











Appendix 3.4. Method of calculating the radius of the ellipse

When the vision data has been post-processed, the following data is available for

the curve fit for each measured frame:
1. Major Axis, a
2. Minor Axis, b

3. Centre of Ellipse, X, 7o

This will be an equation of the form:

(x_xo)z _I_(Z“Zo)2 B
a’ b2 -

1 (A.3.1)

The centre of the ellipse may not be at (0, 0). For ease of computation in

subsequent steps, it is translated to (0, 0) to get equation (A.3.1) in the form:

S = (A.3.2)

k=" (A3.3)
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However, the average radius of curvature is required. This average value is
defined by the user and is dependant on the material being tested. In the test-
pieces used in the tests presented, this average is based on radius measurements
at x = Omm, x = 2mm and x = 4mm.

The radius of curvature on any point on the ellipse can be determined once the
major and minor axes and the centre of curvature (different from the centre of the
ellipse) are known. All the points corresponding to centres of curvature liec on a
closed curve, known as the evolute of the ellipse. A typical ellipse and its evolute

are shown in Figure Appendix 3.4.

b Point, x,z.

F1 x0,20 F2
W Centre of Curvature

s

Evolute

Figure Appendix 3.4. Ellipse parameters and evolute curve.

If the coordinates on the ellipse are denoted x and z, then for clarity the

corresponding co-ordinates on the evolute curve (in the same Cartesian system)
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can be designated u and w. For any point x on the ellipse, the centre of curvature

(u, w) can be calculated from the following equations:

u=2 mUAY (A.3.4)
a

sin’ ¢ (A.3.5)

W =

where t is calculated from:

t=cos' S (A.3.6)

and t has units of radians.

The distance from the centre of curvature (u, w) to the point x is the radius of

curvature R, which can be calculated simply from:

R=lu— +w—2’ (A3.7)

To summarise, the radius fit is carried out as follows:

1. Read in x,z data for the measured frame.
2. Use least squares fit to get ellipse parameters a, b, Xo, Zo.

3. Translate (if required) the ellipse to origin (0, 0).
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8.

9.

At x = 0, compute Ry, using equation (3).

At x =2, compute u and w, using equations (4), (5) and (6).

At x = 2, compute Ry, using equation (7).

At x = 4, compute u and w, using equations (4), (5) and (6).

At x = 4, compute R3, using equation (7).

Get average of Ry, Ry and Rj.

10. Output Raverage-
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Appendix 4 — Supplemental Literature Review

The following topics are contained in this appendix and are intended to give

further background into some of the topics covered in Chapter 2 of this thesis,

namely:

1 Hyperelastic and Viscoelastic Properties of Rubber

2 Development of Phenomenological Theories

3 Thermodynamics of Swelling and Cohesive Energy Densities
4 Fatigue of Elastomers
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Appendix 4.1. Hyperelastic and Viscoelastic Properties of Rubber

Hyperelasticity

Rubbers exhibit the unique property of being able to withstand high levels of
reversible strain without suffering permanent deformation or fracture. Figure
Appendix 4.1 shows a typical uniaxial tensile stress-strain curve for a filled
rubber.  The property of hyperelasticity makes elastomers fundamentally
different from most other solid materials.

Much research has been devoted to describing mathematically how these high
levels of reversible strains are achieved and several theories have been
formulated for the purpose of describing the hyperelastic properties and non-
linear behaviour of rubber-like materials. In order to understand how a complex
material like rubber behaves when deformed, early research into its behaviour

concentrated on the material at the molecular level.

32

— - ~ ~ ~
<« X3 o =] B o
T T T T T T

Tension referred to unstrained section (kg./cm?)

D
T

1 1 1 1 1 1
00 100 200 300 400 500 600 700
Percentage elongation

Figure Appendix 4.1. A typical uniaxial stress/strain curve for a filled

rubber
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Figure Appendix 4.2 (a) shows in two dimensions the ordering of long chain
molecules of rubber in the unstrained and strained state. In reality the chain
segments lie in a disordered state in a three dimensional matrix. When a
specimen of rubber is in its unloaded state, it is made up of a tangled mass of
long chain molecules, free to rotate around crosslinks that join them together. As
there are small intermolecular attractions (van der Waals forces) between the
long chain molecules they can slide readily past one another. Due to thermal
vibrations, the atoms in the long chain molecules are in constant motion, causing
individual molecules to assume irregular sinuous shapes. If loaded in any way
the molecules will become approximately aligned with the loading (Figure
Appendix 4.2 (b)). The rubber resists this alignment and when the load is
removed, returns to its more natural random state (Figure Appendix 4.2 (a)). This
is the state of maximum entropy of the rubber and always tends to its original

shape when unconstrained.

