2015

On the Dynamics of Internal Waves Interacting with the Equatorial Undercurrent

Alan Compelli
Dublin Institute of Technology

Rossen Ivanov
Dublin Institute of Technology, rivanov@dit.ie

Follow this and additional works at: http://arrow.dit.ie/scschmatart

Part of the Mathematics Commons, Non-linear Dynamics Commons, Ordinary Differential Equations and Applied Dynamics Commons, and the Partial Differential Equations Commons

Recommended Citation

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
On the dynamics of internal waves interacting with the equatorial undercurrent

Alan Compelli a and Rossen Ivanov $^b,^*$

a School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
Email: alan.compelli@mydit.ie

b Faculty of Mathematics, Oskar-Morgenstern-Platz 1, University of Vienna, 1090 Vienna, Austria
Email: rossen.ivanov@univie.ac.at

November 18, 2015

Abstract

The interaction of the nonlinear internal waves with a nonuniform current with a specific form, characteristic for the equatorial undercurrent, is studied. The current has no vorticity in the layer, where the internal wave motion takes place. We show that the nonzero vorticity that might be occurring in other layers of the current does not affect the wave motion. The equations of motion are formulated as a Hamiltonian system.

Keywords: Internal waves, Equatorial undercurrent, shear flow, Hamiltonian system.

2000 Mathematics Subject Classification: 35Q35, 37K05, 74J30

1 Introduction

The dynamics of the Pacific Ocean, within a band of about 2° latitude from the Equator, is characterised by a pronounced stratification, greater than anywhere else in the ocean; see [11]. A very sharp layer separates a shallow layer of relatively warm water (and so less dense) near the surface, from a deeper layer of denser, colder water. Since these distinct top and bottom layers differ by density and temperature,
the sharp layer between them is termed *pycnocline* and sometimes *thermocline*. The
difference in density across the thermocline is about 1%. In addition, underlying non-
uniform currents occur, see e.g. [13]. In a band approximately 300 km wide about
the Equator, the underlying currents are highly depth-dependent: in a sub-surface
layer, typically extending no more than about 100 m down, there is a westward drift
that is driven by the prevailing trade winds; just below this there lies the Equatorial
Undercurrent (EUC), an eastward jet whose core resides on the thermocline. Below
the EUC, the motion dies out rapidly so that, at depths in excess of about 240 m,
there is an abyssal layer of essentially still water. Variety of waves in this region is
observed, including long waves with wavelengths exceeding 100 km [11]. There is
ample evidence of large-amplitude internal waves, with relatively short wavelengths
(typically a few hundreds of metres) and periods about 5-10 min; see [14].
We examine a simplified model of two-dimensional internal geophysical waves propa-
gating along the Equator. Although the Coriolis force plays the role of a waveguide
keeping the EUC and the occurring waves to propagate along the equator (and to re-
main essentially two dimensional) its impact on the dynamics of this two dimensional
motion is rather small. Thus, for simplicity we neglect Coriolis forces.
The gravitationally induced internal waves propagate on the common interface (ther-
moquine/pycnocline) between the upper and lower media of different densities. (We
assume for simplicity that both media have constant densities.) In physical reality
the ocean surface will have surface waves. We neglect the surface waves and hence
consider the top surface to be a flat boundary like a rigid lid. For long and interme-
diate surface waves coupled with internal waves such an approximation is justified, cf.
[11, 8]. The boundary underneath is by an impermeable flat bed, which is a relevant
approximation for the ocean bed, in the equatorial Pacific.
Recently, explicit nonlinear solutions for equatorially trapped waves were obtained
in the Lagrangian framework, see [4, 12]. Correspondingly, solutions for the internal
waves have been described in [5]. However, both these types of solution are restricted
to relatively short wavelengths, and they are realistic representations of the flow
only for the region near the surface and in the neighbourhood of the thermocline,
respectively.
By examining the governing equations of the system we provide a Hamiltonian for-
mulation of the equations and with a variable transformation we show that it has a
canonical Hamiltonian structure. The Hamiltonian formulation of surface waves over
deep water has been noticed by Zakharov [15] and since then the Hamiltonian mod-
els have been used extensively for various approximations with linear and nonlinear
PDEs, e.g. [9, 10, 7, 6].

