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Abstract – In control system theory, a performance index is a quantitative measure of the 

performance of a system and is chosen so that emphasis is given to the important system parameters. 

In this paper, the authors demonstrate two methods to determine analytically the Integral of the 

Square of the Error (ISE) performance index value for a first-order-plus-dead-time (FOPDT) 

process model under PI control. The ability of proportional/integral (PI) and 

proportional/integral/derivative (PID) controllers to compensate most practical industrial processes 

has led to their wide acceptance in industrial applications. The most direct way to set up PI/PID 

controller parameters is the use of tuning rules. The second part of this paper examines the 

performance of ten tuning rules used to compensate six representative processes. 

Keywords – Performance Index, Integral of Absolute Error, ISE, Optimum Control System.

________________________________________________________________________ 



1 Introduction 

Increasing emphasis on the mathematical formulation and measurement of control system 

performance can be found in the recent literature on automatic control. Modern control 

theory assumes that the systems engineer can specify quantitatively the required system 

performance. Then a performance index can be calculated or measured and used to 

evaluate the system’s performance. A quantitative measure of the performance of a 

system is also necessary for the operation of modern adaptive control systems, for 

automatic parameter optimisation of a control system, and for the design of optimum 

systems [1]. A system is considered an optimum control system when the system 

parameters are adjusted so that the index reaches an extremum value, commonly a 

minimum value. A performance index, to be useful, must be a number that is always 

positive or zero. Then the best system is defined as the system that minimises this index. 

Two suitable performance indices examined in this paper are the integral of the square of 

the error, ISE, and the integral of the absolute magnitude of the error, IAE.  

The second part of the paper examines the performance of ten PI or PID tuning rules used 

to compensate six representative processes. The tuning rules are taken from a book by A. 

O’Dwyer [2] which comprehensively compiles, using a unified notation, the tuning rules 

to control processes with time delay, proposed over six decades (1942 – 2002). 

 

II.a ANALYTICAL CALCULATION OF ISE USING CONTOUR INTEGRATION AND THE 

METHOD OF RESIDUES 

The basic problem that will be considered is that of the evaluation of the integral 
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in which e(t) has Laplace transform E(s) given by 
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and A(s), B(s), C(s) and D(s) are polynomials in s of finite degree and with real 

coefficients; τ is the time delay. It will be assumed that the above integral (1) exists, or 

equivalently that the system is stable. A necessary, but not sufficient, condition for 

stability is that the poles of E(s) lie in the open left-half plane, a fact of which much use 

will be made. 

From Parseval’s theorem it follows that 
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(3) 

For delay free systems (i.e. those for which C(s) = D(s) = 0) it is possible to evaluate 

such integrals by closing the contour on either the left or the right and using the theory of 

residues. Such an approach applied to the above integral in its present form offers little 

hope of success. This is because there are, in general, an infinite number of poles in both 

the left and the right half-planes and moreover it is not possible to obtain a closed form 

solution for these. However, it can be shown that it is indeed possible to evaluate such 

integrals using contour integration and the theory of residues provided that the integrand 

is first suitably rearranged in such a way that there are only a finite number of relevant 

poles. 

The basic idea is to split the integrand into two parts, the first of which contains all the 

poles arising from the zeros of (A(s) + C(s) exp(-sτ)) and the second all those arising 

from the zeros of (A(-s) + C(-s) exp(sτ)). This is achieved by first obtaining an equivalent 
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form for E(-s) at the poles of E(s) [3, page 1066]. If the two parts are treated in different 

ways, as suggested by Walton and Marshall, the poles arising from the roots of 

( ) ( ) ( ) ( ) 0=−−− sCsCsAsA             (4) 

must also be considered. It is now possible to close the contour in the left half-plane and 

in the right half-plane. In both cases, the only enclosed poles arise from the enclosed 

zeros of equation 4. Assuming that the integrals round the semicircles at infinity are zero 

(as will be the case in most situations of practical interest), it follows that [4] 
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where sk are the roots of equation 4. 

 

Example: 

An example is used to demonstrate the method. Refer to the block diagram in figure 1. 

 
Figure 1. Note that E = 1/1 + Gol. 

 

The error of the ideal PI controller in series with a first-order-plus-dead-time (FOPDT) 

process (servo) is: 
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The general form of E(s) can be expressed as follows: 
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Hence, 

( ) sTTTsB ipi +=                             (8) 

( ) 0=sD                                           (9) 

( ) sTTsTsA ipi
2+=                        (10) 

( ) sTKKKKsC ipcpc +=                 (11) 

Then the roots have to be calculated from equation 4. The FOPDT process model 

parameters and the PI controller parameters are as shown in figure 2. The four roots are 

calculated as follows: 

S1 = 0.1214975 

S2 = 0 +0.184065i 

S3 = -0.1214975 

S4 = 0 –0.184065i 

Each of the four roots are now inserted in turn into equation 5 and summed together to 

give the cost function value equal to 5.3966.  
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Figure 2. Simulink file to check ISE value. 

