Mortality risk factors in community dwelling elderly - Knowledge base

Lucas Middeldorf Rizzo
Dublin Institute of Technology, d15123771@mydit.ie

Ljiljana Majnaric
University of Osijek, ljiljana.majnaric@gmail.com

Luca Longo
Dublin Institute of Technology, luca.longo@dit.ie

Follow this and additional works at: https://arrow.dit.ie/scschcomoth

Recommended Citation
Rizzo, Lucas Middeldorf; Majnaric, Ljiljana; and Longo, Luca, "Mortality risk factors in community dwelling elderly - Knowledge base" (2018). Other resources. 11.
https://arrow.dit.ie/scschcomoth/11
Contents

1 Attribute description 2
2 Attribute risk description 4
3 Terms extracted and the associated risk of mortality 11
4 Laboratory normal values 12
5 Forecast arguments 13
6 Preferences 16
 6.1 Attacks based on preferences 16
7 Contradictions 17
8 References 19
1 Attribute description

Biomarkers, type categorical (C) or numerical (N) and short description.

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Type</th>
<th>Values range</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>N</td>
<td><60, 60-65, 66-70, 71-75, 76-80, >80</td>
</tr>
<tr>
<td>sex</td>
<td>C</td>
<td>F, M</td>
</tr>
<tr>
<td>hyper</td>
<td>C</td>
<td>Diagnosis of Hypertension Low-grade (<160/90 mm Hg; medications are not used, or used irregularly), High-grade (>160/90 mm Hg; medications are used regularly)</td>
</tr>
<tr>
<td>DM</td>
<td>C</td>
<td>Diagnosis of Diabetes mellitus type 2 yes, Impaired glucose tolerance, No</td>
</tr>
<tr>
<td>HbA1c</td>
<td>N</td>
<td>Glycosilated Haemoglobin (%) - a marker of an average blood glucose in a three-month period Please, split the range of values into tertiles or quartiles, as appropriate</td>
</tr>
<tr>
<td>Fglu</td>
<td>N</td>
<td>Fasting glucose (mmol/L) - a marker of glucose metabolism</td>
</tr>
<tr>
<td>Chol</td>
<td>N</td>
<td>Total cholesterol Please, split the range of values into tertiles or quartiles, as appropriate</td>
</tr>
<tr>
<td>HDL</td>
<td>N</td>
<td>HDL-cholesterol Please, split the range of values into tertiles or quartiles, as appropriate</td>
</tr>
<tr>
<td>Statins</td>
<td>C</td>
<td>Statins use Yes, No</td>
</tr>
<tr>
<td>anticoag</td>
<td>C</td>
<td>Therapy with oral anticoagulant drug (warfarin), therapy with antiaggregant drug (aspirin), therapy with antiaggregant plant drug (ginkgo)</td>
</tr>
<tr>
<td>CVD</td>
<td>C</td>
<td>Cardiovascular disease. No, myocardial infarction/angina/histroy of revascularization, chronic myocardioapathy with atrial fibrillation, chronic myocardiopathy without atrial fibrillation, stroke/transient ischaemic cerebral event, carotid artery atherosclerosis confirmed by using image techniques, peripheral vascular disease</td>
</tr>
<tr>
<td>BMI</td>
<td>N</td>
<td>Body mass index (a measure of the body weight) <20, 20-25, 26-29, >30</td>
</tr>
<tr>
<td>w/h</td>
<td>N</td>
<td>Waist to hip ratio - M <1.0, >1.0; F <0.8, >0.8</td>
</tr>
<tr>
<td>skinf</td>
<td>N</td>
<td>Triceps skinfold thickness Please, split the range of the values into tertiles, separately for M and F</td>
</tr>
<tr>
<td>COPD</td>
<td>C</td>
<td>Chronic Obstructive Pulmonary Disease – Yes, No</td>
</tr>
<tr>
<td>Allerd</td>
<td>C</td>
<td>Allergic disease (rhinitis/asthma) - Yes, No</td>
</tr>
<tr>
<td>Dr aller</td>
<td>C</td>
<td>Allergy to drugs - Yes, No</td>
</tr>
<tr>
<td>Analg</td>
<td>C</td>
<td>Long-term use of analgesics/nonsteroidal antiinflammatory drugs - Yes, No</td>
</tr>
<tr>
<td>Neo</td>
<td>C</td>
<td>No, malignant disease in a stable phase, skin malignancy</td>
</tr>
<tr>
<td>Derm</td>
<td>C</td>
<td>Chronic skin disorders Chronic dermatitis, dermatomycosis, No</td>
</tr>
<tr>
<td>OSP</td>
<td>C</td>
<td>Osteoporosis - an age-related disease affecting mostly women, characterized with increased bone fragility and susceptibility for fracture. Osteoporosis/ostopenia/no - of the radius bone; osteoporosis/osteopenia/no - of the vertebrae; osteoporosis/osteopenia/no - of the hip</td>
</tr>
<tr>
<td>Psy</td>
<td>C</td>
<td>Anxiety/depression, Parkinson’s disease, cognitive impairment, no</td>
</tr>
<tr>
<td>MMS</td>
<td>N</td>
<td>Neuropsychologic test for screening on cognitive impairiment "Mini Mental Score" <10 severe cognitive inapiriment, 10 - 20 moderate, 21 - 24 mild, 25 - 30 normal cognition</td>
</tr>
<tr>
<td>CMV</td>
<td>N</td>
<td>Cytomegalovirus infection (specific IgG antibodies, IU/ml). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>EBV</td>
<td>N</td>
<td>Epstein-Barr virus infection (specific IgG antibodies, IU/ml). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>Biomarker</td>
<td>Type</td>
<td>Values range</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>HPA</td>
<td>N</td>
<td>Helicobacter pylori infection (specific IgA antibodies, IU/ml). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>LE</td>
<td>N</td>
<td>White blood cell (WBC) count (Leukocytes number × 10^9/L). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>CRP</td>
<td>N</td>
<td>C-reactive protein (mg/L). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>GAMA</td>
<td>N</td>
<td>Hiper-gamma-globulinemia (g/L) - a marker of chronic inflammation</td>
</tr>
<tr>
<td>MO</td>
<td>N</td>
<td>Monocytes % in WBC differential. Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>NEU</td>
<td>N</td>
<td>Neutrophils % in WBC differential. Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>LY</td>
<td>N</td>
<td>Lymphocytes % in WBC differential Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>E</td>
<td>N</td>
<td>Red Blood Cell (RBC) count (Erythrocytes number × 10^12/L) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>HB</td>
<td>N</td>
<td>Hemoglobin (g/L). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>HTC</td>
<td>N</td>
<td>Hematocrite (Erythrocyte volume blood fraction) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>MCV</td>
<td>N</td>
<td>RBC Mean Cell Volume (fL). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>FE</td>
<td>N</td>
<td>Serum iron (g/L). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>ALB</td>
<td>N</td>
<td>Serum albumin (g/L). Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>Clear</td>
<td>N</td>
<td>Creatinine clearance - an indicator of chronic renal impairment (ml/s/1.73m^2)</td>
</tr>
<tr>
<td>HOMCIS</td>
<td>N</td>
<td>Homocystein (µmol/L)- sulphuric amino-acid Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>VITB12</td>
<td>N</td>
<td>Vitamin B12 (pmol/L) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>FOLNA</td>
<td>N</td>
<td>Folic acid (mM/L) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>INS</td>
<td>N</td>
<td>Serum fasting insulin (IU/ml) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>CORTIS</td>
<td>N</td>
<td>Serum cortisol in the morning (nmol/L) Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>PRL</td>
<td>N</td>
<td>Prolactin in the morning (mIU/L) - the anterior pituitary gland hormone Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>TSH</td>
<td>N</td>
<td>Thyroid-stimulating hormone (IU/ml) - the anterior pituitary gland hormone Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>FT3</td>
<td>N</td>
<td>Free triiodothyronine (pmol/L) - the thyroid gland hormone Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>FT4</td>
<td>N</td>
<td>Free thyroxine (pmol/L)- the thyroid gland hormone Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>RF</td>
<td>N</td>
<td>Rheumatoid factor - the auto-antibody, increased in patients with rheumatoid arthritis In cases where RF is tested positive, please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>ANA</td>
<td>N</td>
<td>Anti-nuclear antibody - the auto-antibody - a diagnostic marker in rheumatic autoimmune diseases Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
<tr>
<td>IGE</td>
<td>N</td>
<td>Immunoglobuline E - a class of antibody included in the allergic reactions Please, split the range of values into tertiles, or quartiles, if appropriate</td>
</tr>
</tbody>
</table>
Attribute risk description