As per Figure 1 we define the lower medium \(\Omega_1 \) as the domain \(\{ (x, y) \in \mathbb{R}^2 : -h_1 < y < \eta(x, t) \} \), the upper medium \(\Omega_2 \) as the domain \(\{ (x, y) \in \mathbb{R}^2 : \eta(x, t) < y < h_2 \} \)
and the entire system \(\Omega_{1,2} \) as the domain \(\{ (x, y) \in \mathbb{R}^2 : -h_1 < y < h_2 \} \) where
\(\{ y = \eta(x, t) \} \) describes the elevation of the common interface. The subscript \(c \) will be
used to denote evaluation at the common interface. The shear flow in a general form
is

\[
U(y) = \begin{cases}
-\sigma, & y = h_2 \\
\kappa, & l_2 \geq y \geq -l_1 \\
0, & y = -h_1
\end{cases}
\] \hspace{1cm} (1)

and moreover \(U(y) \) is a continuous function for \(h_2 \geq y \geq l_2 \) and \(-l_1 \geq y \geq -h_1\). It is apparent that \(h_2 > l_2 > 0 > -l_1 > -h_1 \).

The constants \(\sigma, \kappa, l_{1,2}, h_{1,2} \) are positive (see Fig. 1). We use the subscript notation \(i = \{1, 2\} \) to represent the lower and upper media respectively. The next assumption is that the pycnocline is always in the strip \(l_2 \geq y \geq -l_1 \), i.e.

\[
l_2 \geq \eta(x,t) \geq -l_1
\]

for all \(x,t \) so that all internal waves take place in this strip.

The velocities in the two media are decomposed into 'wave' and 'current' parts:

\[
\begin{align*}
\{ u_i \} &= \varphi_{i,x} + U_i(y) = \psi_{i,y} \\
v_i &= \varphi_{i,y} = -\psi_{i,x}
\end{align*}
\] \hspace{1cm} (2)

where without any ambiguity

\[
\begin{align*}
U_1(y) &= U(y), \quad h_2 \geq y \geq \eta(x,t) \\
U_2(y) &= U(y), \quad \eta(x,t) \geq y \geq -h_1.
\end{align*}
\] \hspace{1cm} (3)

The non-lateral velocity flow, with propagation in the positive \(x \)-direction, is given by \(V_i(x, y, z) = (u_i, v_i, 0) \) \(\rho_1 \) and \(\rho_2 \) are the respective constant densities of the lower and upper media and stability is given by the condition that

\[
\rho_1 > \rho_2.
\] \hspace{1cm} (4)

We assume that for large \(|x| \) the amplitude of \(\eta \) attenuates and hence make the following assumptions

\[
\lim_{|x| \to \infty} \eta(x,t) = 0, \quad \lim_{|x| \to \infty} \varphi_i(x, y, t) = 0.
\] \hspace{1cm} (5)

\section{2 Governing Equations}

We write Euler’s equation as:

\[
V_{i,t} + (V_i \cdot \nabla)V_i = -\frac{1}{\rho_i} \nabla P_i + g + F_c
\] \hspace{1cm} (6)

where \(P_i = \rho_i g y + p_{\text{atm}} + p_i \) is the pressure at a depth \(y \), \(p_{\text{atm}} \) is (constant) atmospheric pressure, \(p_i \) is the dynamic pressure due to the wave motion, \(g \) is the acceleration due to gravity (where \(y \) points in the opposite direction to the center of gravity), \(g \) is the force due to gravity per unit mass, and the Coriolis force is neglected for simplicity. Its effect is not significant and also it is important to keep the waves one-dimensional.
Figure 1: Setup: two domains Ω_1 and Ω_2 with densities ρ_1 and ρ_2. The shear profile $U(y)$ is provided qualitatively. The five layers I – V correspond to the description in [8]. The important feature is that the wave motion takes place in layers II and III where the vorticity is zero and $U(y)$ is constant. In the other layers $U(y)$ is continuous.