No Load Tension

() (b)

Figure Appendix 4.2. Rubber in the strained and unstrained state
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Viscoelasticity

The viscoelastic properties of rubber make it inevitable that the deformation of a
component will vary when repeatedly loaded, even if it is loaded in the same
manner and with the same magnitude of force. These time dependent properties
can be diverse and dissimilar for different compounds. In service, rubber can
experience some or all of the following effects:-

creep - strain increases at a constant force,

stress relaxation - stress changes over time when a component is subject to
constant strain,

set - the component fails to recover its initial shape when an applied load is
removed,

stress softening (Mullins' effect) - the component softens with subsequent
loading cycles,

and adhesion which is a thermally activated stick-slip process that causes local
bonding between rubber and rigid contact surfaces.

These phenomena can be influenced by both physical and chemical change and

are exhibited in rubbers that have aged.

Creep

All rubbers creep. For an instantaneously applied stress, a slow continual
deformation occurs after the initial large deformation that takes place.
Deformation due to creep is not entirely recoverable and unlike in metals is not
just confined to high strains and high temperatures but occurs for any form of
loading. Creep in elastomers will display linearity if plotted against time on a

logarithmic scale. However if a stress is maintained for a very long time the rate
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of creep will eventually rise sharply which is associated with oxidative
breakdown of crosslinks. The amount of creep varies greatly in rubbers,

dependent on a number of factors, but some observations are: -

i) vulcanised synthetic rubbers tend to creep more than vulcanised natural
rubbers,

ii) increases in filler content in a compound lead to higher levels of creep,

iii) hard rubbers creep more than soft rubbers

and iv) rubbers containing more crosslinks creep less than less well vulcanised

rubbers.

Two simultaneously occurring phenomena which may in fact be a single
phenomenon are work softening and fatigue. Work softening is a reduction in
shear modulus resulting from cyclical loading. It can be unnoticed because no
permanent deformation occurs and, on the removal of a load, a work softened
rubber will revert to its original state. Also, if work softening and set are present
in the same component, their effects often cancel each other out. If a cyclic stress
is applied to a rubber the modulus (or stiffness) gradually reduces. This process
is indicative of fatigue and can be considered a form of stress relaxation that
mirrors an increase of strain at constant stress, or creep. Plotted against log time,
the modulus gives a straight line similar to that of creep. Some interesting work
on reduction in complex modulus (E*) in fatigue of non-strain crystallising

elastomers, EPDM and SBR, has been carried out by Abraham ef al. [3].
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Stress relaxation

Stress relaxation and creep are initially physical changes resulting from the same
viscoelastic phenomenon. Whereas an ideal elastic solid subjected to a ﬁxed
strain for a time period will record a constant stress, a viscoelastic material
having a nominally instantaneous strain applied to it will suffer a reduction in the

initial stress with time.

Set

A component made from a conventional solid, will normally be assumed to fail
when it fractures or reaches a level of wear that impairs its function. A rubber
component can fail for several reasons. Creep, work softening or set all cause
elastomeric components to lose functionality. Set is an important parameter when
maintaining component function, for instance when needing an efficient seal.
The rubber industry has tended to place a large emphasis on measuring recovery.
The notion of 'permanent set' in respect of rubbers has less meaning since an
infinite recovery time would be required to measure it. Hence, set is normally
expressed as a percentage of the applied deformation for a particular recovery

time as shown below.

— l‘ .
Set = 0 1 4 100% (Compression set) (A1)

0 ts

where: - t, = initial thickness, t; = recovered thickness and t; = compressed

thickness.
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Stress softening

When subjected to cyclic loading, energy is dissipated in rubber as a result of
hysteresis. Filled rubbers stress soften and elastomeric components will have
'steady state' responses very different from initial responses. Carbon black is
added to rubber for economy and to increase stiffness and toughness. Strain-
induced stress softening in filled rubbers results from a break down of crosslinks
and a gradual detachment of reinforcing fillers from long chain molecules. This
phenomenon is known as the Mullins effect after the researcher who conducted

the first experiments into history dependant stiffness [102].
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Appendix 4.2. Development of Phenomenological Theories

Theories to describe hyperelastic material behaviour

Since understanding of the deformation of rubber (Section 2.2) has been based
on statistics and probability, the term statistical theory was applied to its early
development. The development of statistical theory was advanced markedly by
Treloar [9].

