Document Type

Theses, Ph.D

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Communication engineering and systems

Publication Details

Successfully submitted for the award of Doctor of Philosophy (Ph.D) to the Dublin Institute of Technology, September, 2010.

Abstract

A cross-layer modification to the DSR routing protocol that finds high throughput paths in WMNs has been introduced in this work. The Access Efficiency Factor (AEF) has been introduced in this modification as a local congestion avoidance metric for the DSR routing mechanism as an alternative to the hop count (Hc) metric. In this modification, the selected path is identified by finding a path with the highest minimum AEF (max_min_AEF) value. The basis of this study is to compare the performance of the Hc and max_min_AEF as routing metrics for the DSR protocol in WMNs using the OPNET modeler. Performance comparisons between max_min_AEF, Metric Path (MP), and the well known ETT metrics are also carried out in this work. The results of this modification suggest that employing the max_min_AEF as a routing metric outperforms the Hc, ETT, and MP within the DSR protocol in WMNs in terms of throughput. This is because the max_min_AEF is based upon avoiding directing traffic through congested nodes where significant packet loss is likely to occur. This throughput improvement is associated with an increment in the delay time due to the long paths taken to avoid congested regions. To overcome this drawback, a further modification to the routing discovery mechanism has been made by imposing a hop count limit (HCL) on the discovered paths. Tuning the HCL allows the network manager to tradeoff throughput against delay. The choice of congestion avoidance metric exhibits another shortcoming owing to its dependency on the packet size. It penalises the smaller packets over large ones in terms of path lengths. This has been corrected for by introducing a ModAEF metric that explicitly considers the size of the packet. The ModAEF metric includes a tuning factor that allows the operator determine the level of the weighting that should be applied to the packet size to correct for this dependence.

DOI

10.21427/D7M60V

Share

COinS