr>
<tr>
<td>Claudin – 11</td>
<td>24488 (b)</td>
<td>Endocochlear potential regulation. Found to reduce paracellular cation permeability in MDCK. Down-regulation found to cause deafness, male sterility and hind limb weakness in mice.</td>
</tr>
<tr>
<td>Claudin – 12</td>
<td>21993</td>
<td>Found in inner ear, brain endothelium and colon</td>
</tr>
<tr>
<td>Claudin – 13</td>
<td>27110</td>
<td>Absent in humans.</td>
</tr>
</tbody>
</table>
Biochemical diversity among members of the Claudin family underlies differences in TJ structure and function in different tissues and cell types (Van Itallie and Anderson, 2004). Individual cells express more than one Claudin protein. Studies show that claudins form the functional backbone of TJ pores and play a very active role in paracellular transport (Table 1.1). These properties may provide a route to therapeutic manipulation of TJ structure for delivery of pharmacological agents.

1.8 Zonula occludens (Zo) proteins

The Zo proteins are a group of high density proteins which interact with the cytoplasmic terminals of occludin and claudins (Anderson and Van itallie, 1995). Zo proteins are best characterized among the “cytoplasmic plaque proteins” in the tight junctional complex. Three Zo proteins have been identified and named as Zo-1, Zo-2 and Zo-3. They belong to a family of Membrane Associated Guanylate Kinases (MAGUKs) (Mitic and Anderson 1998, Anderson et al, 1995). In addition to the core domain structure consisting of PDZ, SH3 and GuK domains characteristic of MAGUKs, the Zo proteins have a distinctive carboxy-terminal with splicing domains, acidic- and proline-rich regions (González-Mariscal et al. 2000).

Among the Zo proteins, Zo-1 exists in two isoforms, formed by alternative splicing, depending on the presence or absence of an 80 amino acid domain termed α. Zo-1(α+) is found in most epithelial cells and Zo-1(α-) is found in endothelial cells and certain highly specialized epithelial cells (Van Itallie and Anderson, 1998). Although this helps in molecular distinction in TJs, the actual function of the α domain remains unclear.

Zo-1 and Zo-2 proteins play a pivotal role in the final establishment of belt-like adherens and tight junctions (Ikenouchi et al, 2007). The N-terminus of Zo proteins associate with cytoplasmic termini of occludin (Fanning et al., 1998) and Claudins, stabilizing their positioning in the tight junctions. The C-terminus of Zo proteins bind to actin, and thus act as scaffolds binding the tight junction proteins to the cytoskeleton (Umeda et al., 2006, Fanning
et al., 1998). Zo-3 shows epithelial-specific tight junction localization in a Zo-1/2-dependant fashion (Tsukita et al., 2009, Inoko et al., 2003).

Functional significance of Zo-1 in TJ formation was analyzed by ablating Zo-1 expression through RNA interference or deletion of the gene by homologous recombination. Absence of Zo-1 did not prevent formation of the TJ barrier, although it delayed its formation (McNeil et al., 2006, Umeda et al., 2004). Complete absence of Zo-1, 2 and 3 proteins in mouse EpH4 cells resulted in complete elimination of TJs on confluence (Umeda et al., 2006) although the cells were well polarized.

1.9 Adherens junctions

The classical cadherins mediate specific adhesion at intercellular adherens junctions. The adherens junctions (AJ) are formed by homophilic cadherin interactions in adjacent cells. AJs play a significant role in cell polarization and differentiation of epithelial cells, and calcium-dependent cadherin-based adherens junctions organise microfilaments to the plasma membrane in polarized cells (Green 2010). The carboxy-terminal of cadherins in AJs binds cytoplasmically to P120 and β-catenin (Shapiro and Weis, 2009) which in turn bind to the actin cytoskeleton through α-catenin (Meng and Takeichi, 2009).

1.10 Ocular diseases and abnormal RPE

The TJ, which is the most apical component of the junctional complex, represents the anatomic substrate of the outer blood retinal barrier (Jin et al., 2002). Disruption of transport
mechanisms of the RPE leads to photoreceptor degeneration. For instance, disruption of epithelial chloride ion transport leads to loss of transepithelial potential in RPE. This results in an inability to extrude lactic acid from photoreceptors, leading to metabolic stress and eventual breakdown of the photoreceptor layer (Bosl et al., 2001). The RPE layer plays a major supportive role in maintaining the delicate metabolic balance required for functioning of photoreceptor cells (Strauss, 2005).

1.10.1 Age Related Macular Degeneration (AMD)

AMD is the leading cause of blindness worldwide, in the population above 50 years of age (Chappelow and Kaiser 2008, Friedman et al 2004, Klein et al, 2004). A recent report by WHO in 2009 lists AMD as one of the primary causes for vision loss worldwide. AMD is a multifactorial disease which affects the RPE-choroid interface in the macula (Strunnikova et al 2010).

The ocular structures involved in AMD are photoreceptor cells, neurons in the outer retina, the RPE, Bruch’s membrane and choriocapillaries (Bird 2010). Metabolic interdependency of these tissues increases the risk of vision loss if any one of these structures is affected. AMD is characterized by degenerative changes in the macula, therefore leading to central vision loss and loss of visual acuity. A reduced capability to absorb light energy leads to the cascade of events leading to AMD (Strauss, 2005).
Introduction

Fig 1.5 Development and Progression Pathway of AMD

Based on the progression of disease, AMD has been divided into ‘dry’ and ‘wet’ types (Fig 1.5). The earliest symptom and pathological feature of dry AMD is accumulation of photo-oxidative residue (drusen) beneath the RPE layer and inside the Bruch’s membrane (Strauss 2005, Handa et al 1999, Docchio et al. 1991). A small amount of drusen is found in healthy individuals over the age of 50, but the presence of large or numerous drusen confers significant risk for AMD (Patel and Chan, 2008).

The presence of large and confluent drusen leads to inflammatory condition known as Cystoid Macular Edema (Fig 1.4). It also paves way for the establishment of large diffusion barriers between the RPE and choroid. This may lead to development of areas with reduced supply of oxygen and glucose (Strauss 2005, Frank 1997). Hypoxic stress thus induced leads to degeneration of photoreceptors in drusen-covered areas (Coleman et al, 2008). In a more
severe case, this stimulates hypoxia-induced secretion of VEGF, and suppression of PEDF secretion, leading to choroidal neovascularisation (Klein et al., 2004). Choroidal neovascularisation is the hallmark of wet AMD (Chappelow and Kaiser, 2008) and leads to an increase in intraocular pressure and may cause the newly formed capillaries to break (Fig 1.6). Intra-ocular bleeding is a major cause for vision loss in wet AMD (Strauss, 2005). Wet AMD is also known as ‘exudative’ or ‘neovascular’ AMD.

![Fig 1.6 Healthy Macula versus macula with wet AMD (Source: Genentech)](image)

VEGF-A over-expression is important for progression and development of AMD (Witmer et al., 2003). Therefore, control of VEGF and its receptors is looked at as an important therapeutic target for control of AMD.

1.10.2 Retinitis Pigmentosa

Retinitis Pigmentosa (RP) is a group of inherited genetic eye diseases characterized by gradual degeneration of the outer retinal layer leading to vision loss (Hamel 2007). It generally affects the peripheral vision with other complications such as macular edema
affecting central visual acuity (Sahel et al, 2010). RP may be inherited as an autosomal dominant, autosomal recessive, X-linked recessive or digenic traits (Wang et al. 2001, Humphries et al. 1990). RP is characterized by primary degeneration of rod photoreceptors and secondary degeneration of cone cells in the retina (Campbell et al, 2006(a)). The photoreceptor layer undergoes a constant renewal and sheds cytoskeletal protein, photoxidative residue and rhodopsin-rich ‘discs’ which are phagocytosed by the underlying RPE layer (Strauss, 2005). RP may involve gene mutations in RPE leading to impairment of its photoregulatory function, or mutations which cause dysfunction of rod cells (Farrar et al. 2002). Degeneration of rod outer segments leads to the presence of deposits of pigmented granules in the outer retina (Hamel 2009, Hamel 2007). A gene knockout study in mice involving targeted disruption of the Rhodopsin gene Rho (-/-) showed disruption of AJs in the outer retina, in 6 week old Rho (-/-) mice (Campbell et al. 2007).

Key therapeutic approaches for Retinitis Pigmentosa include using pluripotent stem cells to differentiate into functional ocular cells that can replace damaged RPE and/or photoreceptor cells (Rowland et al. 2011).

1.11 Diseases of iBRB – Diabetic Retinopathy (DR)

Diabetes leads to a wide array of complications including kidney failure, vascular disease, peripheral nerve degeneration and vision loss (Antonetti et al 1999). Diabetic retinopathy is the leading cause of blindness in the working age population in the USA causing 12000 to 24000 new cases of blindness every year (Whitmire et al. 2011, Klein et al. 2009). Increased vascular permeability leading to macular edema and endothelial cell proliferation is the
Introduction

hallmark of DR (Mitamura et al, 2005). The underlying metabolic pathways leading to development of DR is not completely understood. However, causes attributed to the pathogenesis and progression of DR include chronic hyperglycemia (Whitmire et al, 2011), formation and accumulation of AGEs (Takeuchi et al 2010, Stitt, 2003) and oxidative stress (Frey and Antonetti, 2011).

The two stages of progression of DR are classified into “Non-Proliferative” (NPDR) and “Proliferative” (PDR). Microaneurysms develop in the retinal vasculature leading to retinal haemorrhages and fluid leakage in the retina. Development of macular edema leads to a reduction in functionality of RPE cells to remove fluid from the retina. NPDR is prevalent in patients suffering from type – II diabetes (Caldwell et al, 2005).

PDR is a more severe form of DR. Oxidative stress and increase in photo-oxidative reactive species leads to expression of Advanced Glycation End products (AGEs). RPE cells express active receptors (RAGE) for AGEs (Hammes et al, 1999) and express Vasculo Endothelial Growth Factor (VEGF) in response to AGE exposure (Lu et al, 1998). Retinal pericytes are reported to accumulate AGEs during diabetes (Stitt et al, 1997) which blocks retinal vessels thereby leading to hypoxic stress and apoptosis of retinal pericytes. Hypoxic stress and AGE-stimulated release of VEGF and related growth factors into the retina leads to angiogenesis and neovascularization in the retina (Okamoto et al, 2002). Neo-vascularisation progresses into the vitreous cavity towards the later stages of PDR. Newly formed blood vessels are weak and may break, allowing blood to leak out and cloud the vitreous and impair vision (Caldwell et al. 2005). Formation of fibrovascular tissue in advanced stages of PDR leads to retinal detachment and loss of vision in patients.
VEGF has been identified as a critical stimulus in the pathogenesis of macular edema in NPDR (Wolfensberger and Gregor, 2010, Karim and Tang, 2010). VEGF antagonists have hence received a great deal of interest in the treatment of DR.

Aims and Hypothesis

The blood brain barrier and the blood retinal barrier are immunologically privileged and depend on intact barriers to partition them from the systemic circulation (Padden et al., 2007, Brankin et al., 1995, Allen and Brankin, 1993). It has been previously reported that VEGF165 has a synergistic effect on iBRB permeability, both in vitro and in vivo (Brankin et al., 2005). VEGF165 significantly increased BRMEC paracellular permeability, and induced iBRB breakdown in C57/Bl6 mice which was demonstrated by an increase in Evans blue/albumin permeation at the BRB (Campbell et al., 2006, Brankin et al., 2005).

These findings of an increase in permeability of the iBRB by VEGF led us to speculate that VEGF may also modify the oBRB permeability properties. The oBRB is formed by the RPE cells which separate the outer layer of the neural retina from the capillaries of the choroid. The cardinal function of the RPE is to prevent fluid from choroidal vessels from entering the retina, and to control the flow of solutes and fluid from the choroidal vasculature into the outer retina. This strict control of fluid and solutes that cross the outer barrier is achieved by TJs at the RPE. Thus a breakdown in the oBRB may lead to an accumulation of fluid in the sub-retinal space, and to macular edema.
Studies carried out in conjunction with the iBRB, showed modulation of Zo-1 expression in an animal model of retinal degeneration, the Rho (-/-) knock-out mouse (Humphries et al., 1977). In this work, Brankin and colleagues found an up-regulation of Zo-1 in neural retinas of C-129 Rho(-/-) knockout mice compared to C-129 WT mice, associated with the retinal vasculature, and a loss of expression of Zo-1 at the Outer Limiting Membrane of the photoreceptors in Rho(-/-) (Campbell et al., 2007). In view of these previous reports, we wished to further extend the work in this project by investigating the effects of the VEGF family of growth factors on BRB function. PLGF is a member of the VEGF family and potentiates the activity of VEGF (Hollborn et al., 2006). Brankin and Stitt, have reported that PLGF induced phosphorylation of occludin on serine and tyrosine residues, and may modify the capacity of occludin to associate with Zo-1 at the BRB (Brankin and Stitt, 2003).

The proinflammatory cytokines, TNF-α and IL-1β have been found to affect BBB and iBRB permeability, and may promote choroid neovascularisation (Oh et al., 1999), which is a sight-threatening complication of macular diseases, including ARMD. Previously, it has been shown that IL-1β and TNF-α affected the TJ expression and that these cytokines increased phosphorylation of occludin on threonine residues in balb/c microvascular endothelial cells, and caused a down-regulation of occludin expression (Brankin and Padden, 2004). Thus, in this project, we wished to further investigate whether IL-1β and TNF-α would have an effect on the oBRB.
Hypotheses

1. Overall it is hypothesised that key components of the TJ and AJ of the RPE may become compromised following treatment with growth factors and cytokines, facilitating breakdown of the oBRB and retinal dysfunction.

2. VEGF165, produced in high amounts by cells in the neural retina, may affect Zo-1 or occludin expression and localisation at the oBRB, leading to oBRB dysfunction.

3. PLGF is a member of the VEGF family and may modify expression levels of TJs which will affect RPE function.

4. Chronic, low-grade inflammatory processes such as cystoid macular edema may contribute to the pathogenesis of ARMD. It is hypothesised that TNF-α produced locally at the RPE by infiltrating macrophages in ARMD may modulate TJ expression and disrupt the oBRB. Changes in expression or localisation of TJs may affect RPE polarity as the TJs of RPE are anchored to the actin cytoskeleton of RPE, and interact with signalling molecules and are important in establishment of cellular polarity.

5. It is hypothesised that IL-1β affects expression and distribution of the TJ junctional proteins occludin, Zo-1 and the claudin family. This may lead to loss of RPE function, breakdown in the ability to degrade the photo-oxidative products, retinal edema and oBRB breakdown. Claudins regulate diffusion across the paracellular pathway by determining ion selectivity and electrical resistance of the junction, and they may be modulated by Il-1β, giving rise to oBRB breakdown.
Project Aims

The research presented in this thesis will focus on the BRB in health and disease and the effects of growth factors and cytokines on oBRB function which will be investigated using an *in vitro* model, human retinal pigment epithelial cells. Specifically the following will be determined:

I. Tight/adherens junction expression at the oBRB, including occludin, Zo-1, beta catenin, claudins 1, 2, 3 and 4.

II. Effects of vitreal growth factors VEGF and PLGF on oBRB integrity

III. Effects of pro-inflammatory cytokines, which are elevated in ocular disorders, on RPE function as determined by TJ expression and localisation at the oBRB.
Chapter 2

Materials and Methods
2.1 Materials

2.1.1 Materials for cell culture and cell treatment

2.1.1.1. Cell types used:

Human Retinal Pigment Epithelial Cells (ARPE-19) were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA)

Human Brain Endothelial Cells (Endo Balbc) – were a gift from Dr. Brenda Brankin, School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland.

