Document Type

Article

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Medical engineering

Publication Details

Medical Engineering & Physics (2014), http://dx.doi.org/10.1016/j.medengphy.2014.05.011

Abstract

In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics.

DOI

10.1016/j.medengphy.2014.05.011

Share

COinS