
Dublin Institute of Technology
ARROW@DIT

Articles Centre for Industrial and Engineering Optics

2010-01-01

Two-way Diffusion Model for Short Exposure
Holographic Grating Formation in Acrylamide-
based Photopolymer
Tzvetanka Babeva
Bulgarian Academy of Sciences

Izabela Naydenova
Dublin Institute of Technology, izabela.naydenova@dit.ie

Dana Mackey
Dublin Institute of Technology, Dana.Mackey@dit.ie

Suzanne Martin
Dublin Institute of Technology, suzanne.martin@dit.ie

Vincent Toal
Dublin Institute of Technology, vincent.toal@dit.ie

Follow this and additional works at: http://arrow.dit.ie/cieoart

Part of the Condensed Matter Physics Commons, and the Optics Commons

This Article is brought to you for free and open access by the Centre for
Industrial and Engineering Optics at ARROW@DIT. It has been accepted
for inclusion in Articles by an authorized administrator of ARROW@DIT.
For more information, please contact yvonne.desmond@dit.ie,
arrow.admin@dit.ie, brian.widdis@dit.ie.

This work is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 License

Recommended Citation
Babeva, T. et. al. (2010) Two-way diffusion model for short-exposure holographic grating formation in acrylamidebased
photopolymer. JOSA B, 27 (2), pp. 197- 203. doi:10.1364/JOSAB.27.000197

http://arrow.dit.ie?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/cieoart?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/cieo?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/cieoart?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=arrow.dit.ie%2Fcieoart%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


 

Two-way diffusion model for short exposure holographic grating formation in 

acrylamide-based photopolymer 

 

Tsvetanka Babeva 1,2,*, Izabela Naydenova 1,3, Dana Mackey 1,4, Suzanne Martin1,3 and 

Vincent Toal 1,3 

 

1 Centre for Industrial and Engineering Optics, Dublin Institute of Technology, Kevin 

Street, Dublin 8, Ireland 

2 Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. 

Bonchev Str., 1113 Sofia, Bulgaria 

3 School of Physics, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland 

4 School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 

8, Ireland 

 

*Corresponding author: babeva@clf.bas.bg 

 

Abstract 

A theoretical model for formation of a short exposure holographic grating is presented. 

The model accounts for both monomer and polymer diffusion and distinguishes between 

short polymer chains capable of diffusing and long polymer chains that are immobile. It 

is shown that the experimentally observed decrease of diffraction efficiency at higher 

spatial frequency can be predicted by assuming diffusion of short-chain polymers away 



from the bright fringes. The time evolution of the refractive index modulation after short 

exposure is calculated and compared with experimental results. The effects of diffusion 

coefficients, polymerization rates, intensity and spatial frequency of recording on the 

properties of weak diffraction gratings are investigated by numerical simulations.   

OCIS codes: 090.0090, 050.2770, 050.7330, 160.5470, 090.2900 

 

1.0 Introduction 

Interest in photopolymer systems has increased markedly in the past few years. Due 

to their high sensitivity, self-processing and low-cost they find applications in various 

areas such as holography [1], manufacturing of optical elements [2,3], holographic data 

storage [4-6] etc. The main disadvantage of many photopolymer systems is their poor 

response at high-spatial-frequency recording. 

Photopolymer systems usually consist of one or two monomers, an electron donor 

and sensitizing dye, all dispersed in a binder matrix [7]. Upon uniform illumination the 

monomer polymerizes and the refractive index of the system changes. When 

photopolymer is exposed to an interference pattern, more monomers are polymerized in 

the bright regions than in the dark ones. This sets up a concentration gradient of monomer 

which then starts to diffuse from dark to bright area where it is polymerized. The 

formation of surface relief grating in acrylamide based photopolymer with peaks 

coinciding with the areas where illumination intensity is maximum [8] as well the 

swelling of material in an illuminated spot observed experimentally [9] or predicted by 

calculations [10] can be regarded as an experimental evidence for monomer diffusion 

from dark to bright area. It is worth noting that if the monomer mass transfer is not 



involved in the relief formation process and the polymer shrinkage is the only mechanism 

involved then the peaks should appear in the nonilluminated areas. Due to polymerization 

and monomer diffusion a polymer density spatial distribution is formed which results in a 

refractive index modulation of similar form. Therefore, the recorded phase holographic 

grating is due to a spatial variation of refractive index resulting from changes of the 

density of photopolymer components. 