2.1.1.2. Materials

Nunc cell culture flasks 25cm2 (Cat no: TKT-130-170F) and 75cm2 (Cat no: TKT-130-210T) (Fischer scientific, Dublin – 2)

Cell Star cell culture plates (6 well) Greiner Bio-One (Cat no: 657160, Lot no: E1008003)

Nunc Lab-Tek Chamber Slide System and Lab-Tek chambered coverglass (Cat no: 177429)

Dulbecco’s Modified Eagle’s Medium (DMEM): Sigma Aldrich (Wicklow, Dublin – 24) Nutrient Mixture F12- Ham (DMEM / F12 1:1) with L- glutamine (Cat no: D8437, Lot No: 048K2413, 097K2406, RNBB0033)

Sigma Aldrich Protease inhibitor cocktail (Cat no: P8340)

Adult Bovine Serum – Sigma Aldrich (Wicklow, Dublin) (Cat no: B9433, Lot No: 018K8413)

Trypsin-EDTA [0.25% (w/v) Trypsin 0.02% (w/v) EDTA] Sigma Aldrich (Wicklow, Dublin) (Cat no: T4049, Lot no: 10A725, 097K2336)

Insulin Transferrin Selenium (ITS) media supplement – Sigma Aldrich (Cat no: I3146, Lot no: 069K8409)
Penicillin Streptomycin solution – Sigma Aldrich (Wicklow) (Cat no: P4458)

Amphotericin – B Sigma Aldrich (Wicklow, Ireland) (Cat no: A4888, Lot no:117K4016)

Dimethyl Sulphoxide (DMSO) – Sigma Aldrich (Cat no: D2650)

Vascular Endothelial Growth Factor (VEGF) Sigma Aldrich (Wicklow, Ireland) (Cat no: V7259, Lot: 075K1601)

Placental Growth Factor – Invitrogen (Biosciences, Ireland), Cat no: PHG0296

Interleukin 1-beta (IL-1β) – Sigma Aldrich (Wicklow, Ireland) (Cat no: I2393)

Tumor Necrosis Factor – Alpha (TNF - α) Sigma Aldrich (Wicklow, Ireland) (Cat no: T0157, Lot: 114K1429)

Endostatin – Sigma Aldrich (Wicklow, Ireland) (Cat no: E8154)

Disposable Cell Scraper – Fisherbrand – Fischer Scientific (Dublin 2) (Cat no: 08-773-2)

BD Plastipak Green needle and Syringe – Becton Dickinson (Spain) (Lot: 0512006)

2.1.1.3. Solutions used:

Phosphate Buffered Saline (PBS) – 8.1mM di-sodium hydrogen phosphate (Na$_2$HPO$_4$), 1.7mM sodium di-hydrogen phosphate (NaH$_2$PO$_4$), 27.4mM sodium chloride (NaCl) per litre, adjusted to pH 7.4 and sterilized by autoclaving.

2.1.2. Materials for Protein Analysis

96 well flat bottom ELISA plates – Nunc – Fischer Scientific Ireland (Cat No: TKT-180-070U)

Bradford Reagent – Sigma Aldrich (Wicklow) (Cat no: B6916, Lot no: 033K9279)

ELISA plate reader - Labsystems Multiscan Plus
Bovine Serum Albumin – Sigma Aldrich (Wicklow) (Cat no: A7030, Lot No: 038K0704). Protein standards ranging from 100µg/ml to 1000µg/ml made up using distilled de-ionized water.

2.1.3 Materials for SDS PAGE

Protein Samples prepared from cell extracts as detailed in section 2.1.2

Sigma Aldrich acrylamide / bis acrylamide 30% (w/v) solution (Cat no: A3699, Lot no: 097K6067)

N,N,N',N' Tetramethylethylenediamine (TEMED) – Sigma Aldrich (Wicklow) (Cat no: T9281, Lot no: 93H0857)

Ammonium persulphate – Sigma Aldrich (Wicklow) (Cat no: A3698, Lot No: 022K1258)

Trizma base SigmaUltra - Sigma Aldrich (Wicklow) (Cat no: T6791, Lot no: 083K5417)

Sodium Dodecyl Sulphate – BDH Laboratory supplies (Poole, England) (Cat no: 301754L, Lot no: ZA2003410-649)

Glycine (Molekula) (Cat no: M10760576, Lot no: 51613)

Bromophenol blue – Sigma Aldrich (Cat no: B5525, Lot no: 124H3631)

Glycerol – (Riedel-de Haen) – Lennox Chemical Supplies (Dublin) (Cat no: 33224, Lot no: 72610)

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) – GE Life sciences (United Kingdom) (Cat no: 17-1314-01)

2.1.3.1 Solutions used

Resolving Gel Stock – 1.5 M Tris containing 0.4% (w/v) SDS adjusted to pH 8.8
Materials and Methods

Stacking Gel Stock – 0.5M Tris, 0.4% (w/v) SDS adjusted to pH 6.8

Running Buffer (10-fold concentrate) 1L: 248mM Tris, 1.92M Glycine, 10g SDS adjusted to pH 8.6

4x Sample buffer (100ml): 0.5M Tris (pH 6.6), 16g SDS, 20% (v/v) Glycerol, 16mg Bromophenol Blue, 10% (w/v) CHAPS.

Butanol 95% (v/v)

Ammonium persulphate 0.1% (w/v)

2.1.4. Materials for Western blotting

Semi-dry blotting apparatus – Appolo Laboratories, Sweden

Alpha Imager FC™ 1-D digital analysis software (Alpha Innotech)

AlphaImager HP™ Gel imaging system (Alpha Innotech) – Cell Biosciences

Whatman Protran BA83 Nitrocellulose membrane – Sigma Aldrich (Wicklow, Ireland) (Cat no: Z670960, Lot No: 8558862)

Ponceau S Solution – Sigma Aldrich (Wicklow) (Cat no: P7170, Lot no: 093K4356)

Albumin Bovine Serum, Fraction V – Sigma Aldrich (Wicklow) (Cat no: A9647, Lot no: 038K0704)

Tween 20 for electrophoresis – Sigma Aldrich (Cat no: P5927, Lot no: 043K01541)

Western Super Signal West Pico Chemiluminescent Substrate - Pierce

Western Super Signal West Pico Chromogenic Substrate BCIP / NBT – Pierce

Novex AP Chromogenic Substrate (BCIP / NBT) Invitrogen (Biosciences, Ireland)

(Met no: WP20001, Lot no: 622918)

Methanol (Riedel-de Haen) – Lennox Laboratories Ltd. (Dublin)

MagicMark™ XP Western Standard – Invitrogen (Biosciences, Ireland) (Cat no: LC5602, Lot no: 462876).
2.1.4.1. Antibodies used

Sigma Aldrich – Monoclonal anti β-Actin antibody produced in mouse (Cat No: A1978, Lot No: 016K4817)
Zymed Labs – Monoclonal anti Zo-1 antibody produced in mouse 100ug (Cat No: 33-9100, Lot No: 60605689)
Sigma Aldrich – anti rabbit IgG (whole molecule) – peroxidase-conjugated antibody developed in goat (Cat No: A6154, Lot No: 055K6015)

2.1.4.2. Solutions Used

Transfer Buffer – 25mM Tris, 20% (v/v) methanol, 20% (w/v) glycine; adjusted to pH 7.0.
Tris Buffered Saline (TBS) – 50mM Tris, 0.15M Sodium Chloride, adjusted to pH 7.0
Blocking Solution – 5% (w/v) Bovine Serum Albumin (BSA) dissolved in TBS
Wash Buffer – 0.2% (v/v) Tween20 in TBS (pH 7.0)
Western Blot Stripping solution – 0.01mM Tris, 10% SDS, 0.001% (v/v) β-mercaptoethanol.

2.1.4.3. SDS PAGE Resolving Gel preparation

<table>
<thead>
<tr>
<th>Percentage</th>
<th>7.5%</th>
<th>12%</th>
<th>14%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel stock</td>
<td>5 ml</td>
<td>5 ml</td>
<td>5ml</td>
</tr>
<tr>
<td>Water</td>
<td>10 ml</td>
<td>8.4 ml</td>
<td>5.7ml</td>
</tr>
<tr>
<td>Bis-Acrylamide (30%)</td>
<td>5 ml</td>
<td>6.6 ml</td>
<td>9.3ml</td>
</tr>
<tr>
<td>Ammonium Persulphate (0.1%)</td>
<td>200µl</td>
<td>200µl</td>
<td>200µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20µl</td>
<td>20µl</td>
<td>20µl</td>
</tr>
</tbody>
</table>
2.1.4.4 4% Stacking Gel preparation

Stacking Gel Stock – 1.5ml

Water – 3.6ml

30% (w/v) Bis acrylamide – (0.9%) - 900µl

Ammonium persulphate 0.1% (w/v) – 100µl

TEMED – 20µl

2.1.5 Materials for Immunofluorescence

Occludin and Zo-1 primary antibodies, as outlined in section 2.1.4.1

Biotinylated mouse immunoglobulin (Vector Labs) provided with Vectastain universal ABC kit (Cat no: PK6200)

Vectastain Flourescein Streptavidin – Vector Labs (Cat no: SA-1200)

Vectastain Texas Red Streptavidin – Vector Labs (Cat no: SA-5006)

Vectastain Flourescence mounting medium with DAPI – Vector Labs (Cat no: H-1200)

Lab-Tek 2 well chamber slides with coverglass – Nunc – (Cat no: 177380)

Blocking solution – 3% (w/v) BSA in PBS

Wash solution – 0.2% (v/v) Tween20 in Phosphate buffered saline

100% Methanol

2.1.6 Materials for immunohistochemistry

Paraffin-embedded tissue sections – gift from Dr. Helen Lambkin, School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland.

Histolab Xylene – (Cat no 02080)

Histolab 99.5% Ethanol, Histolab 95% Ethanol and Histolab 80% Ethanol (all v/v)
Sodium Citrate – Fischer Scientific (Dublin, Ireland) (Cat no: BP327-1)

Vector Labs VECTASTAIN Universal ABC staining kit: Mouse IgG (Cat no: PK6200)

Vector Labs DAB Peroxidase substrate kit (Cat no: SK 4100)

DPX and coverslips

2.1.6.1 Solutions used

Citrate buffer – 10mM Sodium Citrate in 1.0 L of double distilled water adjusted to pH 6.0

Blocking reagent – 5% (v/v) normal horse / goat serum in PBS

3% (v/v) hydrogen peroxide prepared by diluting 1ml of 30% (v/v) hydrogen peroxide in 9mls of distilled water.

ABC reagent – prepared according to manufacturer’s instructions

DAB reagent – prepared according to manufacturer’s instructions.

2.1.7. Materials for 2-D Electrophoresis

IPG Buffer – pH 3.0 – 10.0 (GE Healthcare LifeSciences, UK) (Cat no: 17-6000-87)

Storage: 4°C

Immobiline Dry Strip IPG Gel strips – pH 3-10, Length 13cm (GE Healthcare LifeSciences, UK) (Cat no: 17-6001-14) storage: -20°C

PlusOne Dry Strip cover fluid – 1L (GE Healthcare LifeSciences, UK) (Cat no: 17-1335-01)

PlusOne CHAPS – 1g (GE Healthcare LifeSciences, UK) (Cat no: 17-1314-01) – Storage: 4°C
Materials and Methods

PlusOne Dithiothreitol (DTT) – 1g (GE Healthcare LifeSciences, UK) (Cat no: 17-1318-01) – Storage: 4°C

Coomassie brilliant blue R250 (Sigma Aldrich, Wicklow) (Cat no: 27816)

Bromophenol Blue – Sigma Aldrich (Cat no: B5525, Lot no: 124H3631)

DeStreak Rehydration Solution – pH 3-10 (GE Healthcare LifeSciences, UK) (Cat no: 17-6003-19) storage: -20°C

Sigma ProteoSilver™ Silver Staining Kit – Sigma Aldrich (Wicklow) (Cat: PROTSIL1)

Refrigerated centrifuge (Eppendorf 5417R)

pH meter (Hanna instruments pH 210 microprocessor)

Balance (Mettler Toledo, AB204)

Vortex (Rotamix Hoock and Tucker Instruments Ltd)

Immobiline dysterip reswelling tray (GE Life sciences, UK)

Ettan IPGphor II Isoelectric Focusing System, Ettan IPGphor Manifold, Electrodes and paperwicks (GE Lifesciences, UK)

Gel apparatus consisting of – Gel electrophoresis box (ATTO - MSC), Glass plates 16x14 cm and 2mm thick, rubber gaskets, bulldog clips and combs

Power pack (0-400V, 0-200mA) (Vokam SAE 2761)

Staining and destaining trays

Orbital mixer (KS 125 basic IKA Labortechnik)

Tissue culture hood (EHRET Reinraumtechnik)

Scanjet 5300C (Hewlett Packard)

Imaxia Gelfox™ 3.0 (Alpha Innotech)
2.1.7.1 Solutions Used

Bromophenol blue stock solution – 1% (w/v) bromophenol blue and 0.6% (w/v) Trizma base in double distilled water.

Rehydration stock – 7M Urea, 2M Thiourea, 15mM DTT, 1% Pharmalytes, 4% Triton-X 100, 0.002% (v/v) bromophenol blue stock solution in distilled water. Divided into 2.5ml aliquots and stored at -20°C.

Equilibration solution – 0.05M Trizma base, 6M Urea, 30% (v/v) glycerol, 1% (w/v) SDS, 32mM DTT (Buffer – I), 0.002% (v/v) bromophenol blue stock solution.

Coomassie blue stain – 0.025% (w/v) Coomassie brilliant blue R250 (Sigma Aldrich), 40% (v/v) methanol, 7% (v/v) acetic acid made up to 2L using double distilled water and filtered through filter paper. Stored at room temperature.

Destain solution 1 – 40% (v/v) methanol and 7% (v/v) acetic acid made up to 1L using double distilled water. Stored at room temperature.

Destain solution 2 – 5% (v/v) methanol and 7% (v/v) acetic acid made up to 1L using double distilled water. Stored at room temperature.
2.2. Methods

2.2.1. Cell Culture

ARPE-19 is a spontaneously arising retinal pigment epithelia (RPE) cell line derived in 1986 from the normal eyes of a 19-year-old male. These cells form stable monolayers, which exhibit morphological and functional polarity. ARPE-19 expresses the RPE-specific markers CRALBP and RPE-65. The cells are diploid and can be carried for over 30 passages. Progeny were found to undergo an additional 48 population doublings in longevity trials performed during characterization at ATCC. The ARPE-19 cells were bought from ATCC and used at passage numbers less than 30.

The ARPE-19 cells were removed from liquid nitrogen storage and thawed quickly to retain viability. They were cultured in Dulbecco’s Modified Eagle’s Medium F12 HAM (Sigma Aldrich) containing 10% (v/v) Adult Bovine Serum (Sigma Aldrich), 1% (w/v) penicillin-Streptomycin (Sigma Aldrich) and 250µl ITS media supplement (Sigma Aldrich). Cells were propagated in T25 cell culture flasks (Corning) with 5ml of 10% (v/v) complete medium and incubated at 37°C with 5% carbon dioxide. The medium was changed every 3-4 days until cells achieved desired confluence.

A flask of confluent cells was taken from the incubator. The cells were washed 3 times with sterile PBS and then 1ml of 0.25% (v/v) Trypsin EDTA (Sigma Aldrich) was added to the flask. The flask was then incubated at 37°C for 10 minutes to allow trypsinisation. The cells were observed under the microscope to check whether trypsinisation was complete and 2.0 mls of complete medium was added to the flask to stop the reaction. The cells were then pipetted into a sterile 15ml centrifuge tube
Materials and Methods

and pelleted at 1000rpm for 10minutes. The supernatant was aspirated from the tube and the pellet re-suspended in 1.0 ml of fresh medium. The cells were then distributed evenly into 3x T25 flasks, each containing 5.0 ml of 10% (v/v) complete medium. This process was repeated until the required amount of cells were obtained.

