




encrypted and then used efficiently. For data to be used it
has to be readable. The dilemma therefore is, how can data
be securely processed within the cloud. With server hosting,
the problem is dealt with by encrypting the communication
channel, installing anti-malware, providing physical security
and segregating a particular user’s servers. Thus, the key is to
physically and electronically protect the environment where
live processing of data takes place and provide data security
using encryption for all communication channels and when
data needs to be stored.

The greatest danger from using conventional encryption
within The Cloud is that the systemic risks inherent in such
encryption methods with only key management to separate
secret data contaminate The Cloud as a whole. In other
words, a fundamental breach of the encryption engine can
bring the whole edifice down. It is this issue that provides
the focus for this paper which introduces an approach to
encrypting data where all systemic risk can be minimised by
replacing the issue of key management with the management
of meta-encryption-engines using multiple encryption algo-
rithms based on chaos theory - multi-algorithmicity. This is
based on a Technology to License called Crypstic which is
available from Hothouse at Dublin Institute of Technology
http://www.dit.ie/hothouse/ and has been developed by the
Information and Communications Security Research at the
same Institute - http://eleceng.dit.ie/icsrg. The current ver-
sion is designed specifically for the meta-encryption-engines
to be mounted and executed on a USB memory ‘key’.
However, irrespective of where the engines are mounted,
to be credible, their control and processing environment
has to be undertaken within a cluster of physically and
electronically secure hosting locations.

In the context of using Crypstic to secure data on the
Cloud, each meta-engine is specific to an individual user and
each individual must be properly validated and authorized to
have a meta-engine which can be submitted to a user upon
request. Each meta-engine device provides a secure entry
point and The Cloud which act like a telephone exchange
so that secure communication to the exchange and from the
exchange can be achieved without the need for the parties to
share their meta-engines. As each meta-engine also is seeded
for each file or packet differently the overall system can act
like a ‘one-time pad’.

II. CLOUD COMPUTING AND ENCRYPTION USING
CHAOS

Cloud computing is set to become a dominating theme
in security. The Cloud Security Alliance document Security
Guidance for Critical Areas of Focus in Cloud Computing
V2.1 [2] provides an overview of the issues associated with
security on the cloud. The following issues are pertinent to
the possibility of using encryption by chaos to solve the
problem:

Cloud computing is inevitable. For example, it avoids
the need to acquire infrastructure, it decreases ‘time to
market’ and gives flexibility to update in real time. It is
instantly scaleable to meet unexpected increases or decreases
in traffic volumes and it saves money by transforming the
business model from capital expenditure and depreciation to
predictable operating cost. Examples of early adopters to the
Cloud include the New York Times who wanted to convert
70 years of articles into PDF format to store it electronically.
Using the Cloud it achieved this within 24 hours with no
residual unneeded IT infrastructure - a ‘one-off’ project
cost. Start-up companies can use the Cloud to give them
full IT capabilities with up-front costs and agility to change
requirements and scale up at short notice if successful. The
Cloud provides low revenue cost ‘Customer Relationship
Management’ facilities without the need to customize data
and process applications. However, there are a number of
issues with regard to Cloud Computing which include: trust,
loss of privacy, regulatory violation, data replication and
erosion of integrity and coherence, application sprawl and
dependencies. A general overview of the ‘Pros and Cons’
associated with Cloud Computing is given in Figure 1.

Figure 1. The Pros and Cons associated with Cloud Computing.

Of these ‘pros and cons’, security is a potential major
problem for the Cloud. In other words, it is imperative to
treat the Cloud as a hostile territory. Consequently user-
based security is a likely solution and it is in this context
that chaos based cipher generation may provide a solution
as discussed in the following section.

A. Chaos Based Cipher Generation

The application of chaos to generating ciphers can cre-
ate billions of different cryptographically secure encryption



engines for users. The commercial solution is to generate a
website where users can pay for a unique encryption engine
to be produced that, upon a remote payment, can be down-
loaded and used to encrypt their data before ‘storage’ on the
Cloud. This requires a large database of encryption engines
to be created. Once created, a randomly selected sequence
of these algorithms can be created on a user-by-user basis.
The operational conditions under which this approach can
be pursued on a commercial basis depends upon country in
which the company is registered. For example, in the UK,
commercial operations must conform to the Regulation of
Investigatory Powers Act 2000 [1] which inevitably requires
an infrastructure to be established involving the employment
of staff and is therefore capitalization and overheads inten-
sive.