Grating evolution in photopolymer systems has been studied theoretically and 

experimentally by several authors [7, 11-16]. The common feature of the proposed 

models is that they fail to describe high-spatial-frequency response of photopolymers. 

The low diffraction efficiency at high-spatial-frequency can be explained using two 

approaches both referring to the non-local response of the material. This means that the 

response of the material at one point and time depends on what happens at other points 

and times in the medium. The first model, the non-local photopolymerization driven 

diffusion model (NPDD) [17,18] assumes that the chains grow away from their initiation 

point resulting in “spreading” of the polymer. The model predicts that improvement at 

high spatial frequencies can be achieved if shorter polymer chains are created during the 

holographic recording [17]. Despite the successful theoretical modeling no experimental 

evidence for improvement of acrylamide-based photopolymer response at spatial 

frequency higher than 3000 lines/mm has so far been achieved adopting this approach 

[19]. Alternatively, the two-way diffusion model [20,21], which is also based on non-

local response of the materials, assumes that short polymer chains diffuse away from the 

bright fringes thus reducing the refractive index modulation. Such processes could be 

responsible for the decrease of diffraction efficiency at high spatial frequencies at which 



the fringe spacing is small and there is enough time for some of the polymer chains to 

escape from the bright fringes before the medium becoming less permeable due to 

complete polymerization. 

To verify this assumption we propose a theoretical model for the formation of a 

weak grating after short exposure time. This model accounts for both monomer and 

polymer diffusion and moreover distinguishes between short polymer chains capable of 

diffusing and long polymer chains that are immobile. The time evolution of refractive 

index modulation after short exposure is calculated and compared with experimental 

results. The impact of diffusion coefficients, polymerization rates, intensity and spatial 

frequency of recording on the properties of weak diffraction gratings are investigated by 

numerical simulations.   

With the present study we demonstrate that the two–way diffusion model can 

satisfactorily predict the poor high spatial frequency response in highly permeable 

photopolymers. It also predicts that the improvement of the high spatial frequency 

response of such systems must be directed towards decreasing the permeability of the 

photopolymer matrix and avoiding the creation of diffusing short polymer chains. In a 

more realistic picture probably both non-local processes – non-local polymerization and 

short polymer diffusion take place and should be taken into account in order to achieve 

the ultimate high spatial frequency response.  

 

2.0 Two-way diffusion model 

As stated above the variation of monomer concentration (in time and space) during 

illumination is due to the monomer polymerization and monomer diffusion. Generally, 



these two processes are expressed mathematically using a standard one-dimensional 

diffusion equation [7]: 
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where m(x,t) is monomer concentration, F(x,t) is polymerization rate and Dm(x,t) is 

monomer diffusion coefficient. The polymerization rate depends on free radical 

concentration that is a function of radicals generation and termination rates. For constant 

intensity and for the short exposure time of 0.1-0.3 s used in our studies we can assume 

that the rate of free radicals generation is constant because there are plenty of unbleached 

dye molecules available to absorb and generate radicals. Furthermore, due to the 

insignificant changes in material’s viscosity for such a short exposure time we can 

assume that the termination rate is also constant (i.e the Trommsdorff effect can be ruled 

out). Therefore in the case of short exposure time we can assume the polymerization rate 

not to change in time. Further we suppose that the polymerization rate is proportional to 

the intensity of illumination: 
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where  is the illumination pattern intensity, I0 is the average 

intensity , 

[ )cos(1)( 0 KxVIxI += ]

)(2 2121 IIIIV +=   is the fringe visibility, I1 and I2 the intensities of the 

writing beams, Λ= π2K  the grating vector, Λ  the grating period and , where a
p IkF 00 =



kp = 0.1 s-1(mW/cm2)-a is a fixed constant [22]. For recording intensities from 1 to 100 

mW/cm2 and a = 0.3-0.5 the polymerization time is between 10 and 1 s. Thus, for short 

exposure times (0.1-0.2s) the changes in the permeability of the medium are insignificant 

and one can assume that Dm is constant in time. Concerning the spatial variation of Dm it 

was shown that even the first order term in Fourier series expansion of Dm has a rather 

small effect [7], so we can assume that Dm is constant. With these assumptions eq. 1, 

describing the rate of change of monomer concentration, takes the simpler form: 
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where we introduce the step function Φ(t) to account for the short exposure regime with te 

being the exposure time: 
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As could be seen from eqs. 3 and 4, the proposed model assumes that the polymerization 

stops as soon as the illumination is turned off. This is a simplification that can be justified 

by the fact that experimentally we observe little or no change in diffraction efficiency 

following termination of longer exposures. Further, in our model we distinguish two 

types of polymer chains: short chains, p1, capable of diffusing and long chains, p2, that 

are immobile. We assume that short chains are converted to long chains at a rate 

proportional to monomer and short polymer concentrations and introduce a parameter Γ, 



which is the conversion rate constant. Then the equations for temporal and spatial 

evolution of p1 and p2 take the form: 