2.2.2. Growth factor treatment and extraction

Confluent cultures were washed 3 times with sterile PBS and incubated in serum free medium for 6 hours. Following this, appropriate amounts of growth factors were added to the flasks in serum free medium and incubated for a further 24 hours at 37°C.

Growth factor treated RPE cells were washed 3 times with PBS to remove any traces of media. The cells were scraped from the flask and homogenized using a 21-gauge needle in extraction buffer containing 62.5mM Tris, 2% (w/v) SDS, 10mM DTT and 10% (v/v) protease inhibitor cocktail (Brankin B et al. 2005). The cell lysate was then centrifuged at 14,000 rpm for 20 minutes at 4°C. The supernatant was removed and used for protein analysis.

2.2.3. Protein Analysis

Six different BSA protein standards ranging from 0.1 – 1mg/ml were prepared. To perform the assay, 10µl of each BSA standards and test samples were pipetted in duplicate into a 96-well flat bottom ELISA plate followed by addition of 200µl of Bradford Reagent (Sigma). The samples were allowed to mix on a shaker for 20 minutes. It was then read using a spectrophotometer (Labsystems Multiskan plus) at 595nm. If the samples were highly concentrated, then a 1:10 or 1:20 dilution of the sample was prepared as required.
2.2.4. 1-D Electrophoresis

Equal amounts of protein were loaded onto SDS-PAGE minigels along with loading buffer. Resolving gel strengths used were 12% (Occludin analysis), 7.5% (Zo-1) and 14% (claudins). Resolving gel recipes are given in Table 3.1

After the resolving gel had set, the butanol was poured off. The resolving gel was then topped with stacking gel with a Teflon comb was placed into the gel. The gel was allowed to set. The gel rigs were filled with 1x running buffer. The rubber lining was removed from the plates after the gel had set. The plates were then gently placed into the rigs, avoiding any bubbles from forming under the gel.

The gap between glass plates in the gel rig was then filled with 1x running buffer to immerse the gels completely in buffer. 30µg protein sample was added to 10µl of 4x sample buffer. The protein samples were then boiled for 3 minutes. Equal amounts of protein per sample were loaded on to each well after loading 5µl of the molecular weight marker in the first well. The electrophoresis was then run at 150V and 100mA for 1.5 hours (or 2 hours for Zo-1). When the dye from the loading buffer reached the bottom of the gel, the electrophoresis was stopped and the plates removed. The stacking gel was cut and removed from the gel.

2.2.5. Western Blotting Protocol

The Bio-Rad semi-dry electroblot apparatus was prepared by placing 2 sheets of blotting paper, cut to the size of the gel and soaked in transfer buffer, on the ceramic transfer platform. One sheet of nitrocellulose membrane cut to the exact size of the gel, was placed on top of the wet blotting paper followed by the resolving gel
and two further sheets of blotting paper (also soaked in transfer buffer). The lid was placed on top of this and securely closed. The electroblot was run at a current of 0.9mA per gel for 1.5 hours (3.0 hours for Zo-1). The proteins should move from the gel to the nitrocellulose membrane due to the negative charge imparted by SDS. They are attracted towards the positively charged nitrocellulose membrane.

After transfer, the membrane is briefly rinsed in TBS. Efficiency of transfer was determined using Ponceau S solution (Sigma Aldrich). The membrane was rinsed again to wash off the Ponceau S dye. It was then incubated in a blocking solution of 5% (w/v) Bovine Serum Albumin (BSA) in TBS for one hour at room temperature on the shaker. After incubation, the membrane was rinsed briefly with TBS and incubated in blocking solution containing a 1:5000 dilution of the antibody for the protein of interest. The membrane was incubated at 4°C overnight on the shaker.

Post incubation, the blocking solution containing the antibody was removed and stored at 4°C for re-use. The membrane was washed thrice for 5 minute in TBS containing 0.2% (v/v) Tween-20. It was then re-incubated in blocking solution containing a 1:5000 dilution of the secondary antibody for 3.0 hours at room temperature. The secondary antibody used was species-specific IgG conjugated with horse radish peroxidase (HRP) or alkaline phosphatase (AP). The diluted antibody was removed and stored at 4°C for reuse. The membrane was washed 3x in TBS containing 0.2% (v/v) Tween-20 for 5 minutes.
2.2.5.1. Chromogenic detection

Chromogenic detection of protein was done using the Invitrogen Western-breeze Chromogenic kit – (anti-mouse). Membrane blocking and wash steps were carried out as per instructions in the manual. The membrane was incubated overnight with the primary antibody at 4°C on a shaking platform. It was then washed 3x in diluted wash buffer provided with the kit and then incubated with alkaline phosphatase-conjugated mouse anti-IgG at a concentration of 1:5000 for 2.0 hours at room temperature. The blot was rinsed post incubation and developed using the chromogenic substrate provided with the kit. The developed blot was scanned and densitometric analysis performed using Alpha Imager FC.

2.2.5.2. Enhanced Chemiluminescence

Post-transfer, the nitrocellulose membrane was incubated in a blocking solution [5% (w/v) BSA in TBS] for 2.0 hours. Membranes were washed quickly in TBS and incubated with the polyclonal rabbit anti-claudin2 or anti-claudin3 antibodies (1:5000) overnight at 4°C. The membranes were washed 3 times with 0.1% (v/v) Tween20 in TBS and incubated with secondary anti-rabbit IgG with HRP-conjugate (1:5000) for 3.0 hours at room temperature. Immune complexes were detected using enhanced chemiluminescence. The film was scanned and densitometric analysis performed using Alpha Imager FC software.

2.2.5.3 Densitometric analysis

The finished blot was placed over the platform inside Alpha Imager under white light only option. The blot was positioned to get a clear view for the camera and the focus was adjusted using Imaxia Gelfox software. A photograph was taken and the image
was saved in tiff format. The protein bands on the blot was selected using Gelfox and the total pixel density per band was calculated and saved to file. Experiments were performed in duplicates or triplicates. Mean density of all repeats were used for statistical analysis.

2.2.6. Viability Assay:
ARPE-19 cells were propagated in 6-well cell culture plates in 10% (v/v) growth medium, until confluent. The medium was changed to the serum-free composition, 6 hours prior to growth factor treatment. Cells were incubated for 24 hours with growth factors as described earlier. The culture was then washed 3 times with PBS and trypsinized by adding 200µl of 0.25% (v/v) Trypsin-EDTA solution. Trypsinisation was stopped by adding 200µl of complete medium. A 20µl aliquot was removed from this and an equal volume of 0.4% (w/v) Trypan Blue (Sigma Aldrich) was added. This was allowed to stand for 5 minutes. Cell suspension (10µl) mixed with Trypan blue was applied to a haemocytometer, and the ratio of viable to non-viable cells determined. The plasma membranes of non-viable cells are permeable to Trypan blue and hence take up the dye and appear blue while observed under the microscope

2.2.7. Statistical analysis
Statistical analysis of data obtained was done using single parametric Analysis of Variations (ANOVA) method. The data was compared and a P value <= 0.05 at 95% accuracy was considered statistically significant. A minimum of two sets of values were used for comparison of results.
2.2.8. Immunofluorescence

Cells grown to confluence in T25 flasks were washed 3 times with sterile PBS to remove any traces of serum, followed by trypsinization and centrifugation. The pellet was dissolved in 1.0 ml of fresh medium. Sterile 1cm² coverslips were placed in 6 well tissue culture plates and 100µl of cell suspension aseptically placed on top. The plates were then incubated at 37°C for 2.0 hours to allow the cells to settle. After 2.0 hours, 2 ml of 10% (v/v) complete medium was added to each well, and the cells were reincubated at 37°C until the desired degree of confluence was achieved. Coverslip-immobilized cells were treated with growth factors as explained previously. The treated cells were then washed 3 times in sterile PBS and fixed for 10 minutes in ice-cold methanol. The methanol was then aspirated to waste and the cells washed quickly in 2.0 ml PBS to avoid drying.

The coverslips were then blocked in 3% (w/v) BSA in PBS for one hour at room temperature. Following this, the cells were rinsed briefly with PBS and incubated with the primary antibody at 4°C overnight. After incubation, the cells were washed 3 times with PBS for 10 minutes each. The cells were then incubated with the appropriate biotinylated secondary antibody for 2.0 hours at room temperature. The cells were washed again with PBS. They were then incubated with 1:200 dilution of fluorescein streptavidin (Vector Labs) for 15 minutes in the dark. Following a further wash with PBS, the coverslips were mounted on a glass slide using a fluorescence mounting medium containing DAPI (Vector Labs). The cells were then observed under the fluorescence microscope and images captured using Cell™ software.
2.2.9. Immunohistochemistry (IHC)

2.2.9.1. Tissue Rehydration

Paraffin-embedded tissue sections were gifted by Dr. Helen Lambkin. The tissue specimens were cut into 5.0 µM sections using a microtome and mounted on silanized charged slides. They were allowed to dry for 15 minutes, followed by one hour incubation at 58°C.

2.2.9.2. Dewaxing and antigen retrieval

The slides were submerged in two changes of xylene (5 min), followed by two changes of absolute alcohol (5 min). The slides were then submerged in spirit for 1 minute followed by rinsing with tap water for 2 minutes to remove the alcohol. The slides were then allowed to sit in citrate buffer preheated to 95°C for 45 minutes. They were then treated with 3% (v/v) methyl hydrogen peroxide for 5 minutes to inactivate endogenous peroxidases.

2.2.9.3. ABC staining method

The ABC staining was done using a Vectastain kit as per manufacturer’s instructions. The slides were washed in PBS (5 min), blocked using Normal Horse Serum (10 min) and then washed again with PBS (1 min). They were then incubated in the primary antibody for either 2 hours at room temperature or 4oC overnight. The slides were then washed three times with PBS (5 min) and secondary antibody added and incubated for 1 hour. The sections were washed thrice with PBS (5 min) and then the ABC peroxidase (Vector Labs) was added and incubated for 15 minutes. After the wash step, the slides were incubated in DAB peroxidase (10 min). When sufficient colour had developed, the slides were washed using tap water and counter-stained...
Materials and Methods

using Meyer’s Haematoxylin for 1 minute. They were then blued in warm running water for a minute.

2.2.9.4. Rehydration
Slides were rehydrated by immersion in spirit for 1 minute, followed by two changes of absolute alcohol for 3 and 10 minutes respectively. They were then submerged in xylene (5 min) followed by a second change of xylene (2 min). DPX was added and a coverslip applied.

2.2.10 2-D Electrophoresis

2.2.10.1. Acetone precipitation
Samples were extracted using extraction buffer as described in section 2.2.2. A specific volume of test sample containing approximately 500µg protein was pipetted into a 1 ml tube and diluted five-fold with ice cold acetone. This was then mixed by vortexing and left at -20°C for 2.0 hours. The sample was then removed and spun at 10000 rpm for 20 minutes at 4°C. The acetone was aspirated to waste and the protein pellet dried at room temperature.

2.2.10.2 IPG Strip rehydration
IPG strips in the pI range pH 3-10 were used. A 2.5ml aliquot of rehydration stock solution was slowly thawed at 4°C prior to use. IPG buffer (12.5µl) and DTT (7mg) was added per 2.5ml of rehydration solution. The solution was inverted slowly and 250µl aliquots added to each protein pellet. Proteins were dissolved by gently mixing for 15 minutes at room temperature.
The protective lid was removed from the re-swelling tray and 250µl of re-hydration solution containing the protein pellet was pipetted into the central point of each tray slot. The protective foil cover lining the IPG strip was gently removed, starting at the acidic end marked (+). Each strip was gently laid down on the solution, with the gel side facing down. The strip was gently lifted and lowered back-and-forth so that the fluid covered the entire strip. Care was taken to avoid air bubbles forming in the solution. The strips were then covered with 2 ml of dry strip cover fluid to prevent evaporation. The re-swelling tray lid was replaced and the strips allowed to hydrate overnight at room temperature.

2.2.10.3 Isoelectric focusing (IEF)

The ceramic manifold was placed on the Ettan IPGphor Isoelectric focusing system platform. Drystrip cover fluid was added to each of the manifold channels. The hydrated strips were gently removed and placed, gel-side-up, on filter paper to remove excess cover fluid. The strips were then placed gel-side-up on the manifold, with the anode (+) end aligned with the 13cm mark on the IEF platform. An appropriate number of paper wicks were counted and 150µl of double distilled water added to each wick. A wick was placed at each end of the strip in such a way that one end of the strip overlapped the end of the gel. The electrodes were placed on top of all wicks, ensuring that the electrodes were in contact with the wicks, and the electrode cams were swivelled into closed position.
The IPGphor lid was programmed with parameters shown in the table below and the lid was closed.

<table>
<thead>
<tr>
<th>Voltage -mode</th>
<th>Voltage</th>
<th>Volt-hours</th>
<th>Duration (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step and hold</td>
<td>500</td>
<td>500</td>
<td>1</td>
</tr>
<tr>
<td>Step and hold</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Step and hold</td>
<td>8000</td>
<td>14500</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2.10.4 IPG strip equilibration

Following IEF, the IPG strips were taken from the manifold and placed on a filter paper to remove excess cover fluid. The SDS equilibration solution was thawed at 4°C and 10ml added to a clean test tube. DTT was then added to this just before use. IPG strips were gently placed into these test tubes with the support film towards the wall. The test tube mouth was closed using Parafilm® and placed on Spiramix rotating mixer for 15 minutes. Equilibration saturates the IPG strips with the SDS buffer system required for the second dimension separation of proteins.

2.2.10.5. Electrophoresis

Buffers and reagents were prepared as previously described (Section 2.3). A 12% SDS PAGE gel was prepared as previously described in section 2.1.4.2. Resolving gel was poured between plates, leaving approximately 0.5cm gap from the top. A layer of butanol was added to ensure a level surface for the gel. The resolving gel was allowed to set for 30 minutes. Butanol was poured off after the gel had set and excess butanol was rinsed off with distilled water. The IPG strip was removed from the equilibration solution and rinsed carefully in running buffer. It was then placed carefully on top of
the SDS-PAGE gel, face-side-up, with the plastic side in contact with the glass plate. The gel was then pushed down gently with a forceps until the strip was in contact with the gel. Care was taken to ensure that no air bubbles were present between contact surfaces. A small plastic spacer was placed beside the strip, and 1% agarose poured into the glass plates to hold the strip in place during electrophoresis. The plastic spacer was removed after the agarose had set, leaving a well for applying the molecular weight marker.

The gel was run at 150V per gel for 3.5 hours. At the end of this run, the bromophenol blue dye had reached the bottom of the gel. The gel was then removed from the glass chamber and the IPG strip and agarose discarded.

2.2.10.6 – Coomassie blue staining

The gel was placed on plastic trays and a sufficient volume of Coomassie blue stain was poured to cover the gel. The tray was placed on a shaker and the gel was stained using Coomassie brilliant blue overnight. The stain was discarded and the gel was then destained in destain-1 for 1.0 hour followed by destain-2 overnight or until the background was clear. The destained gels were scanned using a scanner for further analysis. The optimized time scale for 2-D electrophoresis is provided in the table 2.3 below, as used in all subsequent experiments.