The statistical theory is also known as the kinetic theory' since deformations
were related to thermal motions of molecules and analogous to kinetic theories of
gases. For long chain molecules, the probability that the distance between their
ends has a specific value was thought to comply with a Gaussian error function.
This assumption is central to the statistical theory. However, it ceases to be valid
at higher strains and subsequent (phenomenological) theories attempted to more
accurately represent elastomer behaviour over large strain ranges. The statistical

theory assumes that
_ _ PRT
G = NkT = A/[C (A.4.2)

Where,

G = Shear (rigidity) modulus,

N = the number of chains per unit volume,
k = Boltzmann's constant,

T = absolute temperature,

p = density,

A4 -8



R = the gas constant and
M, = the mean 'chain molecular weight'
The development of the statistical theory and it application to swelling

phenomenon is discussed in section 2.2.2.

Determining principal stresses using statistical/kinetic theory

Figure Appendix 4.3 shows a triaxial stress system applied to a unit cuboid of
elastomeric material. The three principal stretch ratios are denoted by A, Az and
As. When a hyperelastic material undergoes strain, there are large changes in
cross-section. Consequently, the Cauchy stresses (forces per unit strained area),
or true stresses, are denoted by ty, t; and t3, while the engineering stresses (forces

per unit unstrained area) are denoted by o o3 and o3.

Figure Appendix 4.3 Tri-axial stress system applied to a cuboid of

elastomeric material

For incompressibility, AjAzA3=1 and
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120%27&3:;&]01 (A.43)

If a hydrostatic stress was added to this loading system, the state of strain is not
changed due to the assumed incompressibility of the material though stresses

would decrease or increase by the amount of the compressive or tensile

hydrostatic stress.

Two equivalent expressions can be written for the other two principal stresses.

Constant volume means that A, A, and X, cannot be varied independently of each

other, so that if A, and A, are independent variables then

A= (A.4.4)

The work of deformation or the elastically stored free energy per unit volume is

given by the expression [103].
1 2
W=5G(ﬂ12 + A+ 25 -3) (A4.5)

An important point to note with regard to the above equation is that for no work
to be present at zero values of strain i.e. when A = X, = Az = 1, the last term in

the bracket must have a value of —3.

A4-10



If, for simplicity, only two forces/unit area (t, andt,) are applied and A, is
increased whilst 7‘2 is held constant, considering work done, gives a value for

stress normal to Xl of

o, =G\, —1/A2%) (A.4.6)
From (A.4.3) the corresponding principal stress is

ti = G(A, 2. 1.2) and t, = G(A,2. A,2), while, ;=0 (A.4.7)

The kinetic theory applied to simple extension

For simple extension (t, = t, = 0) we find that
2 1 2 1
t, =G4 —Z) and o, = G(4, =z (A4.8)

Treloar carried out tests on a vulcanised natural rubber with an 8% sulphur
content (G = 0.39 N mm'z), which was chosen for its low levels of hysteresis.
Results compared poorly with those predicted by the kinetic theory. For
moderate strains, between stretch ratios of about 1.5 and 4, the theory over-
predicts stress levels. For high strains, (A > 4) the values of stress predicted by
theory are higher than the experimental results. This shows that the Gaussian
statistical theory is invalid for large extensions, since the material will have a

finite extensibility and crosslinks will begin to break down. The inconsistency
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between theory and experiment for moderate strains is less easily understood and
a number of competing explanations remain unresolved. Two possible
explanations of why this happens occur at the molecular level. Firstly, chain
entanglements may act as partial crosslinks and secondly, non random packing of
chains may have the effect of modifying the expressions for the entropy of
deformation [9]. The second explanation forms the basis for equations (A.4.5)

and (A.4.6).

Applying the kinetic theory to a simple shear problem

Study of simple shear shows clearly the limitations of the statistical theory. In
Figure Appendix 4.4 a unit cuboid is deformed in simple shear. It is observed
that regardless of Whether the material is incompressible or not, a constant
volume deformation takes place.

