Document Type

Theses, Ph.D

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

2. ENGINEERING AND TECHNOLOGY

Publication Details

Thesis submitted for Doctor of Philosophy [PhD] to Dublin Institute of Technology 2011.

Abstract

Chronic Total Occlusions (CTOs) are fibrous and calcified atherosclerotic lesions which completely occlude the artery. They are difficult to treat with standard dilation procedures as they cannot be traversed easily. Their treatment is also associated with a high risk of arterial perforation. Low frequency ultrasonic vibrations delivered via wire waveguides represent a minimally invasive treatment for CTOs and other tissue ablation applications. These devices typically operate at 20–50 kHz delivering wire waveguide distal tip amplitudes of vibration of 0-60 μm. The diseased tissue is ablated or disrupted by repetitive direct mechanical contact and cavitation. This research assesses the susceptibility of arterial tissue to perforation and residual damage under the action of ultrasonically energised wire waveguides. Using Finite Element Analysis (FEA), a linear acoustic model of the wire waveguide distal tips can predict the pressures for a range of operating parameters typically used for these devices. High mesh densities (140 EPW) were required to solve the entire acoustic field, including complex wave interactions. The FEA model was used to aid in the further design and modification of an ultrasonic apparatus and wire waveguide (0–34.3 μm at 22.5 kHz). Using a test rig, the effects of distal tip amplitudes of vibration, feedrate and angled entry on the perforation forces, energy and temperature were measured. The perforation forces reduced (≈ 60%, 6.13 N - 2.46 N mean) when the wire waveguide was energised at low amplitudes of vibrations (< 27.8 μm). There were no significant change in tissue perforation forces above this or when the waveguide was operating above the cavitation threshold. Histological analysis also showed tissue removal. While this knowledge is useful in the prediction and avoidance of perforations during CTO operations; it is also envisaged that this information can aid in the design and development of generic ultrasonic wire waveguide tissue cutting tools.

DOI

10.21427/D7WP52

Share

COinS