CFX Analysis of the Heat and Mass Transfer During the Chilling of a Lamb Carcass using a 3D Model

Joseph Hannon
UCD, joseph.hannon@ucd.ie

Garrett Keane
Dublin Institute of Technology, garrett.keane@dit.ie

Micheal O'Flaherty
Dublin Institute of Technology, micheal.oflaherty@dit.ie

Follow this and additional works at: https://arrow.dit.ie/engineducpres
Part of the Bioresource and Agricultural Engineering Commons

Recommended Citation
Introduction

- Lamb meat is a popular meat product which must undergo a complex refrigeration process before being served at the dinner table to ensure sustained quality, food safety and to prolong its shelf life.
- A major disadvantage of meat chilling is the associated drip losses which contribute to a carcass weight loss of between 2 and 3%.
- Drip losses occur when water diffuses from within the carcass and evaporates away from the surface due to a difference in pressure between the surface layers of the carcass and the surrounding chiller.
- The analysis of chilling processes involving complex shapes such as beef and lamb carcasses is difficult using empirical formulae.
- Therefore, the use of numerical models is vital to simulate complex geometries.

Aims

- To determine the temperature history of a lamb carcass in a +4°C chilling scheme using a 3D Solidworks model in ANSYS CFX

Materials & Methods

- A representative 3D model of a lamb carcass was created in the Solidworks program using photographs [1], X-rays and CT-scans sections [2].
- CT-Slices
- Photograph
- X-Ray
- Figure 1. One of the 15 CT-scans used
- Figure 2. Photograph of a lamb carcass
- Figure 3. X-ray of the lamb carcass showing the 15 CT-scan sections (coloured lines)
- The lamb chilling simulations were carried out in two stages:
 1. Determination of the flow field and heat transfer coefficient using a 3D model (Chiller included)
 2. Determination of the temperature history of the carcass applying the heat transfer coefficient from the previous simulation to the outside of the carcass (Chiller excluded)
- A cylinder of similar dimensions to the carcass was used to establish the modelling methods.

Results

- Temperature histories for the deep round of the lamb carcass were plotted over 24 hours as seen in Figure 8 and 9.

Discussion & Conclusions

- This study has led to the development of a 3D CFX model of a lamb carcass chilling process.
- Using a cylindrical model to establish the mesh and modelling methods in ANSYS saved time and computational power.
- Including a two step (transient and steady state) process to simulate the lamb chilling process contributed to a reduction in time and computational power required for the simulations.
- The position of the temperature probes within the lamb carcass and chiller air velocity were found to have the greatest effect on the temperature history of the lamb carcass.
- The inclusion of an inflated mesh was vital to the success of the simulations.
- Convection and evaporation had a significant effect on the heat transfer in the system.

References

Acknowledgements

Acknowledgements to Prof. Francis Butler of UCD for his advice on the experimental data and to Micheal O’Flaherty of DIT for his help with the ANSYS CFX program.