 

[ ]

),(),()(),(

),(),(),()()(),()(),(

1
2

1
11

txptxmt
t

txp

txptxmtxmxFt
x

txpxD
xt

txp
p

ΓΦ=
∂

∂

Γ−Φ+⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

=
∂

∂

,  (5) 

 

where Dp is the polymer diffusion coefficient. Further we assume that Dp is proportional 

to the interference pattern, which means that the maximum values of Dp coincide with the 

peaks in intensity. From the other hand it is known that at higher intensity more short-

chain polymer molecules are formed [23]. Considering that the centre of the bright 

fringes will be rich of short polymers and the edges will be poor, the assumption in Eq. 6 

means that the diffusion coefficient for shorter chains will be higher than the diffusion 

coefficient for longer chains 
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In this simplified picture we also assume, as it is seen from eq 5 that the conversion from 

short to long polymer chains also stop when the exposure is stopped. For the purpose of 

the subsequent analysis and numerical simulations, we introduce dimensionless variables  
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where m0=m(x,0) is the initial monomer concentration and t0=1s. The value of t0 is chosen 

to be 1 s for two reasons. The first one is for convenience. When t0 is 1 s the 



dimensionless time used in computations will be the same as the real time (that is in 

seconds). For values of t0 different from 1s a correction factor will be needed to transform 

the dimensionless time to the real time. The second reason is that when non-

dimensionalising a system of physical equations it is customary to scale variables by 

values with a similar order of magnitude. As the exposure time is 0.2 – 0.3 s and the total 

simulation times did not exceed 10s, we considered t0 = 1s as a good reference time. 

It is also common practice to choose scales which have special significance in the 

physical problem such as, for example, diffusion or polymerization time. However, we 

avoided such scales here as we varied these parameters, which affect the diffusion and 

polymerization rates and consequently would distort the time and dynamics of the whole 

problem. The model equations become 
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where ,2Λ= mDκ  mp DD=ε  and Γ= 00tmγ . The non-dimensional initial and boundary 

conditions are: 
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We have imposed zero-flux boundary conditions as we expect the final monomer and 

polymer concentration patterns to exhibit minima or maxima at the ends of the interval 

[0,Λ], which are maximum points for the illumination intensity. It should be noted that by 

integrating the eqs 8 one can obtain the conservation law that is expected because the 

total concentration of different phases (monomer, short and long polymers) remains 

constant: 
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3.0. Calculation of refractive index modulation 

As explained in the previous paragraph, a polymer density spatial modulation is 

formed upon illumination which results in refractive index modulation with a similar 

pattern to that of the illumination. The refractive index modulation is the difference 

between the refractive indices in the illuminated and in non-illuminated areas. If we 

consider both areas as effective mixtures of monomer (m), short (p1) and long (p2) chain 

polymer molecules and a binder (b) their refractive indices could be expressed using 

Lorentz-Lorenz equation in the form [24]: 
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φb+ φm+ φp1+φp2=1  

 

where ne is the effective refractive index of the mixture; φm, φp1, φp2 and φb are the volume 

fractions of components (φi=Vi/Vtot, where Vi and Vtot are the volume occupied by the i-th 



component and the total volume, respectively) and nm, np1, np2 and nb are the refractive 

indices of the components. In our numerical simulations we used the values of the 

refractive index of each component that was determined previously from 

spectrophotometric measurements (nm =1.55, np1=np2 =1.64 and nb =1.496 at 532 nm).  

Further using the normalized concentrations of the components calculated from the model 

( 1, pm  and 2p ) and considering the densities for all components we calculated the 

volume fraction of each component:  
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In Eq 12 m0 is the initial monomer concentration and ρi (i = m, b, p) are the densities of 

the components. They are equal to 1.3 g/cm3 for polymer [19], 1.15 g/cm3 for monomer 

and 1.19 g/cm3 for binder. The values for monomer and binder densities are obtained 

considering the masses of the components (see Sec. 4.1) and their densities [19]. To make 

the picture more realistic, in the denominator of eq. 12 which is the total volume of the 

sample, we introduce the parameter b/m0 as the ratio of the masses of the binder and 

monomer. In this way we account both for the presence of binder and for the fact that 

monomer occupies about 17% of the total volume. 

