Document Type

Theses, Ph.D

Rights

This item is available under a Creative Commons License for non-commercial use only

Abstract

This thesis presents an analysis of multiple-input/multiple-output (MIMO) communications systems where the objective is to provide a unified solution to the problems of (i) crosstalk coupling in transmission line channels (ii) multi-path fading in the time variant high frequency wireless channel. In the case of transmission line channels, a comparative analysis is presented of the performance of MIMO communications systems based on balanced CAT 5 twisted-pair transmission lines, balanced twisted-pair telephone transmission lines scheme as well as unbalanced flat-pair transmission lines. The unbalanced flat-pair transmission lines are viewed as a model for digital subscriber lines (DSLs) which may be deemed out-of-range for high speed internet connections because of the circumstances of poor balance, high insertion losses and high degrees of crosstalk. This comparative analysis is then extended to examine effect of imperfect knowledge of the transmission line channels on MIMO communications system performance. In the case of wireless channels, an analysis is presented which investigates the effect of both the Rayleigh and Ricean channels on MIMO communications system performance. Again the analysis of the wireless channels is extended to examine the effect of imperfect knowledge of the channel on MIMO communications systems performance. All of the analyses in this work are based on experimentally observed channels. In the case of the transmission line channels, it is concluded that MIMO communications systems do offer the possibility of high speed internet connectivity on transmission lines that, hereto, would have been considered out-of-range for such services. Considering the CAT 5 transmission line channels, it is concluded that the MIMO communications system provide enhancement at frequencies above 50 MHz and therefore the possibly of extending length and coverage above the standard 100 metres is proposed. On the other hand, the improved performance of the twisted-pair telephone transmission lines is consistent over the range from 300 kHz to 100 MHz when the MIMO system is applied. For all the transmission line channels that are examined, the extent of imperfect knowledge of the channel that can be allowed while maintaining a reasonable MIMO communications system performance is indicated. In the case of the wireless channels, it is concluded that MIMO communications system performance is better in the case of Rayleigh channel than in the case of Ricean channel provided that the degree of correlation of the multi-path channel impulse response components is equivalent. Also, as the number of transmitters and receivers, N T, increases the effect of a given degree of imperfect knowledge of the wireless channel becomes more detrimental on MIMO communication system performance. This work thus indicates the extent of imperfect knowledge of the wireless channel that can be allowed while maintaining a reasonable MIMO communications system performance. The trade-off between increased capacity gain and decreased accuracy of knowledge of the channel as the dimension, N T, was increased is highlighted.