As the volume is constant the three principal stretch ratios will be A Ax=1 and A3

= 1/A;. The shear strain is given by:

—tang=4, — |
yand /ﬂl (A.4.9)
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b ~»

Figure Appendix 4.4. Unit cuboid in simple shear

and so the shear strain energy is

1
W=—Gl A2+ V,-2

12 (& +A1 j (A.4.10)
ZEG}/

and since this work done is due to the shear stress tyy, then

Tey = AW/dy=Gy (A.4.11)
This suggests that shear stress is proportional to shear strain or that the material

complies with linear Hookean behaviour in shear. This is not so for most rubbers

and a finite element analysis based on strain energy density functions which
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assume a constant rigidity modulus fails to accurately model even the simplest

load cases [104].

Phenomenological theories

The phenomenological theories used to describe large elastic deformations do not
investigate behaviour at the molecular level. These phenomenological theories
seek to describe in formulae how large elastic deformations occur in hyperelastic
materials as classical theory of linear elasticity sought to explain small
deformations. The mechanical properties of a perfectly elastic material can be
determined if the elastically stored energy (strain energy) is calculated in terms
of the variation in strain. Mooney [103] originated this approach and Rivlin [105]
developed it further. The derivation of these theories is contained in the
appendix. Early phenomenological theories used terms for strain invariants to
represent stress-strain relations (strain energy) in rubber. Later theories, most
notably that of Ogden [106], dispensed with this approach and characterised

physical behaviour using stretch ratios.

The Mooney equation

Mooney proposed a semi-empirical formula that sought to resolve inadequacies

of the statistical theory:-

o =2 ——)C, + %) (A.4.12)

1
17)
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C, and C, are empirical constants and formula (8) represents the particular case

when C, = 0 and hence G (Rigidity Modulus) = 2C,.

Rearranging (A.4.11) gives

o C
— = (C, +72~) (A.4.13)
2(A— ?)
and a plot of o against 1/A produces a straight line graph over a large
2h-1/27)

range in which C, is the slope and C, + C, is the intercept at 1/A = 1. Figure

Appendix 4.5 shows typical Mooney plots.

Mooney's theory assumes that i) for low strains, rubber is incompressible and
isotropic and ii) that Hooke's law is obeyed in simple shear. The formula for
stress o (11) is obtained by differentiating, with respect to A, an expression
suggested by Mooney for strain energy in simple extension or uniaxial

compression (A.4.14).

W =C (A% +2/A - 3) + Co(1/A* + 21 - 3) (A.4.14)

Without revision, the Mooney equation gives no improvement on the statistical
theory. Experimental data for uniaxial tension correlates reasonably well with
formula (A.4.11), but data for equi-biaxial extension, which is kinematically

identical to uniaxial compression, highlights the inadequacy of the theory. Tests
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suggest that in compression C, is approximately equal to zero, but if the data for
uniaxial tension is extrapolated into the compression region the predicted forces
for high values of 1/A are too large. This inconsistency is more pronounced for

more complex loading situations.

04 [ /
(6) 03 [~ /
2(—1/0%
N mm” =
0.2
| ] ] | J

0.6 0.7 0.8 0.9 1.0

Figure Appendix 4.5. Typical Mooney plots

Rivlin's development of the Mooney theory

Rivlin [105] considered the most general form of strain energy density for
rubber. He derived an expression for strain energy W assuming pure
homogeneous strain. He also assumed the material to be incompressible and
isotropic in the unstrained state. Isotropy requires that W will be symmetrical
with respect to the three principal stretch ratios (A, A, and ;). Rivlin wrongly
argued that the strain energy function must depend only on even powers of the

stretch ratios and the three simplest even powered expressions were:-
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L=h+4+4
L=+ BE+ 44 (A4.15)
L= A A2

For the strain system described by (A.4.15) the values of I, I, and [, will be

unaltered by changing from one Cartesian co-ordinate system to another, so are

termed 'strain invariants' and it follows for an isochoric material that
I =XRL =1 (A.4.16)
So I, and I, can be expressed thus

L=X+X+7
11 (A4.17)

L=—+—=+—=
A
Hence [, and [, are two independent variables derived from the three extension

ratios, two of which are independent if the material is assumed to be isochoric. A
strain energy function can be written for an isochoric, isotropic elastic solid as

the sum of a series of terms:-

Wu:iqﬂ“wnfw’ (A.4.18)

i=0,j-0
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As in the statistical theory W will be zero for no strain, necessitating the use of

(I, - 3) and (I, - 3), s0 fore = 0,1 =1, =3 and C; = 0. For mathematical
simplicity, a few terms complying with the lowest members of the series have

most influence and combining expressions fori=1,j=0andi=0,j=1 gives

W =C,y(I, ~3)+Cy (I, ~3) (A4.19)

which is of the same form as (A.4.14) and shows that the Mooney equation is the

most general first order relationship using I, and L,. The general strain energy
function (W, 1, I,) can be thought of as a curved surface in space relative to the
three mutually perpendicular axes W, [ - 3 and I, - 3. This leads to the
conclusion that the relationship between I, and I, varies greatly for different load

cases and questions the ability of the strain energy function to be used for

modelling complex strain cases [9].