Chaos can be considered to be a superset of other random
number generators used in standard encryption algorithms.
There are many disadvantages in using chaos for cryptog-
raphy but it is nevertheless an interesting application of
nonlinear dynamics. The principal value of chaos is the
ability to create many different algorithms. This is of course
possible with conventional random number generators such
as Knuth’s M-algorithm [3] but chaos provides greater
diversity in terms of the functions available (other than the
mod function, for example). However, there are still some
major theoretical/computational problems with this approach
which include the following:

1) Structurally stable pseudo-chaotic systems: We ideally
require a structurally stable cryptosystem, i.e. a system that
has (almost) the same cycle length and Lyaponov exponent
for all initial conditions. Most of the known pseudo-chaotic
systems do not possess this property and there is no rigorous
analytical method, as yet, for assessing this property. This
is an important problem because without solving it, it is
not possible to guarantee that a crypto system based on
a deterministic chaotic algorithm or set of algorithms will
always produce uncorrelated number streams for any and all
keys.

2) Conditions of unpredictability for chaotic systems:
What properties of a chaotic system guarantee its com-
putational unpredictability? There is still no theoretically
plausible method for evaluating a chaotic system in terms of
the necessary/sufficient conditions and properties that will
absolutely guarantee the unpredictability of the system to
acceptable cryptographic standards. The approach currently
being taken is based more on a trial and error approach
without the use of an algorithm proving facility. The use
of formal methods of software engineering may be of value
with regard to this issue.

3) Natively Binary Chaos: While there are, in principle,
an unlimited number of chaos based algorithms that can
be invented, they currently rely on the use of floating
point arithmetic and require high precision FP arithmetic
to generate reasonably large cycles (deterministic chaotic

algorithm have relatively low cycle lengths which is an-
other disadvantage). These floating point schemes are time
consuming given that the number streams they produce
are usually converted into bit stream anyway. Designing
algorithms that output bit streams directly would therefore be
a significant advantage. No theoretical study of this natively
binary chaos appears to have been undertaken to date.

4) Asymmetric chaos-based cryptographic: Asymmetric
systems are based on trapdoor functions, i.e. functions that
have a one-way property unless a secret parameter (trapdoor)
is known. One of the best known examples of this is the RSA
algorithm that makes use of the properties of prime numbers
to design the trapdoor. There is currently no counterpart of
a trapdoor transformation, as yet, known in chaos theory.

In the following section, we introduce the applications of
chaos for digital cryptography and explore the generation of
ciphers using deterministic chaos.

III. APPLICATIONS OF CHAOS FOR DIGITAL
CRYPTOGRAPHY

From a theoretical point of view, chaotic systems produce
infinite random strings that are asymptotically uncorrelated.
This property relates to genuine chaotic systems with an
infinite number of states. For applications to digital cryp-
tography, a finite-state systems approach is required which
puts certain constraints on the design of the algorithm(s).
In this paper, we study these constraints and present the
principal criteria required to design meta-encryption engines
using pseudo-chaotic algorithms.

Figure 2. Properties of chaotic and pseudo-chaotic systems.

The notion of pseudo-chaos introduced in [4], for ex-
ample, involves a numerical approximation of chaos. The
fundamental differences between chaos and pseudo-chaos
include the following: (i) the state variable has a finite length
(i.e. stores the state with finite precision) and the system
has a finite number of states; (ii) the iterated function is
evaluated with approximation methods where the result is



rounded (or truncated) to a finite precision; (iii) the system
may be observed during a finite period of time. The basic
problem is that rounding is applied during iteration and the
error accumulation causes the original and the approximated
processes to diverge. Thus, in general, pseudo-chaos is
a poor approximation of chaos because the approximated
model does not converge to the original model, and, for-
mally, may exhibit non-chaotic properties including trajec-
tories that eventually become periodic (i.e. contain patterns)
and cycles that appear as soon as two states are rounded to
the same approximate value. Consequently, the Lyapunov
exponent and the Kolmogorov-Sinai information entropy
discussed earlier may approach 0. For this reason, it is not
possible to directly transform continuous chaotic generators
to numerically based generators that require numerical ap-
proximations to be made as as summarized in Figure 2.
Thus, to use chaos theory for applications in cryptography,
a study must be undertaken of pseudo-chaotic systems. This
study forms the remit of this paper which is concerned with
the question of what are the minimal, typical and maximal
periods of the orbits (i.e. string lengths) generated by a
pseudo chaotic system? Such questions are important in