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein sample (1000µg) + 4x Acetone Incubation</td>
<td>-20C</td>
<td>2 hours</td>
</tr>
<tr>
<td>Centrifuge – 10,000 rpm</td>
<td>4C</td>
<td>10 min</td>
</tr>
<tr>
<td>Pipette off Acetone, Airdry</td>
<td>Room temp</td>
<td>5 min</td>
</tr>
<tr>
<td>Heat Samples</td>
<td>100C</td>
<td>3 min</td>
</tr>
<tr>
<td>Cool on bench</td>
<td>Room temp</td>
<td>5 min</td>
</tr>
<tr>
<td>Add 250ul rehydration stock (DTT+Buffer) per pellet</td>
<td>-</td>
<td>5 min</td>
</tr>
<tr>
<td>Mix</td>
<td>Room temp</td>
<td>15 min</td>
</tr>
</tbody>
</table>
Place on reswelling tray. Add IPG strip face down. Cover with oil and allow to rehydrate

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Manifold on IEF. Cover with oil</td>
<td>-</td>
<td>5 min</td>
</tr>
<tr>
<td>Transfer strips to manifold</td>
<td>-</td>
<td>20 min</td>
</tr>
<tr>
<td>Place wet paperwicks on both sides of gel</td>
<td>-</td>
<td>20 min</td>
</tr>
<tr>
<td>Place electrode cams. Lock into position</td>
<td>-</td>
<td>10 min</td>
</tr>
<tr>
<td>Run IEF</td>
<td>Room temp</td>
<td>4-5 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blot excess oil from gel</td>
<td>-</td>
<td>5 min</td>
</tr>
<tr>
<td>Equilibrate gel in Equilibration solution</td>
<td>-</td>
<td>20 min</td>
</tr>
<tr>
<td>Prepare resolving gel (leave 0.5cm space)</td>
<td>-</td>
<td>30 min</td>
</tr>
<tr>
<td>Resolving gel set time</td>
<td>-</td>
<td>30 min</td>
</tr>
<tr>
<td>Add IPG strip to resolving gel</td>
<td>-</td>
<td>10 min</td>
</tr>
<tr>
<td>Add 1% agarose (+bromophenol blue) – Allow to set</td>
<td>-</td>
<td>5 min</td>
</tr>
<tr>
<td>Setup SDS system. Add m.w marker</td>
<td>-</td>
<td>10 min</td>
</tr>
<tr>
<td>Run 2D</td>
<td>-</td>
<td>4-5 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer gel to Coomassie blue</td>
<td>-</td>
<td>30 min</td>
</tr>
<tr>
<td>Stain</td>
<td>-</td>
<td>8-12 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destain 1</td>
<td>Room temp</td>
<td>1-1.5 hrs</td>
</tr>
<tr>
<td>Destain 2</td>
<td>Room temp</td>
<td>8-12 hrs</td>
</tr>
</tbody>
</table>

Table 2.3: Optimized time scale for 2 dimensional electrophoresis of RPE samples. Processing time from sample preparation until the stage of obtaining the final destained gel was five days.

2.2.10.7 – Silver Staining

Silver staining and destaining was done using ProteoSilver kit (Sigma Aldrich) as per manufacturer’s instructions. All steps require constant agitation and hence were performed at room temperature on a shaker. The steps are outlined below.
a) Fixation
The gel was fixed in a solution containing 50% (v/v) ethanol and 10% (v/v) acetic acid for 20 min., followed by 30% (v/v) ethanol for 10 minutes. The gel was then washed in distilled water (10 min.).

b) Sensitisation
The gel was sensitized in sensitizing solution provided for 10 minutes. It was then washed twice in distilled water for 10 minutes each.

c) Silver equilibration
Silver solution was added to the gel for 10 minutes, after which it was washed with water.

d) Development
Developer solution was added and the gel agitated until spots became visible. After the desired stain intensity had been achieved, colour development was halted by stopping solution, followed by washing (15 min.) and the result archived using a flat-bed scanner.
Chapter 3

Standardisation of techniques for detection of protein expression
Investigation of the effects of selected modulators on regulation of tight junction protein expression within this study was carried out by electrophoretic and cytochemical techniques, in conjunction with immuno-localization of target proteins. To permit reproducible comparative analysis of protein expression over the entire study period, it was necessary to perform standardization experiments to identify optimal assay conditions and to characterize the robustness of the detection methods. Variations in global protein expression in response to treatment challenges utilized 2-dimensional gel electrophoresis, and this was complemented by SDS-PAGE and western blotting to study the expression of specific biomarkers. Bio-distribution studies to localize the expression of a selection of target biomarkers within cells utilized fluorescent-labelled antibodies.

3.1 Two-Dimensional (2-D) Electrophoresis

The technique of 2-D gel electrophoresis was selected to study the effect of growth factors on the RPE proteome, comparing the resultant fingerprint (generated on the basis of molecular mass and isoelectric point) with in-house data and previously published reports. An integral aspect of deploying this technique is ensuring adequate amounts of protein which can be reproducibly detected after separation in both dimensions. Using the method previously described by Brankin and colleagues (2006), it was found that it was only possible to reproducibly prepare cell homogenates with a maximum protein concentration of 0.8–1mg/ml; previous studies have also reported extensive protein loss at almost every stage of sample preparation and transfer (Zhou et al, 2005), citing proteolysis, the presence of unspecified contaminants or uncontrolled insolubilization of proteins as reasons. This loss of protein also contributes to experimental variations, reducing chances of reproducing
the 2-D gel pattern (Zhou et al., 2005). On the basis of such reports, and given that further optimization of homogenate preparation was beyond the scope of this work (on the grounds of limited time available), it was decided to try to compensate for this limitation by incorporation of a protein precipitation step into the sample preparation protocol, in conjunction with deployment of enhanced sensitivity detection methodology during the final band detection steps in the electrophoresis.

Initial investigation of untreated RPE protein extracts by SDS-PAGE revealed densely staining bands in the regions of 30 kDa and 116 kDa (data not shown). Initial range-finding experiments with the 2-D gel system revealed problems of run-to-run variation and a low number of (sometimes faintly stained) protein spots on gels (Fig 3.1, a); the sub-optimal performance of the method was judged on the basis of comparison with previous in-house work on similar systems. A number of approaches were pursued to remedy this problem.

Incorporation of an organic solvent (acetone) precipitation step into the sample preparation protocol allowed an approximate 50% increase in amounts of protein available for application to the gel, and thereby assuring that low abundance protein in the extract could be consistently detected. Additionally, the occurrence of streaks in the stained gel reduced the overall clarity and complicated the clear-cut interpretation of results. Such streaks have been variously attributed to the presence of membrane lipids, contaminants and non-specific oxidation of proteins (Luche et al., 2004.); however, in the present work, the inclusion of DTT in the equilibration and re-swelling buffers was not wholly effective in preventing streaks. Substitution of re-swelling buffer with DeStreak Rehydration Solution (pH 3-10), a product available
from GE Life Sciences (UK), was found to eliminate such artefacts (Fig 3.1, b). Information regarding the components of this buffer was not available from the company. However, it was successful in removing streaks caused by protein oxidation and presence of lipids in the gel.

Further minor modifications to the protocol were also found to have a beneficial effect on the quality of the gel end product. While the molecular mass standards could be detected on the final 2-D gel without much difficulty after using the ‘standard’ IPG strip equilibration protocol (20 – 30 minutes), it was determined empirically that efficient diffusion of analyte samples into the second dimension required a longer pre-equilibration duration of 45 minutes.

Variations in gel quality could also arise from the handling of the IPG strips. Experience through trial-and-error indicated that the latter were best handled when they were still nearly frozen and used immediately after removing from -20°C storage. It was observed that an increase in temperature caused the gels to stick to the plastic strip and tear while the strip was being removed.
Fig 3.1: Establishment of optimized separation and detection parameters for the untreated RPE proteome sample.

a. 200 µg protein, standard extraction protocol, standard re-swelling buffer containing DTT;

b. 500 µg protein, organic solvent precipitation of protein, DeStreak Rehydration buffer. The organic solvent precipitation step was performed by taking 200µg of RPE extract and addition of a 4x volume of chilled acetone. Precipitates were air dried and resolubilized in 250µl of rehydration stock by gentle mixing. The standard strip re-swelling protocol consisted of rehydration in 7M urea, 2M thiourea, 15mM DTT and 4% Triton X-100. Gels were stained using Coomassie Brilliant Blue. Electrophoresis parameters were as outlined in section 2.2.10

Note: Gels shown in picture are not of the same sample
Attempts to further optimize the detection of protein spots on gels focused on replacing-supplementing Coomassie Brilliant Blue with more sensitive staining methods. The advantage of higher resolution detection of protein spots for a smaller amount of protein sample (150 µg) using a silver staining protocol were offset by increased background staining (Fig 3.2), with the latter limitation exacerbated by the practical difficulty of processing multiple gels simultaneously.

Fig 3.2: Detection of protein complement of untreated RPE extract by 2-gel gel electrophoresis and silver staining.

Protein present in initial sample - 150µg. Electrophoresis parameters were as outlined in section 2.2.10. Arrows indicate protein spots visible in final gel. Heavy background staining was obtained in the initial gels after destaining silver stained gel. Double staining partially rectified this problem and the gel obtained was much clearer.
The use of silver stain on gels, with subsequent staining in Coomassie Brilliant Blue, was also examined; such protocols have been reported to increase protein detection sensitivity on electrophoretic gels by up to eight-fold (Fernandez-Patron et al 1995; de Moreno et al, 1986; Irie et al 1982). Preliminary experiments indicated that the use of this technique may provide higher contrast preparations than the use of silver staining alone (Fig 3.3); indeed, removal of non-specific background staining was experienced, resulting in improved gel clarity. However, the relative convenience of the Coomassie blue method, in conjunction with the other assay improvements outlined above, dictated that it was the primary staining method used in this study.

The final optimized 2-D gel electrophoresis protocol used in all subsequent experiments is described in Table 2.3, Section 2.2.10.6 of Materials & Methods.

Analysis of changes in RPE proteome treated with VEGF using 2-D electrophoresis was attempted in the initial period of study. It is nearly impossible to study tight junction protein changes by the 2-D electrophoresis method, owing to a very low percentage of membrane proteins in the RPE proteome extract prepared for this analysis. The 2-D electrophoretic analysis may prove to be an excellent tool for studying pathological changes in the total RPE proteome and would be handy in identifying key protein biomarkers in diseased RPE. The focus of this project was to look at the modulation of RPE barrier function, involving changes in expression of key membrane proteins involved in formation of tight junctions. Hence this method was found inadequate. Also owing to time constraints in the project, this experiment was not continued.
Fig 3.3: Detection of protein complement of untreated RPE extract by 2-dimensional gel electrophoresis. Gel was double stained using silver and Coomassie Brilliant Blue.

Protein loading: 200µg. Electrophoresis parameters were as outlined in section 2.2.10
3.2 Western Blotting

The modulation of expression of specific RPE proteins in response to growth factors was assessed by western blotting. This approach involved the separation of proteins by SDS-PAGE, followed by transfer to a nitrocellulose membrane and probing with specific antibodies. Antibody-antigen reactions were then detected by enzyme-linked conjugates (alkaline phosphatase or horse radish peroxidase).

Initial investigation of protein loading and staining performance on SDS-PAGE gels identified the required amount of protein per gel lane (gel not shown). The full complement of proteins capable of being visualized by this technique was apparent at a gel loading of 20µg of protein, without incurring serious lane distortion, and this was selected for subsequent use in western blotting experiments (Section 2.2.5). However, problems were encountered in transferring proteins from the gel to nitrocellulose using the dry cell blotter available in the laboratory. Attempts to effect consistent transfer of proteins using the standard current setting and recommended blotting times necessitated further optimization, and Beta actin was used as a loading control for this purpose.

Problems with non-specific binding were also encountered. The Invitrogen Novex® Western Breeze™ Chromogenic kit (anti-mouse) kit was used as the standard immuno-staining tool for colourimetric analysis of protein of interest. However, the Hammerstein casein blocking solution provided with the kit was not found to be suitable in all situations. The use of Bovine Serum Albumin [BSA; 3.0% (w/v) in TBS] was necessitated when certain custom dilutions of antibodies were to be used.
The proteins were initially visualized using BCIP/NBT (5-bromo 4-chloro 3’-indoyl phosphate/nitro-blue tetrazolium). Early experiments performed according to the manufacturer’s instructions produced blots which suffered from high background staining, hampering the clear-cut interpretation of the protein bands (Fig 3.4 a). Further investigation of the problem indicated that the washing protocol was of key importance. Manufacturer’s instructions specified that blots be subjected to a washing regime involving 3 x 5 minutes rinses (in 1:15 diluted wash buffer). However, when the duration of wash steps was increased to 10 minutes per wash, background staining was greatly reduced (Fig 3.4 b).

Fig 3.4: Influence of blot washing protocol on background staining.

Beta actin was used as a loading-transfer control. The blot was developed for enzymatic staining using either the manufacturer’s washing protocol (5 minutes (a)) or the laboratory-derived method (b). The molecular markers were Precision Plus Protein™ WesternC™ standards (BioRad). Minigels were routinely used for western blot. Ponceau S was used to confirm protein transfer in advance of blot processing for antibody-enzyme staining. Arrows indicate beta actin band visible on the blot after development.
The next phase of the work involved further standardization of the system using representative RPE proteins (derived from treated/untreated cell preparations). Two tight junction proteins, of different molecular mass, were selected for this purpose: occludin, a 65kDa protein and Zo-1 with a molecular mass of 220kDa. A representative blot showing the staining of occludin is shown in Fig. 3.6. Optimal transfer times were found to be in the region of 2 hours (occludin) to 3.5 hours (Zo-1).

![Representative standardization blot for occludin.](image)

Fig 3.5: Representative standardization blot for occludin.

ARPE-19 cells were treated with VEGF and RPE proteins extracted as described in section 2.2.2. VEGF (ng/ml): A, 100; B, 10; C, 0; M, molecular weight markers.
Amplification of the antibody-binding reaction by chemiluminescence (Fig. 3.6) was also investigated as a detection tool as this method is more sensitive (Conrad et al, 2001). The system used employed HRP-labelled secondary antibody and beta actin was initially used as a transfer control.

For optimal detection of tight junction proteins, overnight incubation with primary antibody at 4°C on a shaker was followed as a rule, followed by incubation in secondary antibody at room temperature for 3 hours. Issues regarding the purity of commercially-sourced antibodies were identified as a vital factor in contributing to background staining. Tight junction antibodies bought from Invitrogen were the final choice after trying the product of a variety of other suppliers.
3.3 Immunofluorescence

Growth factors which showed a significant effect on RPE protein expression (as detected by western blotting) were selected for further study to examine their expression within cells. In the technique of immunofluorescence, antibodies are used directly on cultured, fixed cells, to probe for the expression of the tight junction protein of interest, thereby allowing direct visualization of its location in the cell.

For imaging convenience, it was essential to grow the cells on a surface which could be used with a microscope. While chamber slides (Labtek) were available, they suffered from the disadvantage of being prone to contamination due to the loose top cover (and were also relatively expensive). The use of 0.1% (w/v) gelatine coated sterile coverslips proved to be a viable alternative, although slight background staining was evident during image capture (Fig 3.7a) as compared with a non-gelatine coated control slide (Fig 3.7b). RPE cells did not exhibit auto-fluorescence (data not shown) when tested for the same.

Three different cells fixatives were investigated for optimal performance: acetone – formalin (1:1), formalin (3% v/v) and ice cold methanol. Of these, methanol was found to give superior results. Formalin fixation required an additional permeabilization step using Triton-X 100. Fixation using 100% methanol has been previously shown to preserve cell morphology (Nogouchi et al, 1997) and does not require additional permeabilization treatments. Hence this was the method of choice in the current study. The antibody staining protocol was initially tested using a vimentin antibody, which was found to work well using a 1:150 dilution (Fig 3.8).
Fig 3.7: Gelatine coated slide: non-specific background staining using FITC label.

A 0.1% Gelatin coated blank cover slip (a) and uncoated cover slip (b) were tested for background fluorescence. No cells were cultured on these slides. Experimental conditions were the same as that for cultured cover slips. Gelatin coating contributed to background fluorescence.