Expressions for true stress in simple load cases are simply derived from the
Mooney-Rivlin function and those for uniaxial extension and simple shear are

shown below.

Uniaxial Extension:- 2> = A" =AM, b=t =0 (A.4.20)

Simple shear :- A3 = /A, Ao =1,y =41 = I/A

oW oW
=2 +—— A421
; (az, 612)7 ( )
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Biaxial tests by Rivlin and Saunders [107], where I, was kept constant and [,

varied, suggested that the strain energy function should have the form

W =C,(I,-3)+ (I, -3) (A.4.22)

where @ is a function whose slope diminishes as [, increases.

Multi-term Rivlin functions

Following Mooney and Rivlin, many researchers worked on expanding the
Rivlin formulation (A.4.18) to include higher-order terms, with the intention of
modelling non-Gaussian behaviour for higher extensions [108-110]. Each of the
different strain energy (density) functions can accurately represent certain
rubbers in certain load cases, but relying on increased elaboration provided by

the functions is problematic. This is because I and [, are theoretically not

independent variables, but are each functions of A for a uniaxial test and most of
the higher-order functions are based on data from uniaxial testing. Two of these
formulae postulated by Tschoegl [109] are an indication of the limited use of any

function based on strain invariants.

W =C,({,-3)+Cy(,=3)+C, (I, =3)1,-3) (A.4.23)

This function will represent the full extension curve for a carbon-reinforced,
vulcanised natural rubber in simple extension to acceptable accuracy, whilst

(A.4.24) provides a good fit for a butadiene-styrene 'pure gum'.
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W = Col, =3+ Coy (I, =3+ Cpp (1, =3)° (1, = 3)° (A4.24)

It is evident that curve-fitting procedures can be applied to any particular case

without allowing a function for all rubbers and all load cases to be derived.

Strain energy functions based on stretch ratios
Functions based on polynomial functions of strain invariants are found to be
inaccurate. Consideration of two alternatives where the strain energy density is a

separable function of the three principal stretch ratios is given.

Ogden's Theory

Ogden [106] argued that the use of strain invariants was unnecessary and that a
formula based on stretch ratios would be mathematically simpler. He derived a
strain energy function for an incompressible rubber in series form shown in

(A.4.25).

W= e (o J8 4 A2 - 3) (A.4.25)
2 3

n

The oy terms can have any values and be positive or negative. The i terms are

constants and can also be positive or negative. Pairs should possess the same sign
as the initial rigidity modulus, which must have a positive value and is given by

the equation
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N
Q:%ZM@, (A.4.26)

n=l

Previous research [111][112] has provided instances where Ogden has rendered
superior results for modelling of complex components based on uniaxial test

data.
Determination of expressions from the Ogden equation
The expressions for simple stress cases can be determined from the Ogden

equation: -

Simple extension.

DN ACHEV S

(A.4.27)
O-l - Z /.ln (ﬂqa,,—l — /'{{E*a“/z),l)
| (A.4.28)
ﬂ'z = ﬂ/} = ﬂ'l 2 (A429>
Equi-biaxial extension (t1 =0, t2 = t3)
tz - Z /,ln (/102!" - /’{;a”/z)
| (A.4.30)
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oy =2 b, (A5 =)
" (A.4.31)

a2 a2
b=k =4 (A.4.32)

(Assuming stretches in the ‘2° and ‘3 direction)
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Appendix 4.3. Thermodynamics of Swelling and Cohesive Energy Densities

When investigating the mixing of two liquids, consider that at the molecular
level the molecules of a liquid are close together and therefore exert strong forces
on one another. This is the origin of the latent heat of evaporation, which
represents the work done in overcoming the cohesive energy of the molecules.
As different liquids do not have the same molar latent heats, it must be concluded
that their molecules cohere with different energies. This difference depends
partly on the chemical nature of the molecules and partly on the way they pack
together.