(a) (b) (c)

Figure 3. Examples of orbits of a pseudo-chaotic system. (a) Dangerously
short orbits (unsuitable for cryptography); (b) A single orbit (the best choice
for cryptography); (c) Multiple orbits with the same length (also suitable
for encryption).

most cryptographic systems. In general, a pseudo-chaotic
system produces orbits with different lengths (sometimes
called random-length orbits) as illustrated in Figure 3a. Of
course, such patterns constitute serious vulnerability as a
system may have weak plaintexts and weak keys resulting
in recognizable ciphertexts.

If a system has a stable attractor for all initial conditions
and parameters, and all orbits have (almost) the same length
(Figure 3c), there are more chances to develop a secure
encryption scheme. Nevertheless, multiple orbits reduce the
search space required for cryptanalysis. An ideal cryptosys-
tem has a single orbit passing through the whole state
space (Figure 3b). Another important step in the evaluation
of a pseudo-chaotic system is to estimate the Lyapunov
exponent of a typical orbit for a time not exceeding its
period. However, the analysis of periodic orbits depends
critically on the order in which the orbits are considered [5].
Two ordering criteria are considered in the literature, both
corresponding to a Lebesgue measure: ordering according to

the system size and ordering according to a minimal period
or within a period on a lexicographical basis. If the pseudo-
chaotic system has a finite precision σ, then the exponential
divergence given by

enλ =
|fn (x0 + ε)− fn (x0)|

ε
, n→∞, ε→ 0,

(1)
will eventually be limited by ε = σ. Usually the fraction (1)
grows exponentially during the first few iterations and then
increases linearly until it finally levels off at a certain finite
value.

IV. FLOATING-POINT APPROXIMATIONS

Floating-point and fixed point arithmetic are the most
straightforward solutions for approximating a continuous
system on a finite state machine [6]. Both approaches imply
that the state of a continuous system is stored in a program
variable with a finite resolution. A state variable x can
be written as a binary fraction bmbm−1 . . . b1 . a1a2 . . . as,
where ai, bj are bits, bmbm−1 . . . b1 denotes the integer part
and a1a2 . . . as is the fractional part of x. Under a finite
resolution, instead of xn+1 = f (x), we write

xn+1 = roundk (f (xn)) ,

where k ≤ s and roundk (x) is a rounding function defined
as

roundk (x) =

bmbm−1 . . . b1 . a1a2 . . . ak−1 (ak + ak+1) .

Figure 4. Trajectories of a continuous-state chaotic system (2) and its
64-bit floating-point approximation. The first curve is obtained by means
of the analytical solution (3). The rounding off error is amplified at each
iteration and the trajectories diverge exponentially.

The iterative rounding is accumulative and results in
surprisingly different behavior of pseudo-chaos compared
with the continuum counterpart. Figure 4 shows how fast
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Figure 5. The average and the minimal cycle length of the logistic system
(2) verses floating-point precision obtained from 10 samples of the logistic
system.

the original and approximated trajectories diverge. For cryp-
tographic applications, the rounding off function exposes
another danger. Rounding or truncating the state (e.g. to
zero values) can lead to the process dropping out of the
chaotic attractor and the system state typically remaining
at a certain constant value or infinity. Thus, it is necessary
to exclude some forbidden initial conditions and parameters
which yield short orbits or patterns of behavior after a small
number of iterations. Figure 5 is a plot of the average cycle
length verses floating-point precision and shows that high
precision does not guarantee a sufficiently long trajectory.

Another problem associated with the application of
pseudo-chaos to encryption is the sensitivity to floating-
point processor implementations. Diversified mathematical
algorithms or internal precisions in intermediate calculations
can lead to a situation where the same encryption application
code can generate different cryptographic sequences leading
to an incompatibility between software environments. A
chaos-based string with two different seeds produces two
different sequence with probability 1. This is true for chaotic
systems with an infinite state space, where the probability
Pr
(
f(xn) = f(x′n)

)
→ 0 with xn 6= x′n (despite of the

fact that f−1 is multi-valued). In finite-state approximations,
the probability of mapping two points into one is much
higher. Furthermore, this can occur at each iteration so that
a significant number of trajectories may have identical end
routes.