Fig 3.8: FITC-stained RPE cells probed for vimentin.
Untreated RPE cells cultured on coverslip was probed using 1:500 dilution of vimentin antibody. The cells were stained with FITC. Images captured at magnification: x40

Slightly more difficulty was encountered when using antibodies directed against tight junction proteins. Although Zo-1 presented little challenge, background staining was encountered with occludin antibody, compounded by the fact that it needed a longer incubation time to obtain satisfactory results. Indeed, achieving a balance between the antibody incubation duration required to effect detection of the target bio-molecule, and the avoidance of unacceptable background staining, was a recurring theme. For example, no staining was apparent if anti-claudin–1 was incubated at 4°C for up to 16 hours. Extending the incubation duration to 24 hours at 4°C for the primary antibody produced a target-specific signal, but contributed to non-specific binding (result not shown). Such a situation was also encountered in the case of RPE cells probed for claudins 2, 3, 4 and 5: heavy background signal was accompanied by a granular staining pattern in the cytoplasm (Fig 3.9). Fortuitously, certain claudin antibodies were being used simultaneously by other workers in the laboratory, and the dilutions optimised by immuno-histochemistry using breast and cervical carcinoma tissues, were also found to be suitable for the present studies; remaining claudin antibodies (claudins 2, 3 and 4) were used at dilutions recommended by the manufacturer, and provided adequate results. A representative set of images of RPE cells stained for Occludin and Zo-1 are shown in Fig 3.10.
Fig 3.9: RPE cells stained for expression of Claudin-1

Untreated RPE cells cultured on coverslip probed using for claudin-1. Incubation time –16 hours. Texas Red staining shows granular cytoplasmic staining pattern; nuclei stained using DAPI. Magnification x40.
Fig 3.10: Untreated RPE cells probed for (a) occludin, (b, c) Zo-1. (Optimized)

Incubation time used – 12 hours. The cells were stained using FITC. Nuclei stained using DAPI in b and c. Magnification x40, except c (x10).
Chapter 4

Effect of Growth Factors on the outer Blood Retinal Barrier
4.1. Introduction

Vascular endothelial growth factor is the collective name for a family of pro-angiogenic growth factors. VEGFs are primarily involved in development and differentiation of vascular endothelium and promote neovascularisation. VEGF has been identified as a key protein involved in the breakdown of the BRB. However, the molecular mechanism of this has to be further elucidated.

4.1.1 VEGF structure and functions

Vascular endothelial growth factors belong to the VEGF / PDGF (Platelet Derived Growth Factor) group of the cysteine knot super-family of hormones and growth factors (Holmes and Zachary, 2005). The VEGF family consists of a group of structurally and functionally related pro-angiogenic growth factors named VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F and Placental growth factor (PIGF). Of these, VEGF-A, B, C, D and PIGF are expressed in humans (Holmes and Zachary, 2005). VEGF-A is the most thoroughly studied among the VEGF family and has nine isoforms produced by alternative splicing of a single VEGF gene consisting of eight exons (Bhishitkul, 2006). These isoforms are named on the basis of the number of amino acids present in their sequence as indicated by the subscript number. Currently identified isoforms of VEGF-A are VEGF_{121}, VEGF_{145}, VEGF_{148}, VEGF_{162}, VEGF_{165}, VEGF_{165b}, VEGF_{183}, VEGF_{189} and VEGF_{206} (Shams and Ianchulev, 2006).

Studies conducted by Hartnett et al., 2003 showed that co-culture of RPE cells with endothelial cells reduced the barrier properties of the RPE and the reduction was in part mediated by soluble VEGF. The same study reported greater release of soluble VEGF into the medium compared to solo culture of RPE. VEGF and cytokines
including TNF-α have been shown to disrupt RPE barrier function (Ablonczy and Crosson 2007, Hartnett et al 2003) and to cause a reduction in regulated removal of subretinal fluid, leading to macular oedema (Funatsu et al 2009, Ablonczy and Crosson 2007). Patients suffering from Proliferative Diabetic Retinopathy (PDR) were reported to have a very high level of VEGF (5.42ng/ml) as compared to a non-diabetic subject (9pg/ml) (Funatsu et al, 2005, Mitamura et al, 2002). However, the exact molecular mechanism that leads to growth-factor-mediated disruption of oBRB has not been elucidated.

The biological effects of VEGF are mediated through a family of tyrosine kinase receptors known as VEGF Receptors (VEGFRs) (Holmes and Zachary, 2005). The VEGFRs differ considerably in their signalling properties and are assisted by non-signalling co-receptors in the signalling cascade. VEGFR-1 and VEGFR-2 play a key role in angiogenesis of blood vessels while VEGFR-3 is associated with lymphangiogenesis. Fig 4.1 shows the association of various isoforms with VEGFRs.

![VEGF - VEGFR interaction](Source: Hicklin and Ellis, 2005)
4.1.2 Placental Growth Factor

PlGF is a 38kDa, pro-angiogenic member of the VEGF family and shares several functional traits of other VEGF isoforms. As the name indicates, PlGF is expressed in placental cells and is primarily involved in embryonic vasculogenesis. However, PlGF is also produced by non-placental cells including RPE (Miyamoto et al 2008).

PlGF occurs as a homodimer and shares substantial structural similarity with VEGF-A (Miyamoto et al, 2008). Four PlGF isoforms are produced by alternative splicing of the PlGF gene (Yang et al 2003). PlGF isoforms do not interact with VEGFR2, but selectively bind to the VEGFR-1 receptor. PlGF is produced by RPE under hypoxic conditions (Hollborn et al 2006). Patients suffering from PDR were reported to have very high levels of PlGF of up to 1.039ng/ml (Mitamura et al, 2002). PlGF is found in very low levels of between 7pg/ml to 12pg/ml in the vitreous fluid of control non-diabetic patients (Mitamura Y et al 2002).

4.2. Aims

VEGF and PlGF are key proteins that cause breakdown of iBRB. The RPE has been found to produce VEGF and PlGF directly (Kaur et al. 2008, Kannan et al. 2006, Strauss 2005). Hollborn et al, (2006) reported that unstimulated RPE secretes between 100 to 250pg/ml VEGF into the medium (Hollborn et al, 2006). However, the effect of PlGF and VEGF on the Retinal Pigment Epithelial barrier has not been extensively investigated. In this study, it was therefore of interest to examine the latter aspect. The expression and localization of occludin and Zo-1 on RPE membrane was studied using western blotting and immunofluorescence staining. The toxicity of growth factors used was investigated using a standard Trypan blue assay.
4.3. Cell Culture and Growth Factor Treatment

ARPE-19 cells were cultured as described in section 2.2.1 until desired confluence was achieved. The cells were then washed thrice to remove all traces of serum and incubated in serum-free medium for 6 hours. Afterwards, the monolayer was rinsed with sterile PBS and treated with 10-100ng/ml VEGF or 1-10ng/ml PlGF for 24 hours. Following treatment, the cell monolayer was rinsed with sterile PBS to remove any traces of medium. The cells were then extracted as described in section 2.2.2. Protein analysis of the cell extract was performed using the Bradford assay as described in section 2.2.3.

Equal amounts of protein per sample were loaded to minigels. Electrophoresis was performed as described in section 2.2.4. The separated proteins were then blotted to a nitrocellulose membrane using the optimized method described in 2.2.5. Transfer time used was 2 hours for Occludin and 3.5 hours for Zo-1.

Cell viability assay was performed using trypan blue (Sigma Aldrich) as described in section 2.2.6.
4.4 Results and Discussion

4.4.1 Occludin expression in VEGF treated RPE

In this study, changes in tight junction expression were observed in cultured RPE cells exposed to different concentrations of VEGF or PlGF for a 24 hour period.

Analysis of VEGF-mediated protein expression by western blot (Fig 4.2) yielded inconclusive results; an apparent down-regulation in expression of occludin in RPE treated with VEGF was evident (Fig 4.3), but this was not statistically significant (P>0.05) when subjected to densitometric analysis using Imaxia Gelfox (Table 4.1). Parametric analysis was done using ANOVA

Fig: 4.2 – Western blot analysis of effect of VEGF on occludin in RPE.

The blot was developed using chromogenic substrate BCIP/NBT. Normalisation of blots was achieved using beta actin. Blot was done in duplicate.
Effect of Growth Factors on the Outer Blood Retinal Barrier

<table>
<thead>
<tr>
<th>VEGF concentration</th>
<th>Mean</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>7557</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>6443.5</td>
<td>0.366</td>
</tr>
<tr>
<td>100ng/ml</td>
<td>5597.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Mean pixel intensities for two sets of samples shows a decrease in occludin band intensity with exposure to VEGF. P-value calculated using single factor ANOVA shows that the change is not statistically significant.

Fig: 4.3 Effect of occludin expression in RPE cells treated with VEGF.

Occludin in RPE is down-regulated with exposure to VEGF. The graph represents the mean value for two western blot analyses and the standard error of the mean is represented by Y-error bars.
However, investigation of cellular occludin expression by immunofluorescence imaging confirmed a reduction in occludin production, evident by a loss of junctional staining in RPE cells, after exposure to 1.0 and 10ng/ml VEGF (Fig 4.4). Such concentrations of VEGF are representative of in vivo levels associated with the disease state. For example, vitreous VEGF in a diabetic patient was found to be elevated as high as 5.424ng/ml, while in a healthy individual, it is 9.0pg/ml (Mitamura et al 2002).

Increased paracellular permeability of RPE cells following exposure to high concentrations of VEGF has been reported previously (Ablonczy and Crosson 2007; Geisen et al 2006), and is recognised as an early sign of macular oedema and oBRB breakdown (Ablonczy and Crosson 2007; Caldwell et al 2005). However, Ghassemifar and colleagues (2006) reported that VEGF increased the TEER of ARPE-19 cells, and tightened the RPE junction. Such contradictory results reflect the complexity of the cellular control mechanism RPE function and point to the need for further studies in this area.
Fig: 4.4 Immunoflourescence staining showing junctional loss of occludin in cultured RPE cells treated with VEGF Untreated (a), treated with 10ng/ml (b) and 100ng/ml VEGF(c). RPE cells were stained using FITC and images captured at 40x magnification.
4.4.2. **Zo-1 expression in RPE treated with VEGF**

Expression of ZO-1 in RPE was not found to vary significantly following treatment with VEGF, as determined by western blotting (Fig 4.5). Densitometric analysis of band intensities indicated a progressive increase in expression of Zo-1 in VEGF treated RPE, although this was not statistically significant as evident from Table 4.2

![Western Blot Analysis](image)

Fig: 4.5 - Western blot analysis of effect of VEGF on Zo-1 in RPE.

The blot was developed using chromogenic substrate BCIP/NBT. Normalisation of blots was achieved using beta actin. Blot was done in triplicate.
<table>
<thead>
<tr>
<th>VEGF concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>4422.33 ± 907.4</td>
<td>0.273</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>6205.67 ± 1323.6</td>
<td></td>
</tr>
<tr>
<td>100ng/ml</td>
<td>7219 ± 1060.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Mean band intensities (± standard error of mean) for three sets of samples treated with VEGF shows an increase in Zo-1 band intensity with exposure to VEGF. P-value calculated using ANOVA shows that this change is not statistically significant.

Fig: 4.6 Effect of Zo-1 expression in RPE cells treated with VEGF.
Zo-1 in RPE is up-regulated with exposure to VEGF. The graph represents the mean value for three sets of data and the standard error is represented by Y-error bars.
Investigation of Zo-1 expression in RPE using immunofluorescence staining showed de-localization of Zo-1 from membrane after treatment with 1.0ng/ml and 10.0ng/ml VEGF (Fig 4.7).

Zo-1 is a member of the MAGUK family of proteins and interacts with occludin and claudins to maintain integrity of the barrier (Balda et al, 2003). Thus VEGF may affect barrier function by modulating Zo-1 levels, which may affect Zo-1 interaction with occludin and the claudin tight junction proteins. Additional factors to consider in future experiments would be to compare apical versus basolateral administration of VEGF, expression of VEGFR1 and VEGFR2 and effects on TEER. This additional data would allow us to predict more fully the effects of VEGF on RPE barrier properties, and on the outer BRB in vivo.

Cultured ARPE cells have been reported to express very high levels of VEGF of upto 777.2pg/ml in media, constitutively (Geisen et al, 2006). Basal administration of upto 500ng/ml VEGF did not produce significant change in permeability in the RPE while apical administration of upto 1ng/ml produced a significant increase in permeability. Our data shows about 20% decrease in occludin expression in the RPE treated with 100ng/ml VEGF as compared to the untreated sample. Although this value is not statistically significant (P>0.05), this is in agreement with studies mentioned earlier (Ablonczy and Crosson 2007, Geisen et al 2006).
Fig: 4.7 Immunofluorescence staining showing junctional loss of Zo-1 in cultured RPE cells treated with VEGF: Untreated (a), treated with 10ng/ml (b) and 100ng/ml VEGF(c). RPE cells were stained using FITC and images captured at 40x magnification.
4.4.3. Occludin expression in RPE treated with PlGF

VEGF and PlGF belong to the same family of pro-angiogenic growth factors and shares significant similarity in their amino acid sequence (Holmes and Zachary, 2005). Unstimulated ARPE cells secrete ~5ng/ml PlGF in vitro (Hollborn et al 2006). This is close to the level found in a normal vitreous fluid reported by Mitamura et al (2002).

Western blot analysis of PlGF induced occludin expression (Fig 4.8) showed an increase in protein expression. Statistical analysis of mean occludin band intensities showed a progressive increase in protein expression (Fig 4.9). However, the two tailed P-values indicated that this change was not statistically significant (Table 4.3)

![Western blot analysis of effect of PlGF on occludin in RPE.](image)

Fig: 4.8 - Western blot analysis of effect of PlGF on occludin in RPE.

The blot was developed using chromogenic substrate BCIP/NBT. Normalisation of blots was achieved using beta actin. Blot was done in triplicate.
Table 4.3 The table shows mean occludin band intensities (± standard error of mean) for three sets of samples treated with VEGF. The data was compared and a P value ≤0.05 in a single parametric ANOVA was considered statistically significant.

<table>
<thead>
<tr>
<th>PIGF concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>2059.67 ± 247.1</td>
<td>0.0259</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>2606 ± 224.5</td>
<td></td>
</tr>
<tr>
<td>100ng/ml</td>
<td>3996.67 ± 554.8</td>
<td></td>
</tr>
</tbody>
</table>

Fig: 4.9 Effect of occludin expression in RPE cells treated with PIGF.

Occludin in RPE is up-regulated with exposure to PIGF. The graph represents the mean value for three sets of data and the standard error is represented by Y-error bars.
Immunofluorescent staining showed a loss of junctional staining for occludin when cells were treated with PlGF (Fig 4.10). A study using FACS analysis could be performed in the future, whereby occludin expression on PLGF-treated and control RPE are quantitated.

Fig: 4.10 Immunofluorescence staining showing junctional loss of occludin in cultured RPE cells treated with PlGF: Untreated (a) and treated with 10ng/ml (b) PlGF. RPE cells were stained using FITC and images captured at 40x magnification.
PIGF levels as high as 1.034ng/ml was reported in the vitreous fluid of patients suffering from PDR (Mitamura et al, 2002). Elevated vitreous PIGF of up to 806.5pg/ml was reported in patients suffering from PDR with macular oedema and may contribute to retinal oedema and accumulation of sub-retinal fluid in diabetic retinopathy (Miyamoto et al 2007). Intra-vitreous PIGF level in a healthy individual is reported to be between 7 – 12 pg/ml. In diabetic patients, the vitreous levels were found to be elevated to 100-1000pg/ml (Mitamura et al 2002).