Imagine that a typical molecule in the liquid is surrounded by Z number of
similar molecules each of which exerts an attractive force on it. This force is
equivalent to a bond, whose energy depends on the nature of the molecules and
on their distance apart. If two liquids, 1 and 2, are mixed together it is necessary
to break some of the 1-1 and 2-2 bonds, at the same time producing 1-2 bonds.
A typical molecule 1 will still be surrounded by other Z molecules, but these will
not all be 1 molecules but on average will consist of v;Z1 molecules and v,72
molecules where v; and v, are the volume fractions of 1 and 2 in the mixture.
Now the cohesive energy of 1 cc of liquid is made up of the sum of the energies
of all the bonds between the molecules in the liquid. The cohesive energy of a
mixture will not in general be equal to the sum of the cohesive energies of its
separated components. It would be easy to calculate on this basis what the
cohesive energy would be if how the energy e, of a 1-2 bond was related to the

energies €;; and ey of 1-1 and 2-2 bonds was known. Hildebrand [83],
suggested that e,, = +/e,,e,, and showed that, on this basis the increase of energy

AL on mixing is given by:
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2
L L
AL=vuv,| [— - |=%| cals. per cc of mixture (A.4.33)
1~2 V V
1 2

where E is the latent heat of evaporation at constant volume in calories per mol,

. ) L L . ..
V is molar volume in c¢’s and f;‘ and /V—Z are the cohesive energy densities
1 2

(C.E.D) of the two liquids.

Development of the thermodynamics of swelling using C.E.D.

Gee developed the thermodynamic theory of swelling further by calculating the
entropy of a rubber benzene system as follows:

The mixing of liquids is accompanied in general by two changes, firstly an
increase of entropy which tends to make them mix and secondly an absorption of
heat, which represents energy which has to be supplied before mixing is possible.
These factors are in opposition and to discover their joint effect it is necessary to
introduce the concept of free energy, which can be regarded in its simplest terms
as a chemical potential. In the same way as the temperatures of two bodies
determine the direction of heat flow, so the free energies of two systems
determine the direction of chemical reaction or mixing. Two liquids will mix
only as long as the process involves a decrease of free energy.

Writing AH as the increase in energy, AG as the increase in free energy and T as

the absolute temperature, it can be shown that

AG = AH —TAS (A.4.34)
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Hence, liquids will mix as long as AG is negative, i.e., TAS > AH. Thus liquids
which are only partially miscible are in general those which have different
C.E.D.’s, while liquids of similar C.E.D values are miscible in all proportions.

In terms of solubility, Gee treated rubber as a liquid. The justification for this is
that the rubber molecules have a good deal of freedom to slip past one another,
which is a similar characteristic to that associated with liquids. From
experiments carried out on a rubber-benzene system, Gee calculated the entropy

of the system, as shown in Figure Appendix 4.6.

800
600
400 TaS.
200 }
3 aM,
. -
3 o . .
] 2 3 -4 s g
o B /"‘7
-200¢
A G,
-400}4
-600L

Figure Appendix 4.6. Thermodynamic representation of a rubber benzene

system.

Figure Appendix 4.6 can be explained if one imagines a piece of rubber swollen
to a certain extent by a liquid, then immersed in more of the same liquid.

Absorption of more liquid would be assisted by the entropy increase ASy, but
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resisted by the heat absorption AHy. If AGy is negative, i.e., ATSg > AHg, more
liquid will be absorbed and the process will continue either until the rubber is
dissolved or until a point is reached at which AGq = 0.

The heat of dilution AHy is approximately proportional to the square of the

rubber concentration C, so that AH,/C, is independent of the degree of

swelling Q (cc of liquid per gram of rubber). This is represented in Figure

Appendix 4.7 by a series of horizontal lines, cach characteristic of one liquid. As

0

ASy is independent of the nature of the liquid, a single curve of I against Q

2
can be drawn, as the Figure shows. The curve drawn is for a vulcanised rubber.
When this curve cuts the AH, /C, line for a given liquid, TAS, = AH, and AGq
= 0 for that liquid; the corresponding value of Q is the equilibrium degree of

swelling of the rubber in that liquid.

700

Cal. per mol.

1 1
! 2 3 4 5
c.c. liquid per gm. rubber.

RS

0

Figure Appendix 4.7. 4 against degree of swelling Q.

2

A4 -26



The description given of the mixing of simple liquids relates AHp to the
difference between the C.E.D.’s of the liquids. Hence vulcanised rubber should
swell to its greatest extent in a liquid having the same C.E.D. as itself and a plot
of Q in a series of liquids against the C.E.D.’s of the liquids should give a curve
with a maximum. There are some individual discrepancies to this statement, but
it remains broadly correct.