In spite of these shortcomings, a number of investigators
have explored the applications of continuous chaos to digital
cryptography and in the following sections, an overview of
encryption schemes based on a floating-point approximation
to chaos is given.

V. PARTITIONING THE STATE SPACE

Floating-point cryptographic systems require a mapping
from the plaintext alphabet {0, 1}m (e.g. 8 bit symbols) to
the state space X (e.g. 64 bit floating-point numbers) and,
sometimes, from the state space to the ciphertext alphabet.

A partition can be defined by a partitioning function σ :
X → {0, 1}m as with symbolic dynamics. For example, a
simple function for two subsets can be designed by taking
the last significant bit:

σ(bmbm−1 . . . b1 . a1a2 . . . as) = as.

If a floating-point system is a pseudo-random generator, the
function σ must be irreversible as with a hard-core predicate.
This can be archived with an equiprobable mapping where
partitions are selected in such a way that each symbol occurs
with the same probability. However, it is not obligatory to
cover all the state space or assign symbols to all partitions.
On the contrary, we can change the statistical properties of
the resulting symbolic trajectory by assigning symbols in
a particular way. For example, Figure 8 shows a discrete
probability distribution of state points in the attractor of the
logistic system. By choosing regions with almost the same
probability mass, we obtain better statistics in the output,
i.e. avoid any statistical bias associated with a cipher. The
number of subsets can be increased, for example, up to 4, 8,
16 etc. In this case the generator will produce more pseudo-
random bits per iteration (m = 2, 3, 4). However, increasing
m reduces the cryptographic strength of the generator since
it becomes easier to invert σ.

VI. EXAMPLE CHAOTIC MAP

We consider some example chaotic maps which illustrate
the principles of using pseudo-chaos for encrypting data.

A. Logistic Map

In 1976, Mitchell Feigenbaum studied the complex be-
havior of the so-called logistic map given by

xn+1 = 4rxn (1− xn) , (2)

where x ∈ (0, 1) and r ∈ (0, 1). For any long sequence of
N numbers generated from the seed x0 we can calculate the
Lyapunov exponent given by

λ (x0) =
1
N

N∑
n=1

log |r (1− 2xn)|.

For example, the numerical estimation for r = 0.9 and N =
4000 is λ (0.5) ≈ 0.7095.

With certain values of the parameter r, the generator
delivers a sequence, which appears pseudo-random. The
Freigenbaum diagram (Figure 6) shows the values of xn
on the attractor for each value of the parameter r. As r
increases, the number of points in the attractor increases
from 1 to 2, 4, 8 and hence to infinity. In this area (r → 1)
it may be considered difficult to estimate the final state of
the system (without performing n iterations) given an initial
conditions x0, or vice-versa - to recover x0 (which can be
a key or a plaintext) from xn. This complexity is regarded
as a fundamental advantage in using continuous chaos for



Figure 6. Bifurcation of the logistic map. The most ‘unpredictable’
behavior occurs when r → 1.

Figure 7. Attractor points corresponding to different values of the
parameter r in the Matthews map.

cryptography. However, for the boundary value of the control
parameter r = 1 the analytical solution [7], [8] is:

xn = sin2 (2n arcsin
√
x0) . (3)

When n = 1 we have the initial equation (2). Hence,
the state xn can be computed directly from x0 without
performing n iterations.

Bianco et al. [9] used the logistic map (2) to generate a
sequence of floating point numbers which are then converted
into a binary sequence. The binary sequence is XOR-ed
with the plaintext, as in a one-time pad cipher where the
parameter r together with the initial condition x0 form
a secret key. The conversion from floating point numbers
to binary values is done by choosing two disjoint interval
ranges representing 0 and 1. The ranges are selected in such
a way, that the probabilities of occurrence of 0 and 1 are
equal (as illustrated in Figure 8). Note, that an equiprobable
mapping does not ensure a uniform distribution. Though
the numbers of zeros and ones are equal, the order is not
necessarily random.
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Figure 8. The Probability Density Function of a state sequence produced
by the logistic system with an incomplete partition.