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>The strongest risk factor for death. In general: the older the person, the higher the risk of death; although, due to the remodelling theory of aging, the mortality rates are the highest at the age of around 75, due to the chronic disease burden; after the age of 80, the population mortality curve starts to slowdown, reflecting the positive selection of oldest old individuals, who are also characterized with better coping mechanisms.</td>
<td>1-2</td>
</tr>
<tr>
<td>sex</td>
<td>For some pathophysiological aspects of ageing, such as diabetes and metabolic syndrome, there is a presumption that men and women use different pathways to attain ageing diseases and premature mortality (or longevity).</td>
<td>3-4 & Presumption</td>
</tr>
<tr>
<td>hyper</td>
<td>Hypertension is the main risk factor for cardiovascular disease - the main mortality cause in European countries. Thus, the higher grade hypertension - the stronger association with mortality. On the other hand, persons with high grade hypertension more regularly use anti-hypertensive drugs, which may, in turn, elicit the protective effect.</td>
<td>5-6 & Presumption & Intuition</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus, mostly based on the pre-existing obesity, is the main risk factor for cardiovascular disease - the main mortality cause in European countries. Thus, diabetics might have the highest mortality risk, in comparison to non-diabetics and those having pre-diabetes (impaired glucose tolerance). However, there might be an alleviating effect of drug treatment, in diabetic patients. Another contradictory argument is the fact that impaired glucose tolerance is a condition characterized with high insulin resistance and insulin serum concentrations - both factors confirmed as to have the strong impact on the development of many aging diseases. In addition, among those subjects not having diabetes, there might be some individuals characterized with frailty - another strong mortality risk factor.</td>
<td>7-9 & Presumption & Intuition</td>
</tr>
<tr>
<td>HbA1c</td>
<td>According to the above commentaries and the remodelling theory of aging, both lowered and increased values of Hba1c - a measure of blood glucose concentrations - may be detrimental for healthy aging and longevity. An intriguing is also to note that, in diabetics, the HbA1c values are under the influence of treatment.</td>
<td>10-11 & Presumption & Intuition</td>
</tr>
<tr>
<td>FGlu</td>
<td>Fasting Glucose – a marker of glucose metabolism</td>
<td></td>
</tr>
<tr>
<td>chol</td>
<td>High serum concentrations of total cholesterol is well established as the main risk factor for cardiovascular disease and, as such, it can be also associated with premature death. On the other hand, hypolipemic treatment with statins is less efficient in elderly people, which may implicate weaker influence of total cholesterol as CV risk factor, in this population group. Also, therapy with statins, mostly used by diabetics, is known to modify the total cholesterol levels.</td>
<td>12-13 & Presumption</td>
</tr>
<tr>
<td>HDL</td>
<td>High serum HDL-cholesterol concentrations (certainly ≥1.0 mmol/L) is thought to be protective against diabetes, cardiovascular disease and Alzheimer’s dementia, so also against premature death. A conflicting fact is that recent evidence implicate not only low serum concentrations of HDL-cholesterol, but also functionally defective HDL particles, as to be detrimental for the development of age-related chronic diseases. In general, low serum HDL-cholesterol concentrations - a cardiovascular risk factor - can be expected in conditions associated with insulin resistance, including obesity, especially abdominal obesity, diabetes, hypertension, CVD, chronic renal impairment and frailty (muscle wasting).</td>
<td>14-15 & Presumption</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Statins</td>
<td>Therapy with statins can modify the total cholesterol levels, so can be protective for premature cardiovascular disease and death. Although, recent studies indicate lower effectiveness of this therapy in elderly population. Also, there are ambiguous results in respect to statins use and the development of cognitive dysfunction/dementia—an emerging cause of death in modern societies.</td>
<td>13, 16-17 & Presumption</td>
</tr>
<tr>
<td>anticoag</td>
<td>Oral anticoagulant/antiaggregant drug treatment is a part of a secondary prevention strategy of CVD and can be a marker of higher CV risk and death. On the other hand, the effect of this therapy on CVD and average life expectancy can be beneficial. Therapy with these medications can yet be associated with potential adverse effects and serious complications. Further, there might be a difference between the effectiveness of anticoagulant and antiaggregant drugs.</td>
<td>18-20 & Presumption, Intuition</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease is the major cause of mortality. However, there may be differences in respect to an influence of age, gender, co-morbidity, or a specific CVD entity (for example, stroke vs peripheral vascular disease)</td>
<td>21 & Presumption, Intuition</td>
</tr>
<tr>
<td>BMI</td>
<td>Evidence say that both, low values of BMI (<20) and high values (>=30), may contribute to CV and overall mortality. Overweight (BMI 26-29) may also have unfavourable effect. However, there are no clear relationships between BMI and other CV risk factors, such as lipids, hypertension and insulin resistance, as well as in respect to gender and age differences.</td>
<td>10,22-25 & Presumption, Intuition</td>
</tr>
<tr>
<td>w/h</td>
<td>Increased waist circumference and waist to hip ratio are well established measures of insulin resistance and CV risk factors, either being associated with obesity, or frailty. The strength of associations with the risk of mortality is not well known.</td>
<td>25</td>
</tr>
<tr>
<td>skinf</td>
<td>Increased triceps skinfold thickness is validated as an anthropometric measure of insulin resistance state (muscle wasting). Data on the strength of associations towards CVD and overall mortality are not yet conclusive.</td>
<td>26-27</td>
</tr>
<tr>
<td>COPD</td>
<td>COPD is a major cause of mortality and also a CV risk factor. There may be a survival benefit for treatment with new inhalatory drugs, however, conclusive data are currently lacking.</td>
<td>28</td>
</tr>
<tr>
<td>Aller d</td>
<td>Allergic diseases have in the background increased activity of the antibody-mediated (humoral) immune response (represented with high serum IgE concentrations). In this sense, these diseases may elicit protective effects towards CVD and premature death, as CVD and some other aging diseases, including dementia and cancer, use cell-mediated immunity during their pathogenesis. Although strong evidence are lacking, recent advances in aging process propose that the development of the main aging diseases is the result of the unsuccessful modeling, which is associated with the bias of the immune reaction into the cell-mediated and antibody-mediated immune response. In this context, the bias towards humoral (antibody-mediated) immunity is associated with the development of allergic diseases and hematoproliferative disorders. These latter disorders, in turn, may be unfavourable for survival.</td>
<td>1,29-32 & Presumption, Intuition</td>
</tr>
<tr>
<td>Dr aller</td>
<td>Drug allergy might be a marker of multimorbidity and, as such, of the complex unfavourable pathogenetic background</td>
<td>33 & Presumption, Intuition</td>
</tr>
<tr>
<td>Analg</td>
<td>Analgesics can alleviate inflammation - according to the theory - the main driving cause of age-related diseases. So, this therapy might be beneficial for survival, although it can be accompanied with the serious side effects, for example decline of renal function. Alternatively, use of these medications can be a marker of a subgroup of patients with locomotor disease in its active phase - characterized with increased level of inflammation, which, in turn, may be non beneficial for survival</td>
<td>18,19 & Presumption, Intuition</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Neo</td>
<td>Patients in the stable phase of malignant disease, including those with skin cancer, might be in an unfavourable position in respect to survival, because of the immune system impairment. According to the recent theories of aging, unsuccessful remodelling of the metabolic, the immune and the neuro-endocrine systems is responsible for increased level of inflammation and the development of the age-related chronic diseases.</td>