Gee developed his theories further to show that the molecular volume of the

liquid was also important and that the swelling Q should be a function of

L L
JV, ( =2~ —’~J , where the suffix r applies to rubber. The C.E.D. of a liquid
Vv, \} v,

can be easily found from its latent heat of evaporation, but this method cannot be

L.
applied to rubber. It is possible however, to estimate —- for a sample of rubber

from its swelling in a series of liquids of known C.E.D. If the swelling of a
vulcanised rubber is measured in a series of liquids, covering as continuously as
possible, a range of C.E.D., the C.E.D. of the liquid in which the swelling is a
maximum will be approximately equal to that of the rubber. This principle can
be refined by using a mathematical method to locate the exact position of the

swelling vs. C.E.D. curve.

Estimation of C.E.D. of Rubber from Swelling Data

L L
The swelling Q is a function of JVO[ /V—O— /V)J Therefore,
0 r
L L
V| |=> — |-~ | can be denoted by x.
vy v,
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. . /L L i
Q has its maximum value Quax When 70 = 7’ or x =0. The Q vs. x curve 1s
0

s

roughly of the form of the error function, so that we may write:

0=0pe ™ (A.4.35)

where B will in general not be a constant (as in the error function) but will be a

function of x. This may be rearranged to:

x:ir\/zlogegM (A.4.36)
B Q

Substituting for x, gives:

’L /L f
Bt U et + 1 IOgL, Qmax (A437)
VO Vr IBVO Q

’ L ’L
Hence if Quax is estimated by a rough plot of Q against ;0— and I—/O— plotted
0 0
: 1 Qma : ; 1
as a function of 7 log, —Q—‘ , the resulting curve will have a slope E and an
0

L
intercept of 7~ . This procedure is illustrated by Figure Appendix 4.8, drawn

I3

from the data used for a natural rubber.
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Figure Appendix 4.8. Plot of Q against

Using this principle to estimate the C.E.D. of natural rubber swollen in 20
different aliphatic liquids with values ranging from 50 calories per c¢ (n-pentane)

to 141 calories per cc (acetonitrile), Gee generated a plot of the swelling Q as a

) {L /L, I .
function of JVO( V—O - V—'], shown in Figure Appendix 4.9. The C.E.D. of
0 i3

the rubber was found to be unaffected by compounding, while the absolute
swelling of a rubber in a good swelling agent is reduced by a reinforcing filler.
The effect of the filler is to link the rubber chains together and restrict their

maximum distension.
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Figure Appendix 4.9. Q as a function of \/VT( /?/3 —~ /I—/’—]
0 r

Using the same technique on synthetic rubbers, Gee also found agreement with

2

theory, but this was less so than with natural rubber. This is explained by
considering that equation (A.4.33) can only be true if there are no specific
interactions between the two components of the mixture. When both rubber and

swelling agents possess polar groups, such interactions must be general and will

lead to deviations from the simple theory.
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Appendix 4.4. Fatigue of Elastomers

For a clearer understanding of fracture mechanics and crack propagation theory,
consider the changes in stored elastic energy as a crack grows. Imagine a strip
constraining an edge crack of length ‘a’ under uniaxial tension, as shown in
Figure Appendix 4.10. If a load W is applied gradually, the load points will move

a distance x and the strain energy U stored in the body will be given by:

U =-~Wx (A.4.38)

For purely elastic deformation, the load and displacement are related by the

‘compliance c,

x=cW (A.4.39)

Which is a function of the crack length, but varies with the geometry of the

cracked body.
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a+da

47 + dx
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(a) (b)

Figure Appendix 4.10. (a) Cracked body under tensile load and (b)

associated force displacement curves for changes in crack length a, due to

constant displacement and load.

It can be shown [48], that the change in stored energy due to an increase in crack

length from ‘a’ to a+da is:
oU, =——Wdk (A.4.40)

This is regardless of the loading conditions, for small increases in crack length.
In the case of an increase in crack length for a constant displacement loading
condition the load moves from A to C in Figure Appendix 4.10. This will result

in a reduction in W.
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In the case of an increase in crack length for a constant load, the displacement
moves from A to B in Figure Appendix 4.10. This will result in a reduction in the
potential energy of the system, because the work required to extend the crack
from A to C has come from external sources. There is no such equality for large
increases, but this is not of major significance, as it is the onset of crack growth
which is of interest, with failure in fatigue normally following crack initiation.