Applying Equations (2) and noticing that in the strip $l_2 \geq \eta(x,t) \geq -l_1$ we have $U(y) = \kappa = \text{const.}$ and velocities

$$
\begin{align*}
\begin{cases}
u_i = \varphi_{i,x} + \kappa = \psi_{i,y} \\
v_i = \varphi_{i,y} = -\psi_{i,x}
\end{cases}
\end{align*}
$$

and thus there is no vorticity in the strip, i.e. $\Delta \psi(x,y) = 0$. The equations can be written as

$$
\nabla \left(\varphi_{i,t} + \frac{1}{2}(\nabla \psi_i)^2 \right) = \nabla \left(-gy - \frac{p_i}{\rho_i} \right)
$$

where $\nabla = (\partial_x, \partial_y)$. At the interface $p_1 = p_2 = p_c$ therefore we have the conservation law (Bernoulli condition) at the interface

$$
\rho_1 \left((\varphi_{1,t})_c + \frac{1}{2}(\nabla \psi_1)^2_c + g\eta \right) = \rho_2 \left((\varphi_{2,t})_c + \frac{1}{2}(\nabla \psi_2)^2_c + g\eta \right).
$$

Writing the Bernoulli condition in terms of 'wave' potentials φ_i only

$$
(\rho_1 \varphi_1 - \rho_2 \varphi_2)_{t} + \kappa (\rho_1 \varphi_1 - \rho_2 \varphi_2)_x + \rho_1 \frac{1}{2}(\nabla \varphi_1)^2_c - \rho_2 \frac{1}{2}(\nabla \varphi_2)^2_c + g\eta (\rho_1 - \rho_2) = 0.
$$
The difference with the case without current is only the shift
\[\partial_t \rightarrow \partial_t + \kappa \partial_x. \]
This also suggests the definition of \(\xi_i := (\varphi_i)_c = \varphi_i(x, \eta(x, t), t) \) as the interface velocity potential and hence the definition of \(\xi := \rho_1 \xi_1 - \rho_2 \xi_2. \) (11)

We will also use the following kinematic boundary conditions:
\[\begin{cases}
 \eta_t = -\eta_x ((\varphi_{1, x})_c + \kappa) + (\varphi_{1, y})_c \\
 (\varphi_{1, y})_b = (\varphi_{2, y})_t = 0
\end{cases} \] (12)
noting that \(\mathbf{V}_1(x, -h_1, 0) = (u_1, 0, 0) \) and \(\mathbf{V}_2(x, h_2, 0) = (u_2, 0, 0) \), where the subscripts \(b \) and \(t \) denote evaluation at the bottom (lower boundary) and lid (upper boundary) respectively. Again we observe only a shift \(\partial_t \rightarrow \partial_t + \kappa \partial_x \) in comparison with the case \(U(y) \equiv 0 \):
\[\eta_t + \kappa \eta_x = -(\varphi_{1, x})_c \eta_x + (\varphi_{1, y})_c. \]

Therefore the time evolution of the variables, describing the dynamics of the internal waves \(\xi, \eta \) does not depend on the shear outside the 'strip'; the constant flow in the strip leads only to a velocity shift with the velocity of the current \(\kappa \) (in comparison to the currents free case).

3 Hamiltonian Formulation

We will analyse the phenomenon from the Hamiltonian point of view. If we consider the system under study as an irrotational system the Hamiltonian, \(H \), is given by the sum of the kinetic and potential energies as:
\[H = \frac{1}{2} \int_{\mathbb{R}} \int_{-h_1}^{\eta} \rho_1 (u_1^2 + v_1^2) \, dy \, dx + \frac{1}{2} \int_{\mathbb{R}} \int_{0}^{h_2} \rho_2 (u_2^2 + v_2^2) \, dy \, dx + \frac{1}{2} \int_{\mathbb{R}} (\rho_1 - \rho_2) g \eta^2 \, dx. \] (13)

We try to express the Hamiltonian in terms of \(\xi, \eta \). The kinetic energy of the lower layer is
\[K_1 = \frac{1}{2} \int_{\mathbb{R}} \int_{-h_1}^{\eta} \rho_1 \left[(\varphi_{1, x} + U_1(y))^2 + (\varphi_{1, y})^2 \right] \, dy \, dx \]
\[= \frac{\rho_1}{2} \int_{\mathbb{R}} \int_{-h_1}^{\eta} (\nabla \varphi_1)^2 \, dy \, dx + \rho_1 \int_{\mathbb{R}} (\varphi_{1, x}) U_1(y) \, dy \, dx + \frac{\rho_1}{2} \int_{\mathbb{R}} \int_{-h_1}^{\eta} U_1^2(y) \, dy \, dx. \]