<td>29, 34 & Presumption, Intuition</td>
</tr>
<tr>
<td>Derm</td>
<td>Chronic skin disorders can be a marker of the immune system dysfunction and, as such, of an unfavourable survival pattern</td>
<td>35 & Presumption, Intuition</td>
</tr>
<tr>
<td>OSP</td>
<td>Osteoporosis is an inflammation-mediated disease, so unfavourable for survival. Overt osteoporosis may be more detrimental than the disease in its early phase - osteopenia. Although, in an early phase of this disease, the level of inflammation can be even at the higher level than when the disease turns into its advanced stage. This is supported by the evidence implicating osteopenia as a component of the frailty syndrome, characterized with increased level of inflammation. Osteoporosis is a spot like disease, so the larger the number of involved sites, the greater the influence of the disease on the survival</td>
<td>36-37 & Presumption, Intuition</td>
</tr>
<tr>
<td>Psy</td>
<td>Anxiety-depresson and cognitive disorders are all known to activate the hypothalamo-pituitary-adrenal (HPA) axis, which decreases an individual’s adaptation to infections and illnesses, mostly due to the immune system impairment and increased secretion of inflammatory cytokines and other mediators. So, these diseases are unfavourable for survival.</td>
<td>38-39 & Presumption, Intuition</td>
</tr>
<tr>
<td>MMS</td>
<td>MMS < 25 is a measure of mild cognitive impairment (MCI) - an early phase during the course of the development of dementia. Some known factors responsible for progression of MCI to dementia include deficit of folic acid and vitamin B12, the thyroid gland hypofunction and depression/anxiety. Although not all persons with MCI get dementia, this condition is associated with the immune system bias towards the cell-mediated immunity, which may affect survival.</td>
<td>40 & Presumption, Intuition</td>
</tr>
<tr>
<td>CMV</td>
<td>Latent infections reactivation is a feature of unsuccessful aging. High serum specific IgG antibody concentrations can be used as a marker of CMV infection reactivation. This condition is a driving force for cellular immunity activation and exhaustion. High serum concentrations of specific IgG antibodies have been accepted as the risk factor for frailty and premature death.</td>
<td>41-42 & Presumption</td>
</tr>
<tr>
<td>EBV</td>
<td>High serum specific IgG antibody concentrations can be considered as a marker of the immune system impairment and bias towards B lymphocytes (humoral immunity) domination. In this sense, this condition might be beneficial for survival, by turning the immune reaction from the cellular towards the domination of humoral immunity, avoiding the development of the main aging diseases, including CVD, dementia and cancer. On the other hand, EBV infection is a driving force for the development of lymphomas and lymphoproliferative disorders, which might be unbeneificial for survival.</td>
<td>43 & Presumption</td>
</tr>
<tr>
<td>HPA</td>
<td>Helicobacter pylori infection, a cause of chronic gastritis, is a wide-spread condition in older population. Because of its association with increased systemic inflammation and biased immune reaction in favour of cell-mediated immunity, this infection might be unbeneificial for survival. Increased serum concentrations of specific IgA antibodies (>11.1 IU/ml) is a diagnostic test used to confirm this infection.</td>
<td>44-45 & Presumption</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>LE</td>
<td>Leukocyte count, a marker of inflammation, is frequently included in routine clinical checkups. According to the recent studies, increased leukocyte count, in apparently healthy elderly population, can be used as a prognostic factor of all-cause and cardiovascular mortality. Aspirin and nonsteroidal antinflammatory drugs may lower their counts.</td>
<td>18, 46 & Presumption</td>
</tr>
<tr>
<td>CRP</td>
<td>Low grade chronic inflammation, as indicated with slightly elevated serum concentrations of CRP (even in the upper part of the reference range), has been considered as the main pathogenetic driving force in the progression of the main aging chronic diseases, including CVD, dementia, osteoporosis, cancer, autoimmune and lymphoproliferative diseases. In addition, it may also play a major role in the development of the frailty syndrome, which in older persons is associated with increased vulnerability for disease and death. Phenotypically, this syndrome is characterized with lean body mass, osteopenia, anemia and low cholesterol level. The etiology of chronic inflammation is considered to be multifactorial. One of the best accepted cause is obesity. In this condition, low grade inflammation is associated with insulin resistance and impaired glucose tolerance, increasing, in obese people, their susceptibility for diabetes and CVD. More generally, it is thought that age-related dysfunction in the metabolic, the neuroendocrine and the immune system, is associated with chronic low grade inflammation. Increased serum CRP concentrations have been found to be associated with increased risk of CV and all-cause mortality.</td>
<td>1,18,29,30, 47 & Presumption</td>
</tr>
<tr>
<td>GAMA</td>
<td>Hiper-gamma-globulinemia – a marker of chronic inflammation</td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>Mononuclear leukocytes are included in cell-mediated immunity during pathogenesis of atherosclerotic CVD, dementia and cancer. Although monocytes % in WBC differential is a weaker marker of cell-mediated immunity than absolute monocytes number, it is more easily available in clinical practice. Some age-related changes in WBC differential, including slightly increased monocytes %, decreased lymphocytes % and increased neutrophils %, have been found as to have predictive power in CV and all-risk mortality.</td>
<td>48-49 & Presumption</td>
</tr>
<tr>
<td>NEU</td>
<td>Some age-related changes in WBC differential, including slightly increased monocytes %, decreased lymphocytes % and increased neutrophils %, have been found as to have predictive power in CV and all-risk mortality.</td>
<td>48-49 & Presumption</td>
</tr>
<tr>
<td>LY</td>
<td>Some age-related changes in WBC differential, including slightly increased monocytes %, decreased lymphocytes % and increased neutrophils %, have been found as to have predictive power in CV and all-risk mortality.</td>
<td>48-49 & Presumption</td>
</tr>
<tr>
<td>E</td>
<td>Erythrocytes (RBC) number is a routine laboratory test indicating blood oxygen carrying capacity, or otherwise, used to diagnose anaemia. According to the evidence, anemia, in older persons, as indicated by lower Hemoglobin and Erythrocytes number, is associated with an increased mortality risk. On the other hand, even slightly increased erythrocytes number, due to hypoxic lung or heart diseases, can affect blood rheological properties and vascular resistance, increasing the risk for unfavourable outcomes.</td>
<td>50-52 & Presumption, Intuition</td>
</tr>
<tr>
<td>HB</td>
<td>Hemoglobin is a more sensitive marker of anemia than erythrocytes number. Both, decreased HB values (indicating anaemia) and increased HB values (corresponding with impaired blood rheology) might be unfavourable for survival.</td>
<td>50-52 & Presumption, Intuition</td>
</tr>
<tr>
<td>HTC</td>
<td>Hematocrit values depend on the number and size of red blood cells. Lower HTC may be due to anemia, or WBC hematoproliferative disorders, while increased HTC may due to increased erythrocytes number, or enlarged RBC MCV (macrocytic anemia). Extremes from both sides may be unfavourable for survival.</td>
<td>53-56 & Presumption, Intuition</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>MCV</td>
<td>The incidence of vitamin B12 and folate deficiency increases with age and may lead to macrocytosis (indicated by increased MCV). Macrocytosis may also develop as a result of age-related shortened RBCs life-span, independently of vitamin B12 and folate deficiency. These large RBCs are known to have difficulties in passing through capilary vessel network, leading to insufficient tissue supply with oxygen and nutrients. Older people with these disturbances are more likely to have poorer cognitive functioning and increased mortality. Some subpopulations of older people are especially prone to macrocytosis, including those with chronic gastritis, chronic kidney and heart disease, as well as those with multi-morbidity.</td>
<td>57-60 & Presumption</td>