It has been pointed out by Wheeler [10] and Jackson
[11] that computer implementations of chaotic systems yield
surprisingly different behavior, i.e. it produces very short
cycles and trivial patterns (a numeric example in this paper
being given in Figure 5).

B. Matthews Map

Matthews [12] generalizes the logistic map with crypto-
graphic constraints and develops a new map to generate a
sequence of pseudo-random numbers based on the iteration

xn+1 = (r + 1)
(

1
r

+ 1
)r

xn (1− xn)r , r ∈ (1, 4) .

The Matthews system exhibits chaotic behavior for param-
eter values within an extended range (Figure 7) thereby
stretching the key space. However, no robust cryptographic
system has been created using this map because of the
general floating-point issues discussed previously.

C. Other Examples of Chaotic Maps

Gallagher et el. [13] developed a chaotic stream cipher
based on the transformation

f (x) =
(
a+

1
x

) x
a

, x ∈ (0, 10) , a ∈ [0.29, 0.40] .

Both the initial condition x0 and the parameter a represent
the key. After n0 = 200 iterations, the system encrypts the
plaintext byte p1 into the ciphertext float c1 = fn0+n1 (x0),
i.e. the chaotic map is applied p1 ∈ [0, 255] times. Sub-
sequent plaintexts are encrypted using the same trajectory.
Clearly, the disadvantages of such an encryption scheme are:
(i) the data expansion (the floating-point representation of ci
is considerably larger that the source byte pi; (ii) unstable
cycles incident to floating-point chaos generators.



Kotulski [14] proposes a two dimensional map matching
the reflection law of a geometric square and defines con-
ditions under which the system is chaotic and mixing. In
addition to a range of specific maps suggested by a wealth
of authors, there are, in principle, an unlimited number
of iteration functions available or that can be invented
to generate cryptographic sequences where the nonlinear
transformation can be more or less complex, e.g.

rx

[
1− tan

(
1
2
x

)]
or rx [1− log (1 + x)]

Although each system has a particular state distribution
in the phase space, qualitatively, its behavior is similar to
a basic chaotic system such a logistic map. To increase
unpredictability (i.e. the number of states, nonlinearity,
complexity) high-order multi-dimensional chaotic system
can be used [15]. However, to date, no known systems
have been implemented as a working encryption algorithm.
This is principally due to the relatively complex numerical
integration schemes that are required and the non-uniform
distribution of state variables. However, by considering a
number of randomly selected pseudo-chaotic algorithms (all
of which meet the appropriate design criteria) that operate on
randomly selected plaintext blocks, it is possible to produce
a multi-algorithmic approach to data encryption which is the
principal concept presented in this paper.

D. Pseudo-Chaos and Conventional Cryptosystems

Existing pseudo-random generators can be viewed as
pseudo-chaotic systems. For example, consider the Blum-
Blum-Shub system [16] given by the iterated function
xn+1 = x2

n mod M where M = pq, where p, q are two
distinct prime numbers each congruent to 3 modulo 4. The
output bit bn is obtained from a predicate σ(xn), which is the
last significant bit of xn. Besides the sensitivity to the initial
condition and the topological transitivity, a pseudo-random
generator has to be computationally unpredictable. The last
property is ensured by a one-way iterated function and a
hard-core predicate. A one-way transformation is based on a
certain mathematical problem, which is considered unsolved.
For example, the Blum-Blum-Shub function works under the
assumption that integer factorization is intractable. Chaos
theory is not focused on the algorithmic complexity of the
iterated function, whereas in cryptography the complexity is
the key issue, i.e. security.

E. Symmetric Block Ciphers

All classical iterative block ciphers, at least with regard
to our notation, are pseudo-chaotic or combinations of
several pseudo-chaotic systems. As an example, consider the
Rijndael algorithm which form the basis for the Advanced
Encryption Standard [17]. The system state x is a two-
dimensional array of bits. The plaintext is assigned to the
initial conditions x0 and, after a fixed number of iterations
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Figure 9. A typical block cipher is a combination of several pseudo-chaotic
systems

(n = 10 . . . 14), the ciphertext is obtained from the final
state xn. The encryption transformation is a combination
of several pseudo-chaotic maps: (i) the substitution phase
is a composition of multiplicative inverse and affine trans-
formations; (ii) the mixing phase includes cycle shifts and
column multiplication over a finite field; (iii) the round key
is obtained from another pseudo-chaotic system.