\(^1\)One has to be very careful since \(\xi_t = ((\rho_1 \varphi_1 - \rho_2 \varphi_2)_c)_t \neq ((\rho_1 \varphi_1 - \rho_2 \varphi_2)_t)_c. \)
We evaluate
\[
\int_{-h_1}^{h_1} \rho_1 (\nabla \varphi_1)^2 \, dy \, dx = \frac{1}{2} \int_{-h_1}^{h_1} \rho_1 (\nabla \varphi_1)^2 \, dy \, dx + \frac{1}{2} \int_{h_1}^{h_2} \rho_2 (\nabla \varphi_2)^2 \, dy \, dx
\]
\[
+ \frac{1}{2} \int_{-h_1}^{h_1} \rho_1 \rho_2 g \eta^2 \, dy \, dx - \kappa \int_{-h_1}^{h_1} \xi \eta \, dx.
\]

This quantity itself is a conservation law, related to the energy of the overall translation of the system by a velocity \(\kappa\), see [10]. The Hamiltonian of the system is given by:
\[
H = \frac{1}{2} \int_{-h_1}^{h_1} \rho_1 (\nabla \varphi_1)^2 \, dy \, dx + \frac{1}{2} \int_{h_1}^{h_2} \rho_2 (\nabla \varphi_2)^2 \, dy \, dx
\]
\[
+ \frac{1}{2} \int_{-h_1}^{h_1} (\rho_1 - \rho_2) g \eta^2 \, dy \, dx - \kappa \int_{-h_1}^{h_1} \xi \eta \, dx.
\]
We notice that the Hamiltonian does not depend on the $U(y)$ outside the strip. In order to express it in terms of the desired variables we introduce the Dirichlet-Neumann operators $G_i(\eta)$ given by

$$G_i(\eta)\xi_i = (\varphi_{i,n_i})\sqrt{1+(\eta_x)^2}, \quad (17)$$

where φ_{i,n_i} is the normal derivative of the velocity potential φ_i, at the surface, for an outward normal n_i, see more details in [9, 10]. We define

$$B := \rho_1 G_2(\eta) + \rho_2 G_1(\eta). \quad (18)$$

We can express the Hamiltonian in terms of the conjugate variables (η, ξ) as

$$H(\eta, \xi) = \frac{1}{2} \int_{\mathbb{R}} \xi (G_1(\eta)B^{-1}G_2(\eta))\xi \, dx + \frac{1}{2} \int_{\mathbb{R}} (\rho_1 - \rho_2)\eta^2 \, dx - \kappa \int_{\mathbb{R}} \xi \eta_x \, dx = H_0(\eta, \xi) - \kappa \int_{\mathbb{R}} \xi \eta_x \, dx. \quad (19)$$

where $H_0(\eta, \xi)$ is the Hamiltonian in absence of shear, $U(y) \equiv 0$ everywhere.

From (12), $\eta_t = (\psi_i(x, \eta, t))_x$ and (10) can be written as a canonical Hamiltonian system

$$\begin{cases} \eta_t = \delta_{\xi} H, \\ \xi_t = -\delta_{\eta} H. \end{cases} \quad (20)$$

or

$$\begin{cases} \eta_t = \delta_{\xi} H_0 - \kappa \eta_x, \\ \xi_t = -\delta_{\eta} H_0 - \kappa \xi_x. \end{cases} \quad (21)$$

For the shifted variables $X = x - \kappa t$ and $T = t$, $\partial_T = \partial_t + \kappa \partial_x$

$$\begin{cases} \eta_T = \delta_{\xi} H_0, \\ \xi_T = -\delta_{\eta} H_0. \end{cases} \quad (22)$$

Therefore this system of equations has the usual canonical Hamiltonian form (same as the Hamiltonian form when there is no current) after the Galilean change of the coordinates, i.e. in a system travelling with velocity κ together with the flow in the strip $l_2 \geq y \geq -l_1$.