</tr>
<tr>
<td>FE</td>
<td>Testing serum iron is a part of complete blood count test. As according to the evidence, both, lower and upper extremes of the interval values, recorded in the sample, might be unbeneficial for survival.</td>
<td>61-62 & Presumption, Intuition</td>
</tr>
<tr>
<td>ALB</td>
<td>Lower serum albumin, in older people, although still within the reference range, may be a marker of low grade chronic inflammation, or more specifically, of the frailty syndrome, characterized also with lower total cholesterol, muscle wasting (energy-protein malnutrition) and anemia.</td>
<td>36, 63 & Presumption</td>
</tr>
<tr>
<td>Clear</td>
<td>Decline in renal function, indicated by increased values of creatinine clearance, is associated with a variety of pathophysiologic changes, including hypertension, insulin resistance, other metabolic changes, increased inflammation, the immune system dysfunction, protein malnutrition (muscle wasting), endocrine disorders, anemia and blood rheology. Chronic renal impairment has been recognized as the main risk factor for CVD and dementia.</td>
<td>64-68 & Presumption</td>
</tr>
<tr>
<td>HOMCIS</td>
<td>Increased serum concentrations of the amino-acid homocystein has been found to have strong oxidative properties. Increased oxidative stress is a driving force for the development of the main age-related chronic diseases. In addition, hyperhomocysteinemia is an indicator of impaired DNA methylation process and cell-cycling, which may have the greatest impact on the functioning of cells with a high cell turn-over, such as immunocompetent cells. Serum concentrations of homocystein > 12.5 µmol/L has been confirmed as the risk factor for CVD and dementia. This disorder is closely related to vitamin B12 and folic acid deficiency and frequently found in subjects with chronic renal renal impairment, especially when it is associated with increased level of inflammation and protein malnutrition.</td>
<td>69-71 & Presumption</td>
</tr>
<tr>
<td>VITB12</td>
<td>Deficiency of B-vitamins, notably of vitamin B12 and folic acid, has been confirmed as the main cause of mild hyperhomocysteinemia. The mechanism which links these disorders into the same pathogenetic network is the metabolic cycle of the amino acid methionine, an essential biochemical reaction during DNA methylation reaction. This metabolic cycle is controlled by the common set of enzymes. The activity of one of these enzymes, the methylene tetrahydrofolate reductase, is also greatly influenced by the genetic variations. Disorders associated with the impaired methylation reactions include: DNA damage, genome instability, impaired cell proliferation and insufficient neurotransmitter synthesis. These are all mechanisms during the course of the development of the age-related diseases, including atherosclerotic CVD, neurodegenerative disease and cancer. The main causes of vitamin B12 and folic acid deficiency, in older population, include low dietary intake, impaired absorption due to chronic gastritis and oxidative depletion due to chronic renal impairment.</td>
<td>72-74 & Presumption</td>
</tr>
<tr>
<td>FOLNA</td>
<td>The same as above</td>
<td>72-74 & Presumption</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>INS</td>
<td>Increased serum insulin concentrations is a clinical marker of insulin resistance - an insufficient action of insulin on insulin-sensitive target tissues, notably muscles. Insulin resistance is a mechanism of impaired glucose metabolism associated with obesity, diabetes, frailty and chronic renal impairment. Increased serum insulin concentrations, (\geq 85.2) pmol/L, has been accepted as the part of the insulin resistance (Metabolic) syndrome - a cluster of clinical features including also abdominal obesity, hypertension, increased Triglycerides and/or decreased HDL-cholesterol serum concentrations. The prevalence of this syndrome increases in aging population. It is a well accepted risk factor for the development of diabetes and CVD. Recent studies also link folate deficiency, increased level of inflammation and impaired blood rheology, to the Metabolic syndrome. They also emphasize the possible gender differences in the Metabolic syndrome and its role in the development of CVD.</td>
<td>75-78 & Presumption</td>
</tr>
<tr>
<td>CORTIS</td>
<td>Serum cortisol secretion is a part of the stress-adaptive response of the hypothalamo-pituitary-adrenal (HPA) axis. This is a dynamic feedback network with circadian rhythmicity and pulsatile neurohormone secretion. The HPA axis is the main neuroendocrine pathway which regulates the immune system. Reversely, one of the most powerful stimuli of this axis is IL-6 - the main cytokine of the inflammatory response. The complex pathogenetic network, including obesity, dysregulation of the neuroendocrine stress axis, increased inflammation and insulin resistance, has been found to be a risk factor for CVD. It is not completely understood of how aging causes changes in the HPA axis. It appears that there is no deficiency of adrenal production of cortisol, but in its pulsatile and 24h rhythmic release. In older subjects, serum cortisol secretion may vary more within a 24h period, as compared to younger subjects. So, both lower and higher serum concentrations of cortisol in the morning, might be detrimental for survival. In older population, there is a close association between the HPA axis activation, depression / mood disorders and neurodegenerative disorders (corresponding with cognitive impairment and dementia). According to the recent meta-analysis, greater diurnal decline of the HPA axis (drop between the morning and evening cortisol), is associated with better physical performance in later life. Epidemiologic studies have not confirmed the role of chronic activation of the stress axis with increased mortality in later life.</td>
<td>79-83 & Presumption, Intuition</td>
</tr>
<tr>
<td>PRL</td>
<td>The role of variations in serum prolactin concentrations, in aging diseases, has not been clarified. Evidence indicate the association of increased serum prolactin concentrations with the insulin resistance syndrome, chronic inflammation, the immune system dysregulation, depression/neurodegenerative diseases and chronic renal impairment.</td>
<td>84-86 & Presumption</td>
</tr>
<tr>
<td>TSH</td>
<td>Isolated finding of mildly increased serum concentrations of the hormone TSH is a marker of subclinical form of the primary hypothyreoidism - a frequent disorder in older population. Evidence suggest the association of this disorder with decreased bone mineral density in postmenopausal women, increased cholesterol and increased risk for atrial fibrillation, while evidence are controversial on the associations with CVD, cognitive impairment and all-cause mortality. Evidence are in favour of no harmful effect of subclinical hypothyreoidism on the overall mortality in elderly. According to the evidence, hypothyreoidism and moderate subclinical hypothyreoidism (TSH (> 6) IU/ml) are associated with increased CV and all-cause mortality in patients with multiple CV risk factors and clinically manifest vascular disease.</td>
<td>87-90 & Presumption</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>FT3</td>
<td>The thyroid gland hormones are rarely changed in the elderly. The most frequent patterns of changes include decreased fT3 and normal or increased fT4 - a sign of nonthyroidal illness (a peripheral tissue resistance on the action of the thyroid gland hormones due to the existence of overt chronic diseases). This pattern of the thyroid gland hormones changes is often associated with chronic renal impairment and is unbeneficial for survival.</td>
<td>87-90 & Presumption</td>
</tr>
<tr>
<td>FT4</td>
<td>The same as noted above</td>
<td>87-90 & Presumption</td>
</tr>
<tr>
<td>RF</td>
<td>Rheumatoid factor positivity can be find for years before the onset of rheumatoid arthritis and may be considered as the marker of increased CV risk.</td>
<td>91</td>
</tr>
<tr>
<td>ANA</td>
<td>Increased serum concentrations of the auto-antibody ANA can be found in healthy elderly people, but especially in association with different chronic diseases. It may be a marker of the bias of the immune reaction towards the prevalence of the antibody-mediated (humoral) immunity.</td>
<td>92 & Presumption</td>
</tr>
<tr>
<td>IGE</td>
<td>The same as noted under the allergic diseases</td>
<td>1,29-32 & Presumption, Intuition</td>
</tr>
</tbody>
</table>
3 Terms extracted and the associated risk of mortality