If we consider the substitution and mixing phases as a
single iterated function, the encryption scheme will represent
two linked pseudo-chaotic systems (Figure 9).

F. Multi-Algorithmic Generators

Protopopescu [18] proposes an encryption scheme based
on multiple iterated functions: m different chaotic maps
are initialized using a secret key. If the maps depend on
parameters, these too are determined by the key. The maps
are iterated using floating point arithmetic and m bytes
are extracted from their floating point representations, one
byte from each map. These m numbers are then combined
using an XOR operation. The process is repeated to create
a one time pad which is finally XOR-ed with the plaintext.
In this paper, we extend the Protopopescu scheme to in-
clude a multi-algorithmic approach based on the following
properties: (i) Chaotic systems can be connected to each
other (i.e. the state of each system influences the states of
all other systems) to increase the average orbit length and
form a single chaotic system with a large state space and
more stable orbits. (ii) The set of chaotic systems (iterated
functions) can be different for each encryption session,
implemented by supplying an iterated function set with the
key. (iii) The output bit can be generated in each qth iteration
to increase the independence of bits. (iv) Chaotic systems
can be permuted in a complex manner, in particular, the
order in which they are utilized or ‘turned on’ by a key.

We can define this extended cryptographic system as
x1
n+1 = f1(x2

n, k
1), b1j = σ1(x1

qj)
x2
n+1 = f2(x2

n, k
2), b2j = σ2(x2

qj)
· · · · · ·
xmn+1 = fm(xmn , k

m), bmj = σm(xmqj)

bj = b1j ⊕ b2j ⊕ . . .⊕ bmj ,



where f1, f2, . . . , fm are iterated functions of the ses-
sion set, 〈x1

0, k
1, x2

0, k
2, . . . , xm0 , k

m〉 are initial conditions,
b1j , b

2
j , . . . b

m
j are the internal state bits in the (n = qj)th

moment of time, bj is the generator output and where the
mixing component providing property (i) is given by

x1
n = mix1(x1

n, x
2
n, . . . , x

m
n )

x2
n = mix2(x1

n, x
2
n, . . . , x

m
n )

· · ·
xmn = mixm(x1

n, x
2
n, . . . , x

m
n )

A demonstration encryption system - Crysptic - based on
multiple chaotic systems with extended properties (i)-(iv)
is available from [19]. The system solves the problems
relating to the floating-point arithmetic to provide (m − 1)
redundant systems. In practice, an encryption engine can be
based on any number of algorithms, each algorithm having
been ‘designed’ with respect to the required (maximum
entropy) performance conditions through implementation of
appropriate conditional parameters T and ∆± where T is
the threshold defining the partition between bits as shown
in Figure 8 and ∆± defines the extent of each partition. The
basic steps are as follows:

Step 1: Invent a (non-linear) function f and apply the
iteration xn+1 = f(xn, p1, p2, ...)

Step 2: Normalise the output of the iteration so that x∞ = 1.

Step 3: Graph the output xn and adjust parameters p1, p2, ...
until the output ‘looks’ chaotic.

Step 4: Graph the histogram of the output and observe if
there is a significant region of the histogram over which it
is ‘flat’.

Step 5: Set the values of the thresholds T and ∆± based
on ‘observations’ made in Step 4.

Analysing of the iteration using a Feigenbaum diagram can
also be undertaken but this can be computationally intensive
and each function can be categorised in terms of parameters
such as the Lyapunov Dimension and information entropy,
for example. It should be noted that many such inventions
fail to be of practical value because their statistics may not
be suitable (e.g. the histogram may not be flat enough or
is flat only over a very limited portion of the histogram),
chaoticity may not be guaranteed for all values of the seed
x0 between 0 and 1 and the numerical performance of the
algorithm may be poor. The aim is to obtain an iteration
that is numerically relatively trivial to compute, provides an
output that has a broad statistical distribution and is valid
for all floating point values of x0 between 0 and 1.