4 Linearization of the model equations

By Taylor expanding the Dirichlet-Neumann operator we can represent it in terms of orders of η as

$$G_i(\eta) = \sum_{j=0}^{\infty} G_{ij}(\eta) \quad (23)$$
with the constant, linear and quadratic terms given as

\begin{align*}
G_{i0} &= D \tanh(h_i D) \\
G_{11}(\eta) &= D \eta D - G_{i0} \eta G_{i0} \\
G_{21}(\eta) &= -D \eta D + G_{20} \eta G_{20} \\
G_{i2}(\eta) &= -\frac{1}{2} \left(D^2 \eta^2 G_{i0} - 2 G_{i0} \eta G_{i0} \eta G_{i0} + G_{i0} \eta^2 D^2 \right)
\end{align*}

where the operator D is a Fourier multiplier equivalent to both the operation $-i \partial_x$ and the wavenumber k, i.e.

\begin{equation}
D = -i \partial_x = k.
\end{equation}

The operator B can therefore be expressed as

\begin{equation}
B = \rho_1 \sum_{j=0}^{\infty} G_{2j}(\eta) + \rho_2 \sum_{j=0}^{\infty} G_{1j}(\eta),
\end{equation}

and, also, the Hamiltonian can be represented as

\begin{equation}
H(\eta, \xi) = \sum_{j=0}^{\infty} H^{(j)}(\eta, \xi).
\end{equation}

Using explicit expressions $H^{(2)}$ in terms of η and ξ is given by

\begin{equation}
H^{(2)}(\eta, \xi) = \frac{1}{2} \int_{\mathbb{R}} \frac{\xi D \tanh(h_1 D) \tanh(h_2 D)}{\rho_1 \tanh(h_2 D) + \rho_2 \tanh(h_1 D)} \xi \, dx \\
+ \frac{1}{2} \int_{\mathbb{R}} (\rho_1 - \rho_2) g \eta^2 \, dx - \kappa \int_{\mathbb{R}} \xi \eta_x \, dx.
\end{equation}

Recalling (22) we calculate the linearized equations of motion as

\begin{align*}
\eta_x + \kappa \eta_x &= \frac{D \tanh(h_1 D) \tanh(h_2 D)}{\rho_1 \tanh(h_2 D) + \rho_2 \tanh(h_1 D)} \xi \\
\xi_x + \kappa \xi_x &= -(\rho_1 - \rho_2) g \eta.
\end{align*}

Looking for solutions in the form

\begin{equation}
\begin{cases}
\eta(x, t) = \eta_0 e^{i(kx - \Omega(k)t)} \\
\xi(x, t) = \xi_0 e^{i(kx - \Omega(k)t)}
\end{cases}
\end{equation}

where, as usual k is the wave number, $\Omega(k)$ is the angular frequency and $c(k) = \Omega(k)/k$ is the wave speed, from the compatibility of the two equations we obtain the dispersion law
\[(c - \kappa)^2 = \frac{g(\rho_1 - \rho_2) \tanh(h_1 k) \tanh(h_2 k)}{k(\rho_1 \tanh(h_2 k) + \rho_2 \tanh(h_1 k))}\] (31)

In the case of infinite media as \(h_i \to \infty\) then \(\tanh(h_i) \to 1\) and (31) becomes

\[(c - \kappa)^2 = \frac{g (\rho_1 - \rho_2)}{k (\rho_1 + \rho_2)}.\] (32)

The long-wave approximation of (31) is the case \(k \to 0\) which gives

\[(c - \kappa)^2 = \frac{gh_1 h_2 (\rho_1 - \rho_2)}{\rho_1 h_2 + \rho_2 h_1}.\] (33)

Lastly, the consideration of the system as a single media system, i.e. \(\rho_2 \to 0\) in (31) gives

\[(c - \kappa)^2 = \frac{g}{k} \tanh(h_1 k),\] (34)

which is the well known dispersion relation for the linear approximation of gravity water waves in a single medium irrotational system [3].

5 Conclusions

The shear flow in the layers, away from the thermocline (the strip where the internal waves occur) does not affect the dynamics of the internal waves. The results are complementary to the case where the vorticity is constant but with a finite jump at \(y = \eta(x, t)\) considered in [1, 2]. In the latter case vorticity does affect the wavespeed of the internal waves, cf. with [6].

Acknowledgements

A.C. is funded by the Fiosraigh Scholarship Programme of Dublin Institute of Technology. The support of the FWF Project I544-N13 “Lagrangian kinematics of water waves” of the Austrian Science Fund is gratefully acknowledged by R.I. The authors are grateful to Prof. A. Constantin for many valuable discussions and to an anonymous referee for several very useful suggestions.

References