The temporal changes of the volume fractions of all components (φm, φp1, φp2 and 

φb) can be estimated from Eq. 12 where the variations of 1, pm  and 2p  in time are 



calculated by the model equations (Eqs. 8 and 9). Further φm, φp1, φp2 and φb (=1- φm + φp1 

+ φp2) are used in Eq.11 for calculation of effective refractive index as a function of time. 

The temporal growth of refractive index modulation that gives rise to the first order of 

diffraction was then calculated as:  

Δn= nemax(t) - nemin(t),.     (13) 

where nemax(t) and nemin(t) are effective refractive index in the centres of the bright and 

dark fringes, respectively.  

 

 

3.0 Numerical simulations 

The non-dimensional model equations were integrated numerically using a standard 

Crank-Nicolson finite difference method [25]. The numerical value for the monomer 

diffusion coefficient (Dm=1.3x10-8 cm2/s) was taken from the experimental data 

previously published in [16] and the ratio ε between polymer and monomer diffusion 

coefficient was varied between 0.001–0.1. The influence of the polymerization rate F0 

was studied for values of 0.1, 0.3 and 1 s-1. The spatial frequencies of recording were 

varied from 200 to 5000 l/mm, which covered grating periods from 5 to 0.2 μm 

respectively. The proportionality constant values between recording intensity and 

polymerization rate are a =1 [7,13], 0.5 [12] or 0.3 [22]. It may not be straightforward to 

determine experimentally the rate of conversion of short to long polymer chains γ, that is 

why it was varied between 0 and 100. The exposure time was 0.2 s unless otherwise 

specified.  



Some concentration profiles of monomer and polymers calculated from eqs. 8 are 

shown in Figs. 1 and 2 for low and high spatial frequencies, respectively.  

All components - monomer, short and long polymers developed spatial modulation with 

concentration minimum for monomer and maximum for polymer in the centre of the 

bright fringes (x = 0, 1, 2). Because the exposure time (0.2s) is small compared to the 

polymerization time (3.3 s) most of the monomer (more than 95 %) remains 

unpolymerized after such a short period of initial illumination. From Fig. 2 it can be seen 

that the concentration profile of monomer is almost flat for higher spatial frequencies. 

Because of the small fringe spacing (200 nm), the monomer needs less time (about 8x10-4 

s) to diffuse from dark to bright fringes and to reestablish the concentration equilibrium 

disturbed by the decreased number of monomer molecules due to their participation in the 

photopolymerization process. As a result, the spatial modulation of monomer disappears 

very quickly. Similarly equalizing the monomer concentration in space takes place for 

low spatial frequency recording but this process is slower compared to the high-

frequency case. The monomer diffusion time at 500 l/mm (5 �m) is about 0.08 s and can 

be observed with the present experimental arrangement.  

A comparison of Figs. 1b and 2b shows that the spreading of the polymer out from 

bright fringes is more pronounced for high spatial frequencies at which the distances and 

diffusion times are smaller. For 5000 l/mm the widening of illuminated area is faster than 

at 500 l/mm where more time is needed for diffusion of short polymer chains away from 

bright fringes. It is worth noting the different time scales for Figs. 1b and 2b. The 

concentration profiles for long-chain polymer molecules (Figs. 1c and 2c) do not change 

after exposure and neither is further widening of illuminated area observed with time. 



The reason for that is that long polymer chains are assumed to be immobile and, once 

formed at a particular location, cannot move to another.  

Fig. 3 presents the evolution of the calculated refractive index modulation with time 

at low (500 l/mm) and high (5000 l/mm) spatial frequency of recording for three different 

ratios of polymer and monomer diffusion coefficients. It is seen that, after the 

illumination is stopped, refractive index modulation decreases more rapidly at both 

higher spatial frequencies and higher Dp. Considering that this decrease is due to 

diffusion of short polymer chains away from the bright fringes it can be expected that the 

decrease will be more rapid for higher values of Dp as well as for higher spatial 

frequencies where the fringe spacing is smaller. 