Although PIGF was expected to increase the paracellular permeability in RPE, it was seen to upregulate the occludin content in RPE, indicating possible strengthening of tight junctions. PIGF acts purely through VEGFR-1. VEGFR-1 activation stimulates expression of Pigment Epithelium derived factor (PEDF) which is a potent antagonist to VEGF and PIGF (Ohno-Matsui et al 2003). PEDF reverses redistribution of occludin from tight junctions caused by VEGF and PIGF (Ho et al 2006, Ablonczy et al 2009). Immunofluorescence images showed occludin localization at the RPE membranes (Fig 4.10). PEDF was also found to upregulate occludin in retina of diabetic rats (Yu et al 2010). This antagonistic effect of PEDF may be the reason for up-regulation of occludin in PIGF-treated RPE cells as observed from western blotting.

PIGF has been reported to produce no significant changes in permeability of the RPE (Ablonczy and Crosson 2007) although it has been found in elevated levels along with VEGF in patients suffering from diabetes (Miyamoto et al 2008, Mitamura et al 2002). A recent study reports that prolonged exposure to PIGF leads to BRB breakdown (Kowalczuk et al, 2011). Immunofluorescence staining of occludin in
PIGF treated RPE showed change in membrane localization of occludin (Fig 4.10). This study involved a standard growth factor exposure time of 24 hours. By far, results reported regarding behaviour of PIGF in the retina are contradictory and further studies are warranted. A time dependant study of changes in barrier function may be useful in studying this further.

Viability data obtained from trypan blue assay (Fig 4.11) showed that RPE cells retained 100% viability after exposure to 100ng/ml VEGF or PIGF.

4.5 Viability Assay

RPE cells were treated with 1ng/ml and 10ng/ml PIGF and 10ng/ml and 100ng/ml VEGF as described in section 2.2.2. Cell viability assay was performed as per protocol outlined in 2.2.6.

a) VEGF

A total of 98 cells were counted in 4 chambers of haemocytometer under microscope. All cells were unstained after exposure to trypan blue for 5 minutes.

b) PIGF

A total of 103 cells were counted in 4 chambers of the haemocytometer under microscope. All cells were unstained after exposure to trypan blue for 5 minutes.
Fig 4.11 - Percentage viability of cells treated with PlGF / VEGF for 24 hours.

Cell viability assay performed on RPE cells showed that RPE cells retained viability after stepping down medium to serum free media for 6 hours followed by growth factor treatment for 24 hours (Fig 4.11).
Chapter 5

Effect of Cytokines on the outer Blood Retinal Barrier
5.1 Introduction

An intact tight junction barrier is crucial for maintenance of retinal homeostasis. Pathogenesis and progression of several disorders involving breakdown of tight junctions are mediated by cytokines (Capaldo and Nusrat, 2009, Harada et al. 2006). RPE cells play an important role in the immune response. For instance, they express Major Histocompatibility complex (MHC) molecules, adhesion molecules, FasL and cytokines (Holtkamp et al., 2001). Cytokines such as Tumor necrosis factor alpha (TNF–α), Interleukin-1 beta (IL-1β) and Interferon-gamma (IFN-γ) regulate cells and also express immune and inflammatory properties (Demircan et al., 2006). RPE cells express chemokine receptors basally (Yamada et al., 2006, Blaauwgeers HG et al., 1999). It has been recognised that low grade inflammation plays a role in AMD. Thus the inflammatory response in AMD lesions is characterised by an infiltration of the BRB, including the RPE layer, by both macrophages and lymphocytes (Penfold et al., 2002, Reddy et al., 1995).

Studies involving AMD eyes were pursued, where the composition of drusen, extracellular deposits and plaques that accumulate in close association with the RPE, were investigated (Grossniklaus et al., 2005, Anderson DH et al., 2002, Hageman GS et al., 2001). The presence of few small drusen in the macula of patients aged over 40 is not considered harmful; however the increase in size and number of drusen deposits contributes to progressive AMD (An E et al, 2008). Drusen has been shown to attract macrophages to the sub-RPE space (Lopez PF et al, 1991) and results showed the major cellular components in CNV membranes included macrophages and fibroblasts (Grossniklaus et al., 2005). It is known that the major inflammatory cytokines produced by macrophages, neutrophils and lymphocytes are IFN-gamma, TNF–α and
IL1-β (An E et al, 2008), and these cytokines may be produced locally at the RPE. Furthermore, TNF-α and IL1-β are linked with pro-inflammatory RPE cell functions (Hollborn et al., 2001, Elner VM et al., 1997). TNF–α and IL-1 has been found in ocular specimens of autoimmune anterior uveitis (Patel and Chan, 2008) and the neovascular membranes of wet AMD (Wan L et al 2010, An E et al, 2008). In this work we have studied two pro-inflammatory cytokines, IL1-β, which is produced by activated macrophages, and TNF–α, which is produced primarily by macrophages, as well as other cell types.

5.2 Tumor necrosis factor alpha (TNF-α)

Tumor necrosis factors (TNFs) are a family of immuno-modulatory cytokines which are produced in response to inflammatory stimuli. TNFs are usually produced by activated macrophages and monocytes in the human body. Tumor necrosis factor alpha (TNF-α) is a potent pro-inflammatory cytokine with a number of biological effects (Holtkamp 2001). It is produced in the body, primarily by monocytes and macrophages, and plays a key role in initiation of immune responses in the body.

RPE cells express TNF-α receptors on their apical side (An E et al 2008). However, it is unclear whether RPE cells are a source of TNF-α. TNF-α has been implicated in pathogenesis of AMD (Dias JR et al 2011, Wan L et al 2010) and Diabetic Retinopathy (Joussen AM et al, 2002). TNF-α has been reported to stimulate production of VEGF by RPE cells, in pathogenesis of neovascular AMD. Kociok N et al., 1998 found no evidence for expression of TNF-α in non-stimulated RPE cells, in agreement with Tanihara H et al., (1992). However, it was reported that stimulation of RPE cells with IL-1B induce expression of TNF-α mRNA, although the protein was
not secreted (Tanihara H et al., 1992). De Kozak et al (1994) described production of TNF-α by three different strains of rat RPE cells in a constitutive manner, and this secretion of TNF-α correlated to their susceptibility to uveitis. Gustavsson C et al (2008) and Limb GA et al (1996) reported elevated levels of serum TNF-α may serve as an independent serum marker for development of PDR in type-1 diabetic patients.

5.3 Interleukin -1 beta (IL-1β)

The Interleukins are a large family of immuno-modulatory cytokines. Some of these are produced by RPE cells (Holtkamp et al, 2001). Interleukin-1 (IL-1) is one of the most potent mediators of immune response. These responses are either pro-inflammatory or lead to activation of immune system (Holtkamp et al, 2001). Two forms of IL-1 identified are Interleukin – 1 alpha (IL-1α) and Interleukin -1 beta (IL-1β). IL-1β is a potent pro-inflammatory cytokine which is found in elevated levels in patients suffering from proliferative vitreo retinopathy (PVR) and ocular inflammation (Demircan et al. 2006, Patel et al. 2006, Liou et al., 2002, Franks et al. 1992). Unstimulated RPE cells do not express genes for IL-1β or IL-1α, but the gene expression is readily induced by external stimuli such as endotoxin or lipopolysaccharide (Holtkamp et al, 2001). IL-1 produced by RPE cells play a role in inflammatory processes involving the retina (Holtkamp et al, 2001).

RPE cells express multiple receptors for cytokines including the Interleukin-1 receptor IL-1R (Leung et al 2009). RPE cells when stimulated with TNF – α and IL-1β, secretes IL-6 and IL-8 which are pro-inflammatory cytokines (Jaffe et al. 1995, Elner et al, 1992). IL-6 was found to activate macrophages and T-cells in vitro. Elevated levels of IL-6 were found in vitreous of patients suffering from PDR and
PVR as compared to a healthy eye (Canataroglu et al. 2005, Kojima et al. 2001). IL-8 is a pro-angiogenic cytokine and has the ability to activate neutrophils after they arrive at the site of infection (Holtkamp et al. 2001). RPE cells secrete IL-6 and IL-8 basally, towards the choroidal side, in a polarized manner (Holtkamp et al., 1998).

5.4 Aims

TNF-α and IL-1β have been associated with inflammatory conditions involving RPE and has been implicated in the pathogenesis of AMD and DR (Wan L et al. 2010, Demircan et al. 2006). TNF-α is produced locally at oBRB by macrophages in low grade inflammatory conditions related to AMD. TNF-α may modulate expression of RPE tight junctions and disrupt oBRB. Elevated level of IL-1β is found in the vitreous of patients suffering from proliferative vitreo retinopathy (PVR) and ocular inflammation (Demircan et al. 2006, Patel et al. 2006, Liou et al., 2002, Franks et al. 1992). IL-1β may affect localization and expression of TJ proteins. Change in expression and localization of occludin, Zo-1, β-catenin and claudins were studied using western blotting and immunofluorescence staining. Toxicity of cytokines to the RPE was investigated using a standard Trypan blue assay.

5.5 Cell culture and cytokine treatment

ARPE-19 cells were cultured as described in section 2.2.1 until desired confluence was achieved. They cell monolayer was then rinsed with sterile PBS and incubated with serum free medium for 6 hours followed by treatment with 1ng/ml to 10ng/ml of TNF-α or IL-1β for 24 hours in serum free medium. After treatment, the cell monolayer was rinsed with sterile PBS to remove any traces of medium. The cells were then extracted as described in section 2.2.2. Protein analysis of the cell extract
was performed using the Bradford assay. Equal amounts of protein per sample were loaded on to minigels. Electrophoresis was performed as described in section 2.2.4. The separated proteins were then blotted to a nitrocellulose membrane as described in 2.2.5. Transfer time used was 2 hours for Occludin, β-catenin and claudins and 3.5 hours for Zo-1.

5.6 Results and Discussion

5.6.1 Occludin expression in RPE treated with TNF-α

RPE cells exposed to various concentrations of TNF-α or IL-1β showed significant alterations in expression of specific tight junction proteins investigated in this study.

Western blot analysis of occludin expression in RPE exposed to TNF-α for 24 hours showed a strong down-regulation of the protein (Fig 5.1). Mean occludin band intensities showed a statistically significant (P≤0.05) decrease in occludin expression when treated with TNF-α (Table 5.1)

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing down-regulation of occludin.](image)

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed twice.
Table 5.1 Mean band intensities for two sets of samples shows a decrease in occludin band intensity with exposure to TNF-α. P-value calculated by single factor ANOVA shows that this change is statistically significant (P≤0.05) for 10ng/ml TNF-α treated RPE.

<table>
<thead>
<tr>
<th>TNF-α concentration</th>
<th>Mean</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>8603.5</td>
<td></td>
</tr>
<tr>
<td>1ng/ml</td>
<td>7061</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>1516.5</td>
<td>0.0144</td>
</tr>
</tbody>
</table>

Fig 5.2. Effect of TNF-α treatment on occludin expression in RPE cells.

Occludin in RPE is down-regulated with exposure to TNF-α. The graph represents the mean value for two western blot analyses and the standard error of the mean is represented by Y-error bars.
5.6.2 Zo-1 expression in RPE cells treated with TNF-α

Zo-1 is associated with the cytoplasmic domain of occludin and assists in localization of occludin on the membrane, in order to form tight junctions (Umeda et al, 2006). Change in Zo-1 distribution affects stability of the occludin molecule and may cause disruption of the occludin dimer. Zo-1 in RPE is significantly down-regulated by TNF-α treatment, as evident from western blot analysis (Fig 5.3).

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing down-regulation of Zo-1.](image)

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed twice.
Table 5.2 - Mean band intensities (± standard error of mean) for three sets of samples treated with TNF-α shows a progressive decrease in Zo-1 band intensity with exposure to TNF-α. P-value calculated using single factor ANOVA shows that this change is not statistically significant (P>0.05).

<table>
<thead>
<tr>
<th>TNF-α concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>8434.3 ± 3564</td>
<td>0.129</td>
</tr>
<tr>
<td>1ng/ml</td>
<td>2294.3 ± 821</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>1997.3 ± 336</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5.4. Effect of TNF-α treatment on Zo-1 expression in RPE cells.
Zo-1 in RPE is down-regulated with exposure to TNF-α. The graph represents the mean value for three western blot analyses and the standard error of the mean is represented by Y-error bars.
Cultured RPE cells treated with TNF-α were fixed and then stained for Zo-1 using FITC. The staining showed disruption of membrane junctions and loss of Zo-1 when treated with 1ng/ml TNF-α (Fig 5.5).

Fig: 5.5 Immunofluorescence staining showing change in localization of Zo-1 in cultured RPE cells treated with TNF-α: Untreated (a) and Treated with 1ng/ml TNF-α (b). RPE cells were stained using FITC and images captured at 40x magnification.
Effect of Cytokines on the outer Blood Retinal Barrier

There are very few studies on TNF-α mediated regulation of tight junction proteins in oBRB (Gan et al 2011, Narayan et al 2003). A study of salivary gland epithelia exposed to TNF-α and IFNγ in vivo showed down-regulated occludin and Zo-1 expression and disrupted barrier function in salivary glands (Ewert et al., 2010).

5.6.3 Claudin -2 expression in RPE cells treated with TNF-α

To investigate whether, TNF-α mediates expression of claudins in RPE, changes in selected claudins were studied. Data from western blot showed an increase in claudin-2 band density in RPE treated with 1ng/ml TNF-α (Fig 5.6). Densitometric analysis of claudin-2 bands (Table 5.3) showed that this increase was statistically significant (P≤0.05).

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing up-regulation of claudin-2.](image)

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed twice.
10ng/ml TNF-α treated RPE show a slight drop in claudin-2 expression (Fig 5.7) which could be explained by reduced viability of cells treated with 10ng/ml TNF-α.

<table>
<thead>
<tr>
<th>TNF-α concentration</th>
<th>Mean</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>14997</td>
<td>0.0376</td>
</tr>
<tr>
<td>1ng/ml</td>
<td>28685</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>20066</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3: Mean band intensities for two sets of samples shows increase in claudin-2 band intensity with exposure to 1ng/ml TNF-α. P-value calculated using single factor ANOVA shows that this change is statistically significant (P≤0.05) for TNF-α treated RPE.

![Graph showing effect of TNF-α on claudin-2 expression in RPE](image)

Fig 5.7 Effect of TNF-α treatment on claudin-2 expression in RPE cells.

Claudin-2 in RPE is up-regulated with exposure to TNF-α. The graph represents the mean value for two western blot analyses and the standard error of the mean is represented by Y-error bars.
5.6.4 Claudin – 3 expression in RPE cells treated with TNF-α.

An increase in expression of claudin-3 in RPE when stimulated with 1ng/ml TNF-α, was observed from western blot analysis (Fig 5.8). Mean band density calculated showed an increase in claudin-3 expression in 1ng/ml TNF-α treated RPE (Fig 5.9). However, statistical analysis of claudin-3 band densities (Table 5.4) showed that this change is not significant (P>0.05). The reduction in claudin-3 expression when treated with higher concentration of TNF-α may be attributed to the reduced viability of RPE cells as observed from trypan blue assay (Fig 5.24)

Fig 5.8 Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing change in claudin-3 expression.

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed twice.
Table 5.4: Mean band intensities for two sets of samples shows an increase in claudin-3 band intensity with exposure to 1ng/ml TNF-α. P-value calculated using single factor ANOVA shows that this change is not statistically significant for TNF-α treated RPE.

![Effect of TNF-α on Claudin-3 expression in RPE](image)

Fig 5.9 Effect of TNF-α treatment on claudin-3 expression in RPE cells.

Claudin-3 expression in RPE is higher with exposure to 1ng/ml TNF-α. The graph represents the mean value for two western blot analyses and the standard error of the mean is represented by Y-error bars.
5.6.5 Claudin – 4 expression in RPE cells treated with TNF-α.

TNF-α treated RPE cells showed up-regulation of claudin-4, as indicated by western blotting data (Fig 5.10). Densitometric analysis showed that this effect was not statistically significant (P>0.05) for TNF-α treated RPE. The reduction in claudin-4 expression when treated with higher concentration of TNF-α may be attributed to the reduced viability of RPE cells as observed from trypan blue assay (Fig 5.24).