<table>
<thead>
<tr>
<th>Risk</th>
<th>English description</th>
</tr>
</thead>
</table>
| **no risk** | . might be beneficial for survival
| | . protective against premature death
| | . may be protective |
| **low risk** | . increasing the risk for unfavorable outcomes
| | . may be non beneficial for survival
| | . may also have unfavorable effect
| | . well established measures of insulin resistance and CV risk factor
| | The strength of associations with the risk of mortality is not well known
| | . may be unfavorable for survival
| | . might be detrimental for survival
| | . unfavorable pathogenetic background
| | . may affect survival
| | . might be unbeneficial for survival
| | . may be detrimental for healthy aging and longevity
| | . might be in an unfavorable position in respect to survival
| | . can be expected in conditions associated with insulin resistance, diabetes, hypertension, etc.
| **medium low risk** | . may contribute to CV and overall mortality
| | . unfavorable for survival
| | . predictive power in CV and all-risk mortality
| | . unbeneficial for survival
| | . marker of increased CV risk
| | . strong impact on the development of many aging diseases
| | . may affect survival - severe cognitive impairment
| | . can be a marker of higher CV risk and death unfavorable survival pattern
| **medium risk** | . has been confirmed as the risk factor for cvd and dementia
| | . strong mortality risk factor
| | . risk factor for frailty and premature death
| | . increased risk of CV and all-cause mortality
| | . increased cv and all cause mortality
| | . increased mortality risk
| **medium high risk** | . it is a well accepted risk factor for the development of diabetes and CVD
| | . main risk factor for cardiovascular disease - the main mortality cause
| | . the higher grade ... the stronger association with death
| | . the highest mortality risk
| | . prognostic factor of all-cause and cardiovascular mortality
| | . main risk factor for cvd and dementia
| | . main cause of mild hyperhomocysteinemia
| **high risk** | . major cause of mortality
| | . major cause of mortality and also a CV risk factor
| | . strongest risk factor
| **extremely high risk** | . major cause of mortality and also a CV risk factor
| | . strongest risk factor