The influence of the polymerization rate on the post-exposure dynamics of 

refractive index modulation at low (500 l/mm) and high (5000 l/mm) spatial frequencies 

can be seen from Fig. 4. Considering that F0 is proportional to intensity of illumination 

(see eq. 2) the dependences in Fig. 4 can be also regarded as intensity dependences of 

refractive index modulation. It is seen that as F0 decreases the refractive index 

modulation also decreases. The reason for this is that at low F0 less monomer is converted 

to polymer during the illumination. It is seen that, after illumination ceases, Δn decreases 

more rapidly for higher values of F0 (i.e higher intensity). This can be explained by the 

fact that at higher intensity more short chain polymers are formed [23]. They are mobile 

and can easily escape from bright fringe regions resulting in a decrease of Δn.  

The results presented in Figs. 3 and 4 show that the model predicts the drop in 

refractive index modulation at higher spatial frequency which is experimentally observed. 

This will be discussed in more detail in the next section. 



Fig.5 presents the influence of rate of conversion γ from short to long polymer 

chains  on the refractive index modulation for weak gratings with spatial frequencies of 

2000 l/mm. Small values of γ mean that the conversion from short to long chains is slow, 

so polymer molecules are mobile for longer times and can diffuse away from bright 

fringes reducing the refractive index modulation. On the other hand higher values of γ 

mean that short chains are converted to long chains faster leading to slow decrease of 

refractive index modulation due to the fact that long polymer chains are incapable of 

diffusing away from bright fringes. As expected it is seen from Fig. 5 that the refractive 

index modulation decreases very rapidly when γ is small. On the other hand, for high 

values of γ the decrease in Δn is slower. 

From the numerical simulations presented in Fig. 3(b) and Fig. 5 it can be seen that 

the high spatial frequency response could be improved by suppressing the diffusion of 

short polymer chains and by choosing the recording parameters so as to favor the rapid 

conversion of short to long-chain polymers. Following this strategy and choosing a binder 

with low permeability we have already been successful in recording reflection holograms 

in acrylamide-based photopolymer [26, 27]. 

 

4.0 Experimental data 

4.1 Materials 

The photosensitive layers were prepared by adding 2 ml of triethanolamine, 0.6 g 

acrylamide, 0.2 g N,N-methylene bisacrylamide and 4 ml Erythrosin B dye of 1.1mM dye 

stock solution to 17.5 ml stock solution of polyvinilalcohol (10 w/w) [28]. Amounts of 2 

ml of the well mixed solution were gravity settled on levelled glass substrates so that the 



upper sides of the layers were open to the air. The thickness of the layers after drying for 

24 h in darkness under normal laboratory conditions (t o = (21 - 23) oC and RH = (40 - 60) 

%) was 150 ± 3μm. 

 

4.2 Recording of gratings 

Transmission gratings with spatial frequency in the range 200 – 3000 l/mm and 

diffraction efficiency of a few percent were recorded using NdYVO4 laser (Verdi 05) 

(�� 532 nm) using short exposure times (0.2-2 s). A He-Ne laser, (� �633 nm) was used 

for monitoring the real-time evolution of diffraction efficiency. The refractive index 

modulation was calculated from the measured diffraction efficiency using Kogelnik’s 

coupled wave theory [29]. 

 

5.0 Results and discussions 

In this section we illustrate with two examples the good agreement that has been 

obtained between the results obtained from gratings and those obtained from the model 

presented here for refractive index modulation of weak gratings.  

Fig. 6 presents the comparison between modeled and measured curves of refractive 

index modulation in the case of weak gratings at different spatial frequencies between 

200 and 3000 l/mm and different intensities values (see the captions of Fig. 6).  

It is seen that the model predicts qualitatively very well the behavior of the refractive 

index modulation. For the same intensity (i.e F0) the initial slope of the graph of Δn 

versus exposure time is the same for gratings with spatial frequency of 200, 500 and 1000 

l/mm. With decreasing intensity, the slope also decreases. Further with increasing spatial 



frequency the amplitude of refractive index modulation decreases. Additionally the model 

predicts very well the post-exposure increase of Δn for low spatial frequency (200 l/mm) 

[20]. It can be seen from Fig. 6 that the values of Δn predicted by the model are higher 

than the measured ones. This difference may be due to the discrepancies between the real 

values of refractive indices of the photopolymer components and the values assumed in 

the model. From eqs. 11 and 13 it is seen that the calculated Δn is a function of the 

monomer, polymer and binder refractive index as well as their volume fractions. It is 

relatively easy to determine the monomer and the binder refractive indices. (For example 

transmittance and reflectance measurements on the respective layers [30]). However the 

determination of polymer refractive index is not so straightforward because it depends on 

the degree of polymerization. In our simulations we used np value that is determined from 

spectrophotometric measurements of a bulk polymerized layer, i.e one that is uniformly 