The functions used for the demo system available at [19]
are given in the following table where the values of T , ∆+

and ∆− apply to the normalised output stream generated by
each function.

Function f(x) r T ∆+ ∆−
rx(1− tan(x/2)) 3.3725 0.5 0.3 0.3
rx[1− x(1 + x2)] 3.17 0.5 0.25 0.35
rx[1− x log(1 + x)] 2.816 0.6 0.3 0.2
r(1− | 2x− 1 |1.456) 0.9999 0.5 0.3 0.3
| sin(πrx1.09778) | 0.9990 0.6 0.25 0.25

The functions given in the table above produce outputs that
have a relatively broad and smooth histogram which can
be made flat by application of the values of T and ∆± as
illustrated in Figure 8 Some functions, however, produce
poor characteristic in this respect. For example, the function

f(x) = r | 1− tan(sinx) |, r = 1.5

has a highly irregular histogram which is not suitable in
terms of applying values of T and ∆± and, as such, is not
an appropriate IFS for this application.

VII. SYSTEMS IMPLEMENTATION - Crypstic

In conventional encryption systems, it is typical to provide
a Graphical User Interface (GUI) with fields for inputting the
plaintext and outputting the ciphertext where the name of
the output (including file extension) is supplied by the user.
Crypstic [19] outputs the ciphertext by overwriting the input
file. This allows the file name, including the extension, to
be used to ‘seed’ the encryption engine and thus requires
that the name of the file remains unchanged in order to
decrypt. The seed is used to initiate the session key. The
file name is converted to an ASCII 7-bit decimal integer
stream which is then concatenated and the resulting decimal
integer used to seed a hash function whose output is of the
form (d, d, f, f, f) where d is a decimal integer and f is a
32-bit precision floating point number between 0 and 1.

The executable file is camouflaged as a .dll file which
is embedded in a folder containing many such .dll files.
The reason for this is that the structure a .dll file is close
to that of a .exe file. Nevertheless, this requires that the
source code must be written in such a way that all references
to its application are void. This includes all references to
the nature of the data processing involved including words
such as Encrypt and Decrypt (strings that are replaced by
E and D respectively in a GUI), so that the compiled file,
although camouflaged as a .dll file, is forensically inert. This
must include the development of a run time help facility.
Clearly, such criteria are at odds with the ‘conventional
wisdom’ associated with the development of applications
but the purpose of this approach is to develop a forensically
inert executable file that is obfuscated by the environment
in which it is placed. This is based on the forensically inert
approach to software engineering.

A. Procedure

The approach to loading the application to encrypt/decrypt
a file is based on renaming the .dll file to an .exe file



with a given name as well as the correct extension. Simply
renaming a .dll file in this way can lead to a possible
breach of security by a potential attacker using a key logging
system. In order to avoid such an attack, Crypstic uses an
approach in which the name of the .dll file can be renamed
to a .exe file by using a ‘deletion dominant’ procedure.
For example, suppose the application is called enigma.exe,
then by generating a .dll file called engine gmax index.dll,
renaming can be accomplished by deleting (in the order
given) lld. followed by dni x followed by en followed by
g and then inserting a . between ae and including e after ex.
A further application is required such that upon closing the
application, the .exe file is renamed back to its original .dll
form. This includes ensuring that the time and date stamps
associated with the file are not updated.

The procedure described above is an attampt to obfuscate
the use of passwords which are increasingly open to attack
especially with regard to password protected USB memory
sticks. Many manufacturers break all the rules when at-
tempting to implement security. Checking the password and
unlocking the stick are two separate processes, both initiated
from the PC. Thus, from the point of view of the stick, they
are both separate processes, but this is a major flaw. The
best USB sticks handle all the encryption to and from the
flash memory themselves and do not keep a password at all.
The fact that the data cannot be decrypted without it makes
it safe. Many USB sticks store a password inside the flash-
controller and check it against a password sent by the PC
before unlocking the flash-memory. This way, the password
cannot be found by reading out the flash-chip manually.
Other USB sticks do the same but store the password on
flash. Some sticks even store the password on flash and let
the PC do the validation.