 

The file in figure 2 demonstrates the ISE value obtained using simulation techniques. The 

simulated value of 5.395 compares favourably with the analytical result of 5.3966. 

 

II.b ANALYTICAL CALCULATION OF ISE USING PARSEVAL’S THEOREM AND CONTOUR 

INTEGRATION 

A second method to determine the analytical ISE value for a servo response of a first-

order-plus-dead-time process model under PI control is described by Thomas Heeg [5] 

with reference to Marshall et al. [6] as follows: 

In order to express the Laplace transform of the error signal E(s) for the control system 

shown in figure 1, we denote 

α = KpKc, β = KpTi, γ = KpTd                  (12) 

where Kp is the process gain. The asymptotic stability of the closed-loop system is a basic 

requirement when searching for optimal controller settings. This requirement constitutes 

a constraint, which determines the set of admissible values of Kc and/or Ti and/or Td, 

depending on the regulator type. The conditions of asymptotic stability for our system 

can be obtained in an explicit form (see Gorecki et al. [7]). We are dealing with the 

integral square error in equation 1 for the closed-loop control system of figure 1. The 

system is driven by a step input. In order to calculate the integral performance criterion J 

we use Parseval’s theorem. To this end the Laplace transform of the error signal is 

needed. For the PI controller, the parameter γ in equation 12 is set to zero. The ISE value 

is now analytically calculated from equation 13: 
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The asymptotic stability conditions are given as 
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+
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q
22
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The software package used to determine the J value in equation 13 is Mathematica [8]. 

The equation for J is excessively long for reproduction here, but it will be presented in 

full at the conference.                                

The FOPDT process model parameters and the PI controller parameters shown in figure 

2 are used in the calculation of J using the equation. This results in an ISE value equal to 

5.3967 that again compares favourably with the experimental result of 5.395. 
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The same procedure can be carried out to analytically determine the ISE for the 

servo/regulator response of a process using different PI/PID controller structures. 

 

III. CONTROL SYSTEMS DESIGN USING PERFORMANCE INDEX MINIMISATION. 

 

Many tuning rules have been defined for performance index minimisation (O’Dwyer [2]). 

The following eleven representative tuning rules are examined: 

 

• Murrill (1967) [Regulator - PI] 

• Edgar et al. (1997) [Regulator - PI] 

• Smith & Corripio (1997) [Servo - PI] 

• Murrill (1967) [Regulator - PID] 

• Wang et al. (1995) [Servo - PID] 

• Kaya & Scheib (1988) [Regulator - PID] 

• Shinskey (1988) [Regulator - PID] 

• Kaya & Scheib (1988) [Servo - PID] 

• Smith & Corripio (1997) N = 10 [Servo - PID] 

• Kaya & Scheib (1988) [Regulator - PID] 

• Kaya & Scheib (1988) [Servo - PID] 

  

Some of these tuning rules are optimised by their authors for regulator response, while 

others optimised for servo response, as indicated. In addition, a number of the PID 

controller tuning rules are associated with PID controller structures other than the ideal 

PID controller architecture. 

The six processes examined are 
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Each process is modelled by a first-order-plus-dead-time model using two different 

identification techniques. These are 1: Two-point algorithm modelling, in the time 

domain 2: Analytical and gradient based frequency domain modelling [9]. 

The system is examined in the MatLab/Simulink computer environment. The following 

example demonstrates how the method is applied. A step is applied to the system and the 

results recorded as shown. 

 
Figure 3. MatLab/Simulink file to determine IAE/ISE value (regulator). 
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Figure 4. Regulator response using Murrill’s rule. 

  

 

 
Figure 5. MatLab/Simulink file to determine IAE/ISE value (servo). 

 

 
Figure 6. Servo response using Murrill’s rule. 
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The eleven tuning rules mentioned previously, compensating the six processes using the 

two separate identification methods are examined and the results recorded in a 

worksheet. The complete worksheet can be obtained from the authors but some sample 

results are demonstrated in tables 1, 2, 3 and 4. 

 
 

 
Process 

1 Process 1 

Tuning rule 2-Point Freq-Dom 

Murrill (1967) [Regulator] 11.25 14.10 

Edgar et al. (1997) [Regulator] 27.04 15.71 

Smith & Corripio (1997) [Servo] 13.91 11.70 

Murrill (1967) [Regulator] 6.44 5.20 

Wang et al. (1995) [Servo] 11.94 9.64 

Kaya & Scheib (1988) [Regulator] 9.81 7.74 

Shinskey (1988) [Regulator] 9.93 7.31 

Kaya & Scheib (1988) [Servo] 12.53 9.09 

Smith & Corripio (1997) N = 10 [Servo] 10.36 7.61 

Kaya & Scheib (1988) [Regulator] 10.68 8.73 

Kaya & Scheib (1988) [Servo] 10.60 7.83 

Table 1. Process 1 regulator response IAE values. 
 