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing up-regulation of claudin-4.](image)

Fig 5.10 Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing up-regulation of claudin-4.

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed thrice.

Density analysis shows a slight up-regulation of claudin-4 in RPE treated with 1ng/ml TNF-α (Table 5.5), although not statistically significant. A similar study on salivary epithelium (Ewert et al, 2010) shows a strong increase in expression of claudin-4 in epithelial cells exposed to pro-inflammatory cytokines TNF-α and IFNγ while down-regulating occludin and Zo-1 expression.
Effect of TNF-α on claudin-4 expression in RPE

<table>
<thead>
<tr>
<th>TNF-α concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>3467.67 ± 595</td>
<td></td>
</tr>
<tr>
<td>1ng/ml</td>
<td>6232.67 ± 222</td>
<td>0.0673</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>6047 ± 1111</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.5: Mean band intensities (± standard error of mean) for three sets of samples treated with TNF-α shows an increase in claudin-4 band intensity with exposure to TNF-α. P-value calculated using single factor ANOVA shows that this change is not statistically significant for TNF-α treated samples.

Fig 5.11 Effect of TNF-α treatment on claudin-4 expression in RPE cells.

Claudin-4 in RPE is up-regulated with exposure to TNF-α. The graph represents the mean value for three western blot analyses and the standard error of the mean is represented by Y-error bars.
5.6.6 Beta-catenin expression in RPE cells treated with TNF-α.

Beta-catenin expression change indicates change in adherens junctions located basally in the RPE layer. Protein blot analysis indicated a decrease in beta-catenin expression in RPE treated with TNF-α, against untreated RPE (Fig 5.12, Fig 5.13). Statistical analysis of band intensities, however, showed that this is not statistically significant (Table 5.6).

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing down-regulation of beta-catenin](image)

Fig 5.12 Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml TNF-α showing down-regulation of beta-catenin

The blot was developed using chemiluminescence. Normalisation of blots was achieved using beta actin. Blot was performed thrice.

Investigation of change in beta-catenin localization using immunoflorescence did not show a noticeable change (Fig 5.14). Overall, the data obtained from these results is as yet inconclusive and further studies are warranted.
Effect of Cytokines on the outer Blood Retinal Barrier

<table>
<thead>
<tr>
<th>TNF-α concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>19131.67 ± 5516</td>
<td>0.331</td>
</tr>
<tr>
<td>1ng/ml</td>
<td>16432.33 ± 3106</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>9842.68 ± 3348</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.6: Mean band intensities (± standard error of mean) for three sets of samples treated with TNF-α shows decrease in beta-catenin band intensity with exposure to TNF-α. P-value calculated using single factor ANOVA shows that this change is not statistically significant (P>0.05).

![Effect of TNF-α on Beta-catenin expression in RPE](image)

Fig 5.13 Effect of TNF-α treatment on beta-catenin expression in RPE cells.

Beta-catenin expression in RPE is down-regulated with exposure to TNF-α. The graph represents the mean value for three western blot analyses and the standard error of the mean is represented by Y-error bars.
Fig: 5.14 Immunoflourescence staining showing change in localization of β-catenin in cultured RPE cells exposed to 0ng/ml (a) and 1ng/ml (b) TNF-α. RPE cells were stained using FITC and nuclei stained using DAPI. Magnification used: 40x.
5.6.7 Occludin expression in RPE cells treated with IL-1β

Western blot analysis of RPE cells treated with IL-1β showed a positive increase in expression of occludin (Fig 5.14). Mean values (± standard error of mean) were calculated from band density analysis of three sets of data (Table 5.7). The mean band intensities show a progressive increase in occludin expression with increasing concentrations of IL-1β (Fig 5.15). Statistical analysis of data obtained showed that this change is significant for 10ng/ml IL-1β treated sample.

Fig.5.14. Western blot result analysis of RPE cells treated with 0, 1 and 10ng/ml of IL-1β.

Blot was developed using chromogenic substrate – BCIP / NBT. Normalisation of blots was achieved using beta actin. Blot was performed thrice.
Table 5.7

Mean band intensities (± standard error of mean) for three sets of samples treated with IL-1β shows increase in occludin band intensity with exposure to IL-1β. P-value calculated using single factor ANOVA shows that this change is statistically significant (P \leq 0.05).

<table>
<thead>
<tr>
<th>IL-1β concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>1698 ± 454</td>
<td></td>
</tr>
<tr>
<td>1ng/ml</td>
<td>3519.3 ± 680</td>
<td>0.019</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>5006.3 ± 575</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5.15

Effect of IL-1β treatment on occludin expression in RPE cells.

Occludin expression in RPE is up-regulated with exposure to IL-1β. The graph represents the mean value for three western blot analyses and the standard error of the mean is represented by Y-error bars.
Immunofluorescence data showed change in occludin localization in RPE cells treated with IL-1β (Fig 5.16) although IL-1β treated RPE shows occludin upregulation (Table 5.7). Further studies are recommended to understand whether the folding pattern of occludin is affected by IL-1β affecting it’s localisation at tight junctions.

Fig 5.16 Immunofluorescence staining showing change in localization of occludin in cultured RPE cells treated with IL-1β: Untreated (a) and Treated with 10ng/ml IL-1β (b). RPE cells were stained using FITC and images captured at 40x magnification.
5.6.8 Zo-1 expression in RPE cells treated with IL-1β

RPE exposed to IL-1β showed clear loss of Zo-1, as indicated by western blot analysis (Fig 5.17). Mean values calculated from band density analysis of two sets of data (Table 5.8) showed that this change was statistically significant for 10ng/ml IL-1β treated RPE. Analysis of mean band density values of two blots showed progressive down-regulation of Zo-1 with increase in concentration of IL-1β (Fig 5.18)

![Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml IL-1β showing down-regulation of Zo-1.](image)

The blot was developed using BCIP/NBT substrate. Normalisation of blots was achieved using beta actin. Experiment was performed twice.
Table 5.8: Mean band intensities for two sets of samples treated with IL-1β shows a decrease in Zo-1 band intensity with exposure to IL-1β. P-value calculated using single factor ANOVA shows that this change is statistically significant (P≤0.05) for IL-1β treated RPE.

<table>
<thead>
<tr>
<th>IL-1β concentration</th>
<th>Mean</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>7457</td>
<td></td>
</tr>
<tr>
<td>1ng/ml</td>
<td>4992.5</td>
<td>0.037</td>
</tr>
<tr>
<td>10ng/ml</td>
<td>1794</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5.18 Effect of IL-1β treatment on Zo-1 expression in RPE cells.
Zo-1 is significantly down-regulated with exposure to IL-1β. The graph represents the mean value for two sets of data. The standard error of the mean is represented by Y-error bars.
A decrease in Zo-1 as observed from western blotting suggested that membrane localization of Zo proteins may be affected. Immunofluorescence staining of 10ng/ml IL-1β treated RPE showed loss of Zo-1 from membrane junctions (Fig 5.19).

Fig: 5.19 Immunofluorescence staining showing junctional loss of Zo-1 in cultured RPE cells exposed to different concentrations of IL-1β: Untreated (a) and Treated with 10ng/ml IL-1β (b). RPE cells were stained using FITC and images captured at 40x magnification.
5.6.9 Claudin – 1 expression in RPE cells treated with IL-1β

Claudins associate in a heteromeric manner to form tight junctions (Furuse, 2010). An increase in claudin-1 expression was shown by western blotting data (Fig 5.20). Mean band density values showed that this change was statistically significant for 10ng/ml IL-1β treated RPE (Table 5.9). Claudin-1 was progressively up-regulated with exposure to increased concentrations of IL-1β (Fig 5.21).

Claudin-1

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Band Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td></td>
</tr>
<tr>
<td>1ng/ml</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5.20: Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml IL-1β showing up-regulation of claudin-1.

The blot was developed using chemiluminescence substrate. Normalisation of blots was achieved using beta actin. Experiment was performed twice.
Table 5.9 Mean band intensities for two sets of samples shows an increase in claudin-1 band intensity with exposure to IL-1β. P-value calculated using single factor ANOVA shows that this change is statistically significant (P≤0.05) for IL-1β treated RPE.

![IL-1β upregulates Claudin-1 expression in RPE](image)

Fig 5.21 Effect of IL-1β treatment on claudin-1 expression in RPE.

Claudin-1 expression shows progressive increase in RPE cells treated with increasing concentrations of IL-1β. The graph represents the mean value for two sets of data. The standard error of the mean is represented by Y-error bars.
5.6.10 Claudin – 3 expression in RPE cells treated with IL-1β

Data obtained from western blotting showed an increase in claudin-3 with IL-1β treatment (Fig 5.22). Statistical analysis of three sets of data (Table 5.10) showed that this change was not statistically significant.

Fig 5.22 Western blot analysis of RPE cells treated with 0ng/ml, 1ng/ml and 10ng/ml IL-1β showing up-regulation of claudin-3.

The blot was developed using chemiluminescence substrate. Normalisation of blots was achieved using beta actin. Experiment was performed thrice.
<table>
<thead>
<tr>
<th>IL-1β concentration</th>
<th>Band intensity (Mean ±SEM)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0ng/ml</td>
<td>2382.3 ± 803.87</td>
<td>0.070</td>
</tr>
<tr>
<td>1ng/ml</td>
<td>3798.3 ± 328.75</td>
<td></td>
</tr>
<tr>
<td>10ng/ml</td>
<td>1435.7 ± 1490.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.10 Mean band intensities (± standard error of mean) for three sets of samples treated with IL-1β shows increase in claudin-3 band intensity with exposure to 1ng/ml IL-1β. P-value calculated using single factor ANOVA shows that this change is not statistically significant (P>0.05).

Fig 5.23 Effect of IL-1β treated RPE cells on claudin-3 expression.

Claudin-3 expression in RPE is increased with exposure to 1ng/ml IL-1β. The graph represents mean values for triplicate determinations. The standard error of the mean is represented by Y-error bars.
5.7 Viability assay

RPE cells were treated with 1ng/ml and 10ng/ml TNF-α and 1ng/ml and 10ng/ml IL-1β as described in section 2.2.2. Cell viability assay was performed as per protocol outlined in section 2.2.6.

a) TNF-α

Cell viability for samples treated with 1ng/ml and 10ng/ml TNF-α were found to be about 95% (57 viable out of 60 cells) and 92% (40 viable out of 45 cells) respectively, after exposure to trypan blue for 5 minutes.

b) IL-1β

Cells exposed to 1ng/ml and 10ng/ml IL-1β for 24 hours showed 99% (99 viable out of 100 cells) and 97% (68 viable out of 70 cells) viability respectively, after exposure to trypan blue for 5 minutes.

<table>
<thead>
<tr>
<th>Cytokine concentration</th>
<th>1ng/ml</th>
<th>10ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>95</td>
<td>92</td>
</tr>
<tr>
<td>IL-1β</td>
<td>99</td>
<td>97</td>
</tr>
</tbody>
</table>
Fig: 5.24 - Graph showing percentage viability of cells treated with 1ng/ml and 10ng/ml of TNFα / IL-1β for 24 hours.

Both cytokines are released as a part of inflammatory response produced during later stages of non-neovascular ARMD (Nagineni et al., 2011). TNF-α and IL-1β are not secreted by unstimulated RPE cells (Holtkamp et al. 2001). Differential levels of TNF-α and IL-1β were found in vitreous in various studies. However, it was generally demonstrated that vitreous levels of TNF-α and IL-1β are elevated in PVR and PDR (Kojima et al., 2001) and the difference in result may be attributed to leakage of cytokines through a disrupted oBRB into systemic circulation through a disrupted BRB as suggested by Demircan et al., (2006)

A decrease in Zo-1 expression suggests that membrane localization of Zo proteins may be affected. This suggests possible disruption of the membrane barrier in response to increased exposure to IL-1β and TNF-α. Immunofluorescence images of RPE cells exposed to 10ng/ml IL-1β (Fig 5.17) shows nearly complete loss of Zo-1. Also, RPE cells exposed to 1ng/ml and 10ng/ml TNF-α shows 5% and 8% loss in viability respectively (Fig 5.24). The data obtained suggests that IL-1β and TNF-α may play a role in breakdown of outer BRB in ARMD, leading to photoreceptor damage and vision loss.

We found a considerable down-regulation of β-catenin in RPE exposed to TNF-α (Fig 5.13). This may indicate a disruption of adherens junctions in RPE with exposure to TNF-α in pathological conditions. β-catenin associates with cadherins cytoplasmically and plays a role in connecting them to F-actin. However, E-cadherin expression was not detected in cultured ARPE-19 cells using western blot (data not shown).
Data obtained from western blotting shows that IL-1β up-regulates occludin expression in RPE (Fig 5.15) over 24 hours. This contradicts results obtained by Abe T et al (2003) where occludin expression was down-regulated with exposure to 10ng/ml IL-1β. This could be explained by the difference in experimental conditions provided in both studies. Abe T et al. (2003) do not state whether RPE was exposed to IL-1β in a serum free environment. Serum contains other cytokines which may interfere with or mask the effects of IL-1β. RPE cells treated with 1ng/ml IL-1β shows up-regulated claudin – 1 expression (Fig 5.21). This is in agreement with the study conducted by Abe T et al (2003). Moreover, in their study, claudin-1 and occludin expression was measured over a much longer period of time as opposed to the 24 hour period used in this study. Our immunofluorescence results show abnormal occludin distribution, with discontinuous, diffuse staining for occludin, for IL-1β treated RPE (Fig 5.16). IL-1β is shown to differentially regulate occludin expression in other tissues. IL-1β down-regulates occludin expression in human foetal astrocytes (Duffy HS et al, 2000), but does not influence the occludin expression in HaCaT keratinocyte cells (Rozlomiy and Markov, 2010).

Claudin-3 was up-regulated in RPE treated with 1ng/ml IL-1β (Fig 5.22). Claudin-3 forms heterotypic tight junctions in epithelia by binding to claudin-1 or claudin-2 (Furuse 2010, Milatz et al, 2010, Turksen and Troy 2004). Increase in claudin-3 and claudin-4 expression may be in parallel with that of claudin-2 (Fig 5.7) or claudin-1 (Fig 5.19) expression in cytokine stimulated RPE. Transfection of MDCK-II kidney tubule cells with claudin-3 caused in increase in TEER (Milatz S et al, 2010) but brings no change in MDCK-I cells (Turksen and Troy, 2004). The functions of
claudin-3 are not fully elucidated. Hence further studies are required to understand this behaviour of claudin-3.

Viability data obtained using Trypan blue assay (Fig 5.24) shows progressive decrease in viability of RPE cells with increased concentration of cytokines added. This may explain the slight drop in expression of claudins which were over-expressed when exposed to 1ng/ml TNF-α or IL-1β.

Overall, our data indicates that pro-inflammatory cytokines TNF-α and IL-1β may have a regulatory effect on RPE barrier in pathological conditions.
Chapter 6

Discussion
The most recent WHO factsheet on blindness reports that about 285 million people worldwide are visually impaired. Of these, 65% are aged 50 years and up. AMD has been listed as one of the major causes of vision loss in the west. Breakdown of the blood retinal barrier is the hallmark of AMD, which leads to severe retinal damage and vision loss. The exact molecular mechanism which leads to disruption of this BRB tissue has not been fully elucidated. The pathology and progression of AMD is also not fully understood.

Studies on the RPE tissue which lines the outer layer of retina showed that it plays a significant role in maintenance of the retinal integrity. The RPE was also shown to secrete several cytokines and growth factors to the surrounding medium under pathological conditions such as hypoxia. VEGF, PlGF, TNF-α and IL-1β are found at elevated levels in vitreous of patients suffering from AMD.