In summary, if there is a decrease in potential energy when there is an increase in
crack growth, then there is an energy requirement for the production of a crack.
As shown in Figure Appendix 4.11 for an infinite sheet with an applied uniaxial
stress o and with a central crack of length 2a, there is a decrease in potential

energy when a crack grows.

Load

i

Load

Figure Appendix 4.11. Physical model for Griffith’s analysis.
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For an increase in crack length of da,

SU. =2ybda (A.4.41)

Where
v = Surface energy of the crack faces.
b = thickness of the sheet.

At the onset of crack growth, da is small and we have,

d—U =2by (A.4.42)
da

du . . . . .
o is termed the ‘critical strain energy release’ and is denoted as G, giving
a

G =Y oy (A.4.43)

ou

This is known as the Griffith criterion for fracture.

In general,

o}ﬂa .
G, = i under plane stress conditions. (A.4.44)
2
o 5 i .
G, = 3 (1-v~) under plane strain conditions. (A.4.45)
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Specimen types used in crack propagation tests on elastomers

T = 2F/t

'

T« 2KWe

@ ? @ “"Pure Shear”

f f F
Strain energy % 1
density, W,
c /
%
v
Strain f T
energy T b
density, W, !
2
‘d / Uns!ram:zd
7 l #heighl. h
' b

Tensile strip [b] rTrousers’
=Wh
T

- RWOCAV?

Figure Appendix 4.12. Typical specimen types used in crack propagation
tests on elastomers, (a) Tensile strip, (b) Trousers test-piece, (¢), Specimen

with central crack, (d), Pure shear specimen [49].

a) — Tensile strip,

T =2KW,c (A.4.46)

Where,
¢ = crack length
W = Strain energy density at a strain, e.

K = Strain dependant parameter.
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b) — Trousers test-piece.

T =" (A.4.47)

Where,
F = Applied force.

t = Specimen thickness.

¢) — Specimen with central crack

W,
7 =220 (A.4.48)
22
Where,
¢ = crack length
W = Strain energy density at a strain, e.
A = Stretch ratio.
d) — Pure shear specimen
T =W,h (A.4.49)

Where,
W = Strain energy density at a strain, e.

h = Specimen unstrained height.
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Appendix 5 — Plots of E* Models

Model Versus Measured. 1.2MPa
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Figure Appendix 5.1 E* Measured versus E* modelled, ¢, = 1.2MPa
Mode! Versus Measured. 1.1MPa
45 ¢ DryMeasured

4 2% Swell Measured
10% Swell Measured
& DryModelled
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Cycles. N

2500

Figure Appendix 5.2 E* Measured versus E* modelled, ¢, = 1.1MPa
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Model Versus Measured, 1.05MPa
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Figure Appendix 5.3 E* Measured versus E* modelled, ¢, = 1.05MPa

Model Versus Measured, 0.95MPa
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Figure Appendix 5.4 E* Measured versus E* modelled, 6, = 0.95MPa



Model Versus Measured. 0.8MPa
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Figure Appendix 5.5 E* Measured versus E* modelled, 6, = 0.8MPa
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Appendix 6 — Test Materials Specifications

E1M Material — data from Deutsches Institut fiir Kautschuktechnologie

(DIK)

Component
KELTAN 7631 A
Carbon N550
ZnO RS

Stearic Acid
Sulphur

TBBS

TBzTD

pphr
140.0

50.0
4.0
2.0
0.7
1.0
3.5

C-14 Material - data from Deutsches Institut fiir Kautschuktechnologie

(DIK)

Component

EPDM

Carbon N550

Carbon N772

Stearic Acid

ZnO RS

Oil Sunpar 2280

Sulphur

Accelerator CZ (CBS)
Accelerator Thiuram (TMTD)

pphr
110.0

70.0
40.0
1.0
5.0
70.0
1.5
1.0
0.8

EPDM Shore A 70 Material — data from http://www.semperflex.com

EPDM Semperit E9566

Filler Carbon Black

Crosslinking agent Sulphur

Tensile Strength 7 N/mm?

Elongation at break 250%

Density 1.32 g/em’

Temperature Range -40/+100°C

Compression Set DIN ISO 815

Duration pphm Ozone Temperature
35% 70 °C 22 hours

Ageing DIN 53508

Conditions Hardness Strength Flongation
70 h/100 °C +10 Shore A -10 % -25 %
Ozone Resistance

Duration pphm Ozone Temperature Crack Level
48 h 200 pphm 40 °C 0
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