11
4 Laboratory normal values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose ((\text{fglu}))</td>
<td>4.4 - 6.4 mmol/L</td>
</tr>
<tr>
<td>(\text{HBA}_{1c})</td>
<td>2.8 – 3.8 %</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>3.5 - 5.2 mmol/L</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.5 - 1.8 mmol/L</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>0.9 - 1.4 mmol/L</td>
</tr>
<tr>
<td>IgG Antibodies on cytomegalovirus</td>
<td>until 0.4 IU/ml</td>
</tr>
<tr>
<td>IgG antibodies Helicobacter pylori</td>
<td>> 11 IU/ml</td>
</tr>
<tr>
<td>IgA antibodies Helicobacter pylori</td>
<td>> 11 IU/ml</td>
</tr>
<tr>
<td>Total Leukocytes</td>
<td>3.4 - 10.0 (\times) 10⁹/L</td>
</tr>
<tr>
<td>(%) neutrophiles</td>
<td>44.0 - 72.0 %</td>
</tr>
<tr>
<td>(%) Monocytes</td>
<td>2 - 12 %</td>
</tr>
<tr>
<td>(%) Lymphocytes</td>
<td>20 - 46 %</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>do 5.0 mg/L</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>4.34 - 5.72 (\times) 10¹²/L</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>138 - 175 g/L</td>
</tr>
<tr>
<td>MCV</td>
<td>83.0 - 97.2 fL</td>
</tr>
<tr>
<td>Serum ferrum</td>
<td>11.0 - 32.0 µmol/L</td>
</tr>
<tr>
<td>Serum albumine</td>
<td>35 - 52 g/L</td>
</tr>
<tr>
<td>Clearance</td>
<td>1.6 - 2.94 ml/s/1.73m²</td>
</tr>
<tr>
<td>Homocisteïne</td>
<td>5.0 – 15.0 µmol/L</td>
</tr>
<tr>
<td>(\gamma)-globuline (GAMA)</td>
<td>7.6- 1 6.5 g/L</td>
</tr>
<tr>
<td>Vitamine B12</td>
<td>128 – 648 pmol/L</td>
</tr>
<tr>
<td>Folna (folic acid)</td>
<td>6 - 39 mM/L</td>
</tr>
<tr>
<td>Serum Cortisol (in the morning)</td>
<td>154 -638 nmol/L</td>
</tr>
<tr>
<td>Prolactin</td>
<td>M 65.7 - 439.8, F 76.3 - 400.7 mIU/L</td>
</tr>
<tr>
<td>TSH</td>
<td>0.46 – 4.68 U/I/ml</td>
</tr>
<tr>
<td>fT3</td>
<td>4.26 - 8.10 pmol/L</td>
</tr>
<tr>
<td>fT4</td>
<td>10 - 28.2 pmol/L</td>
</tr>
<tr>
<td>Anti- nuclear Antibodies (ANA)</td>
<td>until 23 µIU/ml</td>
</tr>
<tr>
<td>IgE antibodies</td>
<td><114 kIU/L</td>
</tr>
</tbody>
</table>
5 Forecast arguments