 

 

 

 
Process 
4 Process 4 

Tuning rule 2-Point Freq-Dom 

Murrill (1967) [Regulator] 9.30 9.62 

Edgar et al. (1997) [Regulator] 21.43 24.24 

Smith & Corripio (1997) [Servo] 10.66 10.20 

Murrill (1967) [Regulator] 4.27 4.34 

Wang et al. (1995) [Servo] 6.25 6.31 

Kaya & Scheib (1988) [Regulator] 5.32 5.78 

Shinskey (1988) [Regulator] 6.45 6.92 

Kaya & Scheib (1988) [Servo] 7.53 7.57 

Smith & Corripio (1997) N = 10 [Servo] 6.64 6.50 

Kaya & Scheib (1988) [Regulator] 5.81 6.16 

Kaya & Scheib (1988) [Servo] 6.81 7.22 

 

Table 2. Process 4 regulator response ISE values. 
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Process 

2 Process 2 

Tuning rule 2-Point Freq-Dom 

Murrill (1967) [Regulator] 4.98 8.14 

Edgar et al. (1997) [Regulator] 5.78 4.26 

Smith & Corripio (1997) [Servo] 4.46 4.36 

Murrill (1967) [Regulator] 4.59 10.53 

Wang et al. (1995) [Servo] 3.72 3.26 

Kaya & Scheib (1988) [Regulator] 5.90 6.62 

Shinskey (1988) [Regulator] 5.45 6.31 

Kaya & Scheib (1988) [Servo] 4.55 3.70 

Smith & Corripio (1997) N = 10 [Servo] 4.24 3.54 

Kaya & Scheib (1988) [Regulator] 6.40 7.29 

Kaya & Scheib (1988) [Servo] 4.15 3.53 

 

Table 3. Process 2 servo response IAE values. 
 

 

 

 
Process 

6 Process 6 

Tuning rule 2-Point Freq-Dom 

Murrill (1967) [Regulator] 9.15 9.32 

Edgar et al. (1997) [Regulator] 15.26 13.33 

Smith & Corripio (1997) [Servo] 10.05 9.79 

Murrill (1967) [Regulator] 8.77 9.35 

Wang et al. (1995) [Servo] 8.56 8.51 

Kaya & Scheib (1988) [Regulator] 8.73 8.83 

Shinskey (1988) [Regulator] 8.77 8.79 

Kaya & Scheib (1988) [Servo] 9.86 9.50 

Smith & Corripio (1997) N = 10 [Servo] 9.29 8.98 

Kaya & Scheib (1988) [Regulator] 9.04 9.23 

Kaya & Scheib (1988) [Servo] 9.13 8.89 

 

Table 4. Process 6 servo response ISE values. 
 

Figures 7 and 8 show the average IAE values, obtained over all the controller tuning 

rules, for each of the process modelling methods. Figures 9 to 12 how the average IAE 

and ISE values, obtained over all the process modelling methods, for each controller 

tuning rule. 
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Figure 7. Regulator response, average IAE value. 
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Figure 8. Servo response, average IAE value. 
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Figure 9. Regulator response, average IAE value. 
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Figure 10. Servo response, average IAE value. 
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Figure 11. Regulator response, average ISE value. 
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Figure 12. Servo response, average ISE value. 

 

IV. Conclusions. 

From the bar-charts in figure 7 and 8, it is concluded that the largest IAE value is 

obtained for the control of process 3. This is an 8th order process, modelled using a first-

order-plus-dead-time model. With the exception of process 4, the lowest IAE obtained 

from the regulator response is achieved using the frequency-domain modelling method. 

The opposite is true for the servo response. In this case, most of the controlled systems 

give a lower IAE value when using the 2-point process modelling  method.  

From the bar-chart results in figures 9, 10, 11 and 12, it is concluded that the lowest 

regulator response average IAE value for all the processes is obtained when the Murrill 

(1967) [Regulator] tuning rule is used. The lowest servo response average is obtained 

when using the Wang et al. (1995) [Servo] tuning rule. Two of the other good performing 

rules are the Kaya & Scheib (1988) [Servo] and the Smith & Corripio (1997) N = 10 

[Servo] rules. 

A feature of the charts is the observation that the Murrill (1967) [Regulator] tuning rule 

has low IAE values for both the regulator and servo responses. 

 

V. Present work. 

The work carried out on the six processes using the MatLab/Simulink software is being 

extended by applying the tuning rules to a real process. This work is presently being 

carried out on the Process Trainer, PT326, from Feedback Instruments Limited. 

Preliminary results show that the results obtained from the real process are compatible 

with the results obtained from the simulated processes. More implementation information 

will be available in the final paper. 
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