In addition to the procedures associated with password
validation, the concept of password protection is becom-
ing increasingly redundant. For example, Elcomsoft Lim-
ited recently filed a US patent for a password cracking
technique that relies on the parallel processing capabilities
of modern graphics processors. The technique increases
the speed of password cracking by a factor of 25 us-
ing a GeForce 8800 Ultra graphics card from Nvidia.
‘Cracking times can be reduced from days or hours to
minutes in some instances and there are plans to in-
troduce the technique into password cracking products’
(http://techreport.com/discussions.x/13460).

B. Protocol

Crypstic is a symmetric encryption system that relies on
the user working with a USB memory stick and maintaining
a protocol that is consistent with the use of a conventional set
of keys, typically located on a key ring. The simplest use of
Crystic is for a single user to be issued with a Crypstic which
incorporates an encryption engine that is unique (through
the utilisation of a unique set of algorithms). The user can

then use the Crypstic to encrypt/decrypt files and/or folders
(after application of a compression algorithm such as pkzip,
for example) on a PC before closure of a session. In this
way, the user maintains a secure environment using a unique
encryption engine with a ‘key’ that includes a covert access
route. If any crypstic, by any party, is lost, then a new pair
of sticks are issued with new encryption engines unique to
both parties. In addition to a two-party user system, crypstics
can be issued to groups of users in a way that provides an
appropriate access hierarchy as required.

VIII. CONCLUSION

There is a fundamental relationship between cryptography
and chaos. In both cases, the object of study is a dynamic
system that performs an iterative nonlinear transformation
of information in an apparently unpredictable but determin-
istic manner. In terms of sensitivity to initial conditions
together with the mixing properties of chaotic systems, with
appropriate entropy conscious post-processing, it is possible
to ensure cryptographic confusion and diffusion. However,
there are a number of conceptual differences between chaos
theory and cryptography which include the following: (i)
Chaos theory is often concerned with the study of dynamical
systems defined on an infinite state space whereas cryptog-
raphy relies on a finite-state machine and all chaos models
implemented on a computer are approximations, i. e. digital
computers can only generate pseudo-chaos. (ii) Chaos theory
typically studies the asymptotic behaviour of a nonlinear
system (i.e. the behaviour of the system as the number of
iterations approach infinity when the Lyapunov dimension
can be quantified), whereas cryptography focuses on the
effect of a small number of iterations that are typically
determined by the size of the plaintext. (iii) Chaos theory is
not necessarily concerned with the algorithmic complexity
but in the interpretation of a physical model from which
it has been derived; in cryptography, complexity is the key
issue and thus, the concepts of cryptographic security and
efficiency have no counterparts in chaos theory. (iv)Classical
chaotic systems usually have recognizable attractors whereas
in cryptography, we attempt to eliminate any structure by
post processing the output to produce a maximum entropy
cipher. (v) Unlike chaos in general, cryptographic systems
use a combination of independent variables to provide an
output that is unpredictable to an observer. (vi) Chaos theory
is often associated with the mathematical model used to
quantify a physically significant problem, whereas in cryp-
tography, the physical model is of no importance. Point (vi)
is of particular importance with regard to the design of chaos
based encryption engines. Whereas previous publications in
this field (e.g. [12], [9], [20] and [21]) have considered
variations on a theme of established chaotic systems, in this
paper, we have considered the idea that, in principal, an
unlimited number of systems can be ‘invented’ by a designer



in order to provide a limitless range of multi-algorithmic
encryption engines.

Cloud computing only represents 4% of current IT spend
and is expected to more than double by 2012. Software as a
Service (SaaS) by itself is projected to nearly double from
$9B to $17B (less than 10% of the total market). However,
user-security underpins acceptance of cloud architecture.
The approach consider in this paper is based on each user
having their own encryption engine enabling both protection
and control, e.g.

PC + Crypstic = Cloud Security

The approach to encrypting data discussed in this paper
represents a ‘paradigm shift’ with regard to single algorithm
based ciphers that are in the public domain. The importance
of this paradigm shift with regard to cryptography in general
and, in particular, security on the cloud, may be appreciated
in light of the following text taken from Patrick Mahon’s
secret history of Hut 8 - the naval section at Bletchly Park
from 1941-1945 [22]: The continuity of breaking Enigma
ciphers was undoubtedly an essential factor in our success
and it does appear to be true to say that if a key has been
broken regularly for a long time in the past, it is likely to
continue to be broken in the future, provided that no major
change in the method of encypherment takes place.
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