Experimental conditions employed in this study involved stimulation of cultured ARPE-19 cells with various concentrations of growth factors or cytokines for 24 hours. Protein expression analysis of E-cadherin in RPE cells showed no signal for E-cadherin in cultured ARPE-19 cells (data not shown). Cultured brain endothelial cells (Endo BalbC) were used as a positive control. Earlier studies show that though human RPE cells express E-cadherin in vivo, this decrease in vitro with progressive cell culture passages (Burke and Hong, 2006).

6.1 Effect of VEGF on oBRB

Studies conducted by Brankin et al (2005) showed that VEGF165 had a synergistic effect on inner BRB permeability both *in vivo* and *in vitro*. VEGF significantly
increased BRMEC paracellular permeability and induced iBRB breakdown. Increased vitreal VEGF levels were found in AMD patients. Progressive stages of AMD are known to cause choroidal neovascularisation as a result of hypoxia induced VEGF secretion. VEGF treatment of RPE layer in vitro did not indicate any significant change in the overall occludin content at first glance, when probed using western blotting. Fluorescence microscopy showed change in localization of occludin from membrane in VEGF treated RPE cells. Zo-1 associates with the cytoplasmic terminal of occludin and is responsible for stabilization of occludin and claudins in tight junctions (Fanning et al. 1998). Earlier studies on retinal endothelial cells have shown a significant increase in Zo-1 expression with in vitro VEGF treatment (Ghassemifar et al. 2006, Brankin and Stitt 2003). Other researchers in the lab have found that VEGF also caused an increase in expression of Zo-1 protein and mRNA levels for RPE (by personal communication with Dr. Brenda Brankin).

There is evidence that VEGF induces phosphorylation of Zo-1 in vitro (Bates, 2010) and indirectly contributes to phosphorylation of occludin (Harhaj et al 2006). However, relatively little published data is available regarding how this may be significant in VEGF induced breakdown of the RPE barrier. Further studies are required to investigate whether VEGF induced phosphorylation of Zo-1 attenuates interaction with occludin, leading to membrane de-localization of occludin. A FITC dextran permeability assay and changes in trans-epithelial electrical resistance (TEER) would provide conclusive evidence on whether RPE barrier permeability is altered by VEGF treatment.
6.2 Effect of PlGF on oBRB

PlGF is actively secreted by RPE cells subjected to hypoxic conditions (Hollborn et al., 2006). PlGF is a member of VEGF family and has been reported to potentiate the activity of VEGF (Hollborn et al. 2006). PlGF reportedly induced phosphorylation of occludin at serine and threonine residues, which may modify its capacity to associate with Zo-1 cytoplasmically (Brankin and Stitt, 2003). Investigation of change in polarity of RPE cells would provide more conclusive evidence on this. Little information is available on the effect of PlGF on permeability of the RPE barrier (Carmeliet P et al., 2001).

Elevated PlGF of up to 1 ng/ml was found in vitreous of diabetic patients (Mitamura et al. 2002). The effect of PlGF on occludin expression in RPE is not yet fully confirmed (Kowalczuk et al., 2011, Ablonczy and Crosson 2007, Mitamura et al. 2002). Our data did not show any significant change in RPE occludin content with PlGF treatment. Hollborn et al (2006) suggested that PlGF may have an autocrine or paracrine effect on RPE cells. Further investigation into change in permeability and polarity of RPE is required to obtain better insight in this matter. A synergistic increase in VEGF along with PlGF was observed by Hollborn M et al (2006). It was suggested that PlGF may stimulate secretion of VEGF by RPE cells in pathological conditions (Dull et al. 2001, Park et al., 1994).

6.3 Effect of TNF-α and IL-1β on oBRB

RPE cells are continuously exposed to oxidative stress and pro-inflammatory stimuli (Strauss, 2005). The pro-inflammatory cytokines, IL-1β and TNF-α, are released by macrophages during inflammation associated with several ocular dystrophies.
Differential levels of TNF-α and IL-1β were found in vitreous in various studies. However, it was generally demonstrated that vitreous and serum levels of TNF-α and IL-1β are elevated in PVR and PDR (Demircan et al., 2006, Kojima et al., 2001) and the presence of vitreous haemorrhage and oBRB breakdown may lead to leakage of cytokines into the systemic circulation (Demircan et al., 2006).

Cytokine gene expression is readily induced in RPE cells by inflammatory stimuli (Holtkamp et al., 2001) and hence RPE cells may act as a source of IL-1β and TNF-α in AMD pathogenesis. Vitreous levels of IL-1β were found to be elevated in progressive DR (Patel et al., 2008(a), Demircan et al., 2006). Differential concentrations of IL-1β and TNF-α were obtained in different studies involving retinal inflammation (Gustavsson et al., 2008, Demircan et al., 2006, Kauffmann et al., 1994). It was hence suggested that both serum and vitreous concentrations of cytokines IL-1β and TNF-α must be taken into account, as vitreous haemorrhage and oBRB breakdown leads to leakage of IL-1β and TNF-α into the systemic circulation. Results suggested simultaneous production of IL-1β and TNF-α from the RPE and macrophages (Demircan et al., 2006).

TNF-α is secreted locally by macrophages infiltrating into the outer retina under pathologic conditions. Stimulated RPE cells secrete IL-1β basally in a polarized manner (Holtkamp et al., 2001). RPE shows immunoreactivity to both cytokines (Oh et al., 1999, Jaffe et al., 1992). Increased concentration of TNF-α in surrounding medium is toxic to RPE cells and caused occludin loss from RPE. Loss of both tight junction and adherens junctions indicate possible change in polarity of RPE cells.
RPE exposed to TNF-α showed an increase in claudin-2 expression. Claudin-2 was up-regulated significantly when treated with 1ng/ml TNF-α. This result was in agreement with studies involving TNF-α-induced change in Claudin-2 in intestine and RPE (Gan et al. 2011, Yu 2009, Mazzon and Cuzzorea, 2008). A cationic pore function of Claudin-2 has been suggested (Gupta and Ryan 2010, Lal-Nag and Morin 2009, Zeissig et al 2007). An increase in Claudin-2 expression possibly indicates an increase in ion channel permeability of RPE cells. A similar increase in expression of claudin-2 has been reported in colon stimulated with TNF-α (Weber et al. 2010, Hering and Schulzke 2009). An over-expression of claudin-2 has been reported to reduce TEER and increase paracellular water flux (Rosenthal et al., 2010).

Increase in occludin expression has been shown to enhance baseline barrier properties of epithelia (Van Itallie et al, 2010). It is possible that cytokines increase the permeability of the RPE barrier to both charged and non-charged solutes by up-regulating the pore proteins, while down-regulating proteins that restrict paracellular permeability. This has to be further confirmed using a permeability assay.

Claudin-4 expression in non-retinal tissues is stimulated by exposure to TNF-α (Ewert et al, 2010, Gupta and Ryan 2010). Claudin-3 and 4 are reportedly up-regulated in several carcinomas in conjunction with increased TNF-α expression (Gupta and Ryan, 2010, Yuan et al 2009). However, their role in the retinal barrier modulation is poorly investigated.

There was a clear loss of Zo-1 and the band intensity of 10ng/ml IL-1β-treated samples was significantly lower than that of control. Zo proteins have a pivotal role in
binding occludin and claudins to the actin cytoskeleton and stabilizing the tight junctions. Even though occludin expression in RPE was upregulated by IL-1β treatment, loss of Zo-1 may cause destabilization of occludin molecules in RPE, resulting in the granular staining of occludin observed in IL-1β treated cells. Further studies are warranted to understand whether IL-1β causes direct loss of occludin from RPE; and to identify whether the loss of Zo-1 affects the polarity of the RPE cells. Overall, study indicates that TNF-α and IL-1β may play a regulatory role in blood ocular barrier function and in development of ocular inflammation.

In a study similar to the one presented in this thesis, Abe et al (2003) found that claudin-1 expression was reduced in RPE cells treated with 10ng/ml IL-1β. Our data, on the contrary, shows a significant upregulation of claudin-1 in IL-1β treated RPE. Even though this seems to contradict to the data discussed in this thesis; the experimental conditions employed by Abe et al., were different, and the claudin-1 expression was measured after a much longer period, rather than 24 hours employed in our experiment. Rozlomiy and Markov (2010) demonstrated that treatment of human keratinocyte (HaCaT) cells with IL-1β up-regulated claudin-1 as part of the wound healing process. Our data shows that TNF-α and IL-1β may play a regulatory role in blood ocular barrier function and in development of ocular inflammation.

Immunoflorescence was not carried out for claudins, as the claudins could not be detected in initial staining. Claudin family of proteins have been observed to have a host of other functions other than being a structural component of tight junctions. In order to get better insight to the significance of the results presented, further roles of claudins in RPE need to be identified. Downregulation of claudin using siRNA
interference is recommended as a future approach to elucidate the role of specific claudin in RPE. Further studies of the effects of cytokines on claudins 2, 3 and 4 in RPE are also indicated.

Inflammation plays an important role in pathogenesis and progression of ARMD. There is evidence of increased TNF-α secretion in exudative ARMD (Nagineni et al., 2011). Activation of the RPE with TNF-α or IL-1β results in secretion of RANTES, MCP-1 and interleukin 6 and interleukin 8, which affect oBRB function (Crane et al., 2000).

TNF antagonists have become recognized over the past decade as a key controller of inflammatory conditions. Anti-TNF-α therapy has been found to be helpful in controlling ARMD-related inflammation and stabilizing vascular angiogenesis (Missotten et al., 2007). The role of IL-1β in ocular inflammation is not completely elucidated. IL-1β does not directly modulate barrier properties in the tissue. It stimulates secretion of other pro-inflammatory chemokines such as IL-6, IL-8 and RANTES (Crane et al. 2000). It has been suggested that expression of endogenous interleukin-1 receptor antagonist (Jaffe et al 1992) may help in maintaining interleukin homeostasis in ocular inflammatory disease.

6.4 Conclusion

VEGF, PIGF, TNF-α and IL-1β play an important role in modulation of barrier properties of oBRB. Differential regulation of oBRB by the selected cytokines and growth factors may be helpful in further research on control of inflammation and pathological breakdown of oBRB in AMD and PDR.
6.5 Future Work

- VEGF and PlGF treatment of RPE did not yield conclusive results on change in permeability of RPE layer. Analysis of permeability change of RPE to determine opening of tight junctions, using Flourescein Dextran assay and changes in TEER measurement.

- Determination of effects of apical versus basolateral administration of PlGF and VEGF on RPE monolayer.

- Change in Zo-1 expression and loss of occludin may affect polarity of RPE cells in the oBRB. Analysis of change in polarity of RPE cells with growth factor and cytokine treatment using Na+ K+ ATPase assay

- The functions of claudins in RPE are not merely structural. Downregulation of claudins in RPE using siRNA interference to study the role of individual claudins in RPE.
References

Bird AC. Therapeutic targets in age-related macular disease. J Clin Invest. 2010 Sep 1; 120 (9):3033-41.

Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ. Cellular functions and X-ray structure of

Farrar GJ, Kenna PF, Humphries P. On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J. 2002 Mar 1; 21 (5):857-64.

Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006 Jul; 23 (7):1482-90.

Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007 Feb 1; 2:7.

Leung KW, Barnstable CJ, Tombran-Tink J. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling. Mol Immunol. 2009 Apr; 46(7):1374-86.

Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: Control of Barrier Function and Regulation in Response to Oxidant Stress. Antioxid Redox Signal. 2011 May 9

Turksen K, Troy TC. Junctions gone bad: Claudins and loss of the barrier in cancer. Biochim Biophys Acta. 2011 Apr 15

Role of Vascular Endothelial Growth Factor, Placental Growth Factor and Cytokines on Blood Retinal Barrier function

Sukumaran S+, Williams G+, Ramaswamy G *, Wu B*, Brankin B+

+School of Biological Sciences, Dublin Institute of Technology, Dublin – 8
*School of Computing, Dublin Institute of Technology, Dublin 8

Introduction:
The Blood Retinal Barrier (BRB) is composed of inner BRB (IBRB) and outer BRB (OBRB). The IBRB is formed by Retinal Microvascular Endothelial cells (RMVEC). The Retinal Pigment Epithelium (RPE) forms the outer Blood Retinal Barrier (OBRB) and supports the function of the photoreceptor layer. The RPE layer provides a permeability barrier between the retina and the choroid. The integrity of OBRB is regulated by tight junctions in the RPE. Tight junctions act by regulating ion concentrations and water permeability. Tight junctions are formed by transmembrane protein Occludin, peripheral membrane protein ZO-1 and the Claudin family of proteins.

RPE damage may lead to degeneration of the neural retina, which occurs in the eye diseases – Retinitis Pigmentosa (RP) and Age Related Macular Degeneration (ARMD). ARMD studies have shown that drusen attract macrophages to the sub-epithelial space in the retina. Amyloid beta (A beta) in drusen stimulates macrophages to produce Tumor Necrosis factor – alpha and Interleukin-1 beta. We investigated the effect of growth factors – Vascular endothelial growth factor (VEGF), and Placental growth factor (PlGF), and cytokines Tumor Necrosis factor – alpha (TNF-α) and Interleukin-1 beta (IL-1β) on tight junction

Materials & Methods:

Cell culture
ARPE-19 cells were propagated in growth medium (DMEM) containing 10% bovine serum. Medium was stepped down to serum free medium, six hours prior to growth factor treatment. TNF-α and IL-1β was added at final concentrations of 1 and 10ng/ml and PlGF was added at final concentrations of 1, 10 and 100ng/ml. Untreated cells incubated in serum free medium was used as control. Cells were incubated for 24 hours, after which cells were washed 3x with PBS and harvested as required.

Western blot analysis

Confluent cell monolayer was scraped and homogenized in a cell extraction buffer containing 62.5mMTris, 2%v/v SDS, 10mMDETT, 1M NaCl. Protein sample was separated using electrophoresis and transferred to nitrocellulose membrane for 2 hours using semi-dry blotting.

Enhanced chemiluminescence
Post transfer, the nitrocellulose membrane was incubated in a blocking solution (5% Bovine Serum Albumin in TBS) for 2 hours. Membranes were washed quickly in TBS and incubated with the polyclonal rabbit anti-claudin2 or anti-claudin3 antibody (1:5000) overnight at 4°C.

Results

Western blot analysis performed on RPE samples showed a significant increase in Occludin expression in samples treated with 10ng/ml IL-1β (P<0.05). We found a significant upregulation of Occludin in samples treated with 10ng/ml PlGF (P<0.05) while VEGF did not cause a significant change in Occludin expression at concentrations of 10ng/ml and 100ng/ml (P>0.05).

Claudin-2 expression showed a significant increase for samples treated with 1ng/ml TNF-α (P<0.05). We did not find a significant change in the level of Claudin-3 for samples treated with 1ng/ml and 10ng/ml TNF-α. Cell viability assay performed for cells treated with PlGF and VEGF for 24 hours showed no non-viable cells. Cell viability for samples treated with 1ng/ml and 10ng/ml TNF-α were found to be about 95% (57 viable out of 60cells) and 92% (40 viable out of 45cells) respectively, after 24 hours. Cells exposed to 1ng/ml and 10ng/ml IL-1β for 24 hours showed 99% (99 viable out of 100 cells) and 97% (68 viable out of 70 cells) viability respectively.

Conclusion

Placental Growth Factor and IL-1β significantly upregulates occludin expression in the RPE cells. TNF-α significantly upregulated Claudin-2 in RPE cells. There was no significant increase in either Claudin-3 or Claudin-4 expression in cells treated with TNF-α. We show a modulation of tight junction integrity by TNF-α, IL-1β and PlGF which may be of significance in retinal degeneration. Identification of intraocular factors that alter tight junction protein expression would be relevant in further study of pathological conditions that induce BRB breakdown.

References

Research funded by DIT Strand 2 Scholarship & Fighting Blindness, Ireland