This section provides an associated risk by attributes in isolation. It is important to give an importance value to each of these rules so we know how important these are in comparison with the loops.

R1. Age
 - < 60 → low risk
 - [60, 65] → medium low risk
 - [66, 70] → medium risk
 - [71, 75] → high risk
 - [76, 80] → extremely high risk
 - > 80 → medium risk

R2. Hyper
 - no → low risk
 - yes → high risk

R3. DM
 - yes → high risk
 - IGT → medium risk

R4. HbA1c
 - < 2.8 OR > 3.8 → medium low risk

R5. Chol
 - > 5.18 AND < 6.19 → medium risk
 - >= 6.19 → high risk

Source: https://medlineplus.gov/magazine/issues/summer12/articles/summer12pg6-7.html

R6. HDL
 - > 1.0 → no risk
 - < 1.0 → medium-low risk

R7. Statins
 - yes AND chol > 5.18 → low risk

R8. Anticoag
 - yes → medium risk

R9. CVD
 - yes → extremely high risk

R10. BMI
 - < 20 OR >= 30 OR [26, 29] → medium risk

R11. w/h
 - > 1 AND male → medium low risk
 - > 0.8 AND female → medium low risk

R12. COPB
 - yes → extremely high risk

R13. Aller d
 - yes → no risk
 Importance [0, 100]:
 1. Dr allerg
 - yes → medium low risk

R14. Analg
 - yes → low risk

R15. Neo
 - yes → medium low risk

R16. Derm
 - yes → medium low risk

R17. OSP
 - yes → medium risk

R18. PSY
 - yes → medium risk

R19. MMS
 - < 10 → high risk
 - >= 10 AND < 25 → medium low risk

R20. CMV
 - > 8.1 → medium high risk

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877470/

R21. HPA
 - > 11.1 → medium low risk

R22. LE
 - men AND > 6.8 → medium risk
 - women AND > 6.5 → medium risk
R23. CRP
- > 3 → medium high risk

Source: https://www.hindawi.com/journals/jar/2014/475093/

R24. MO
- > 8.6 → medium risk

Source: Last quartile of the dataset and attribute description.