illuminated. However under conditions of spatially non-uniform polymerization it may 

happen that the degree of polymerization is different. Moreover, at short illumination 

time it is possible that the monomers are not fully polymerized as it is in the case of bulk 

polymerization and refractive index of the polymer fraction is different than 1.64 (the 

refractive index of uniformly polymerized material). Our additional simulations have 

shown that if we decrease the value of np from 1.64 to keeping all parameters the same 

refractive index modulation decreases … 

 Fig. 7 presents the comparison between simulated and measured refractive index 

modulation in the case of constant exposure of 7 mJ/cm2 for a short exposure grating of 

spatial frequency of 500 l/mm. We obtained constant recording exposure of 7 mJ/cm2 

using exposure times of 2, 0.5 and 0.1 s and recording intensities of 3.5, 14 and 70 



mW/cm2, respectively). The good agreement regarding the shapes and slopes of the 

curves can be easily seen, but the calculated values of �n are again higher than the 

measured ones.  

 

Conclusion 

A two-way diffusion model for short exposure holographic grating formation in 

acrylamide-based photopolymer is presented. Accounting for both monomer and polymer 

diffusion the model predicts the experimentally observed drop in refractive index 

modulation at high spatial frequency. Moreover, the model distinguishes between short 

polymer chains capable of diffusing and long polymer chains that are immobile.  

The numerical simulations show that the suppression of short polymer diffusion 

improves the high spatial frequency response and that fast conversion of short to long 

polymer chains has a positive effect on the final refractive index modulation. Further, 

higher recording intensities generate larger numbers of short polymer chains leading to 

higher post-exposure reduction in refractive index modulation. Therefore low intensity 

recording is more appropriate for high-spatial frequency recording. Following this 

strategy and choosing a binder with low permeability improved the spatial frequency 

response and we have already been successful in recording reflection holograms in 

acrylamide-based photopolymer [26,27]. 

It was demonstrated that a good agreement between the theoretically predicted and 

the experimentally measured refractive index modulation curves can be obtained using 

the two-way diffusion model. 
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Captions to the figures 

 

Fig. 1 (Color online) Numerical results for the concentration profiles of monomer - (a), 

short- (b) and long- (c) chain polymers for spatial frequency of 500 lines/mm 

(exposure time is 0.2s, F0=0.3 s-1, a=0.5, γ=1, Dp/Dm=0.01). 

Fig. 2 (Color online) Numerical results for the concentration profiles of monomer- (a), 

short- (b) and long- (c) chain  polymers for spatial frequency of 5000 lines/mm 

(exposure time is 0.2s, F0=0.3 s-1, a=0.5, γ=1, Dp/Dm=0.01). 

Fig. 3 (Color online) Time evolution of refractive index modulation for weak gratings 

with spatial frequency of  500 l/mm (a) and 5000 l/mm (b) at different ratios 

Dp/Dm (F0=0.3 s-1, a=0.5, γ=1) (the dotted vertical line shows the time when 

light is turned off) 

Fig. 4 (Color online) Time evolution of refractive index modulation for weak gratings 

with spatial frequency of  500 l/mm (a) and 5000 l/mm (b) at different 

polymerization rates (Dp/Dm=0.01, a=0.5, γ=1) (the dotted vertical line shows 

the time when light is turned off) 

Fig. 5 (Color online) Time evolution of refractive index modulation for weak gratings 

with spatial frequency of 2000 l/mm at different rates of conversion from short 

to long polymer chains (Dp/Dm=0.01, a=0.5, F0=0.3 s-1) (the dotted vertical line 

shows the time when light is turned off) 

Fig. 6 (Color online) Numerically simulated (a) and experimentally measured (b) 

refractive index modulation for weak gratings at different spatial frequencies 

(texp=0.3 s, a=0.5, F0=0.15 s-1 for 200, 500 and 1000 l/mm, F0=0.10 and 0.05 s-1 



for 2000 and 3000 l/mm, Dp/Dm=0.01, γ=10) (the dashed vertical line shows the 

time when light is turned off) 

Fig. 7 (Color online) Numerically simulated (a) and experimentally measured (b) 

refractive index modulation for weak gratings 500 l/mm at exposure of 7 

mJ/cm2 (te -recording time, I - intensity) (a=0.5, Dp/Dm=0.01, γ=1, F0 = 0.84, 

0.37 and 0.19 s-1 for te = 0.1, 0.5 and 2 s) (the dashed vertical lines show the 

time when light is turned off) 
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