R25. Ly
- > 40 → medium risk
- < 20 → medium high risk

R26. E
- men AND < 4.52 → medium high risk
- woman AND < 4.10 → medium high risk
- men AND > 5.9 → medium low risk
- woman AND > 5.10 → medium low risk

R27. Hb
- men AND (< 140 OR > 175) → medium low risk
- women AND (< 123 OR > 153) → medium low risk

R28. HTC
- > 0.44 → medium low risk
- men AND < 0.42 → medium low risk
- women AND < 0.38 → medium low risk

Source: http://hyper.ahajournals.org/content/60/3/631.long

R29. MCV
- > 96 → medium risk

Source: https://emedicine.medscape.com/article/2085770-overview

R30. ALB
- < 35 → medium high risk

Source: Laboratory normal values

R31. Clear
- men AND < 2.08 → high risk
- women AND < 1.58 → high risk

R32. HOMCIS
- > 12.7 → medium high risk

R33. VITB12
- < 258 → medium low risk

Source: doi:10.1177/1741826711424568

R34. FOLNA
- < 11.4 → medium high risk

Source: doi:10.1177/1741826711424568

R35. INS
- > 12.26 → medium high risk

Source: https://doi.org/10.2337/dc11-1657

R36. CORTIS
- < 193.3 OR > 772.52 → medium low risk

R37. PRL
- men AND > 439.8 → medium risk
- women AND > 400.7 → medium risk

Source: https://doi.org/10.1093/eurheartj/ehs233

R38. TSH
- CVD yes and > 6 → medium high risk

Source: https://doi.org/10.1093/eurheartj/ehs233

R39. FT3
- < 4.26 → medium risk

Source: doi:10.1093/ndt/gfu024

R40. FT4
- < 14 AND FT3 < 4.26 → medium risk

Source: doi:10.1093/ndt/gfu024

R41. RF
- > 60 → medium risk

Source: doi:10.1136/ard.2009.110536

R42. ANA
- > 32 → medium low risk

Source: last quartile of dataset and attribute description.

R43. IGE
- > 114 → no risk

Source: doi:10.1007/s10552-014-0489-9

R44. FE
- < 10.9 OR > 18 → medium low risk

Source: first and last quartile of dataset and attribute description
6 Preferences

Preferences over pairs of attributes.

1. Age > important than sex
2. Hyper > sex
3. Hyper > age
4. DM > hyper
5. DM > age
6. Chol = HDL
7. FGlu = HbA1c
8. Anticoag > statins
9. CVD > BMI
10. CVD > hypert
11. CVD > age
12. CVD > Neo
13. w/h > BMI
14. skinf > BMI
15. COPB > aller d
16. Dr aller > aller d
17. Analg = CRP
18. Analg > Derm
19. Neo > Derm
20. OSP > Neo
21. OSP > aller d
22. OSP > BMI
23. Psy > Derm
24. MMSE > Psy
25. CMV = EBV
26. HPA > LE
27. HPA = MCV
28. CRP > LE
29. MO > LE
30. LY > LE
31. HTC > HB
32. E=HB
33. VITB12 = MCV
34. VITB12 = FOLNA
35. Skinf > ALB
36. MMSE = VITB12
37. w/h > INS
38. HOMCIS > Clear
39. Clear > Derm
40. Clear > Aller d
41. Clear > BMI
42. HOMCIS = PRL
43. Clear > age
44. PRL > CORTIS
45. PRL=TSH
46. TSH > Chol
47. TSH = FT3
48. RF < CVD
49. CRP > ANA
50. ANA = GAMA
51. IGE = Aller d

6.1 Attacks based on preferences

1. R2 ⇒ R1
2. R3 ⇒ R2
3. R3 ⇒ R1
4. R8 ⇒ R7
5. R9 ⇒ R7
6. R9 ⇒ R2
7. R9 ⇒ R1
8. R9 ⇒ R16
9. R11 ⇒ R10
10. R12 ⇒ R13
11. R14 ⇒ R13
12. R15 ⇒ R17
13. R16 ⇒ R17
14. R18 ⇒ R16
15. R18 ⇒ R13
16. R18 ⇒ R10
17. R19 ⇒ R17
18. R20 ⇒ R19
19. R22 ⇒ R23
20. R24 ⇒ R23
21. R25 ⇒ R23
22. R26 ⇒ R23
23. R29 ⇒ R28
24. R11 ⇒ R36
25. R33 ⇒ R32
26. R32 ⇒ R17
27. R32 ⇒ R13
28. R32 ⇒ R10
29. R32 ⇒ R1
30. R38 ⇒ R37
31. R39 ⇒ R5
32. R9 ⇒ R42
33. R24 ⇒ R43
34. VITB12 = FOLNA
35. Skinf > ALB
36. MMSE = VITB12
37. w/h > INS
38. HOMCIS > Clear
39. Clear > Derm
40. Clear > Aller d
41. Clear > BMI
42. HOMCIS = PRL
43. Clear > age
44. PRL > CORTIS
45. PRL=TSH
46. TSH > Chol
47. TSH = FT3
48. RF < CVD
49. CRP > ANA
50. ANA = GAMA
51. IGE = Aller d
7 Contradictions

These are contradictions between attributes that might invalidate the use of one attribute.

1. If Age > 60 then Aller d can not exist

2. If (Age < 60 and not DM and not Hyper) or (Age between 61 and 65) then Clear is not low

3. If Clear is low then HOMCIS is not low

4. If Clear is low then PRL is not low

5. If Clear is low then TSH is not low

6. If VITB12 is not low then MCV can not be increased

7. If COPB then Aller d can not exist

8. If INS is low then w/h can not be high

9. If no CVD then no Anticoag

10. If low Chol then no Statins

11. If OSP then CRP can not be low

12. If CVD then increased Skinf

13. If BMI is high then Skinf can not be increased

14. If CVD than Skinf can not be low

15. If MMSE >= 25 then TSH can not be increased

16. If HOMCIS is low than Clear can not be low

17. If Chol is high than HTC can not be low

18. If IGE low than HPA is not high

19. If Clear is low AND high CRP then low ALB.
20. If VITB12 is high then MCV can not be increased.

21. If high HPA then low VITB12.

22. If INS is low then HDL is not low.

23. If DM than BMI can not be high.

24. If DM then BMI can be high.
 Impact loops: Not implemented. 23 and 24 contradict each other.

25. If DM then w/h can not be low.

26. If COPB than Skinf can not be low.
8 References

