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Chapter 1. Introduction

1.5.1.1. Metabolomics in Food Safety

Metabolomics has the potential to assess safety of pre- and post- harvest technologies.
Unintended effects of genetic modification of foods can be assessed by untargeted
discriminative analyses. Metabolomics has been used to differentiate genetically modified
(GM) foods from non-treated ones, an example of this was seen for potatoes (Catchpole et al.,
2005). Sample differentiation occurred based on the intended variations of fructans in GM
samples. After removal of fructan derivatives from the model no discrimination was observed.
This suggests that GM potatoes are similar in composition to original ones, concluding that no
major unintended changes occurred after genetic modifications. Metabolomics could therefore
be used to provide new information regarding new or controversial processing technologies
such as irradiation.

There are a number of metabolomic approaches used for the detection of microbiologically
spoiled or contaminated foods (Ellis and Goodacre, 2001). In a recent study Ammor and
colleagues investigated the use of Fourier transform infrared spectroscopy in tandem with
chemometrics to explore its potential as a rapid and accurate method for monitoring the
spoilage of minced beef samples under different storage conditions. It showed that the
comparison of FTIR spectra could highlight certain biochemical changes during meat

spoilage (Ammor ef al., 2009).

1.5.1.2. Metabolomics in Food Component Analysis

Food component analysis traditionally involved identifying and classifying food components
into broad categories such as carbohydrates, proteins, fats, vitamins, fibre, trace elements,
solids and/or ash. With the introduction of metabolomics came the ability to analyse with
considerably more chemical detail, allowing the identification of hundreds of distinct
molecules being detected and/or identified in certain foods (Moco et al., 2006; Ninonuevo et

al., 2006; Wishart et al., 2007). The potential to “unravel” foods and beverages into their
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Chapter 1. Introduction

chemical constituents offers food chemists a unique opportunity to understand the molecular
details of what gives certain foods and drinks their unique taste, colour, texture or aroma. It
also offers the nutritional scientist the opportunity to precisely identify the bioactive
ingredients in foods and better understand their potentially beneficial (or harmful)
consequences (Wishart, 2008b).

A large number of natural foods, spices and beverages have already been the subject of
detailed metabolomic-based analysis including milk (Ninonuevo et al., 2006), tomatoes and
tomato juice (Moco et al., 2006), and many others. These analyses used a combination of
techniques such as NMR spectroscopy, GC/MS and LC/MS.

In the coming years it is likely that food consumption studies will become much more
common with far more comprehensive metabolomic analyses being performed on many of the
economically or pharmaceutically more important fruits (e.g. bananas, pomegranates,
pineapples, blueberries), vegetables (e.g. avocadoes, corn, spinach, cauliflower), grains (e.g.
wheat, barley, rye), meats (e.g. beef, chicken, fish), processed foods (e.g. cheese, yoghurt,
vegetable oils), nuts (e.g. almonds, cashews) and the many nutraceutical foods or beverages
(e.g. ginseng, garlic, coffee, green tea). Metabolomic-based food component studies will
allow food scientists to more precisely follow the consequences of different preparation
(frying versus baking; steaming versus boiling) and preservation (freezing, drying, smoking,
refrigerating) processes on key food components/metabolites. This process will help in the
breeding, selection or modification of better crops, the breeding and feeding of

livestock/fishstock as well as the preparation of many processed foods (Wishart, 2008b).

1.5.1.3. Metabolomics & Mushrooms (A. bisporus)

A review of some metabolites that have been identified in mushrooms using different

metabolomic techniques are outlined in Table 1.2.
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Chapter 1. Introduction

Table 1.2 A summary of metabolites that have been identified in mushrooms by metabolomic techniques

Metabolomic Metabolites identified Analysis Reference
Technique purpose

NMR Diacylglycerophospholipids NMR lipid (Bonzom et al.,

(DAGP) profile 1999)

Neutral acylglycerols
Ether lipids
Sphingolipids
Sterols

GC/MS Fatty acids: Fatty acid (Yilmaz et al.,

Caprylic acid composition 2006)

Capric acid
Lauric acid
Linoleic acid
Nonadecanoic acid
Tricosanoic acid
Oleic acid
HPLC Fructose Non-volatile (Chiang et al.,
Glucose taste 2006)
Myo-inositol components
Mannose
Ribose
Sucrose
Trehalose
Arabinose
HPLC Free amino acids: Non-volatile (Tsai et al.,
Alanine taste 2007)
Leucine components
Serine
Tyrosine
Valine
Aspartic acid
Lysine
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Chapter 2. Aims & Objectives

Aims and Objectives

The work presented in this thesis aims to investigate the effects that mechanical damage
have on the metabolism of mushrooms using novel metabolic fingerprinting and metabolic
profiling tools. Those tools will be employed to detect and discriminate mechanical
damage on mushrooms.

To achieve this aim, the following objectives were set:

e Experiments studying the metabolic effect of mechanical damage in mushrooms
were set up, studying both the immediate response to damage as well as the
metabolic changes after storage of mechanically damaged mushrooms.

e Fourier transform infrared (FTIR) spectroscopy and chemometric methods were
used to investigate whether the chemical changes induced by mechanical damage
and ageing could be (a) detected in the mid-infrared absorption region and (b)
identified using chemometric data analysis.

e Nuclear magnetic resonance (NMR) spectroscopy and chemometric methods were
used to determine if low levels of damage could be differentiated, in order to
evaluate the potential of this technology to detect damage.

e Gas chromatography-mass spectrometry was used to profile metabolites in
damaged and undamaged mushrooms. GC/MS coupled with chemometric data
analysis was used to detect metabolic markers of damage and to assess the

metabolic processes that occur.
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Chapter 3. FTIR

3. The use of fourier transform infra-red spectroscopy and chemometric
data analysis to evaluate damage and age of mushrooms (Agaricus
bisporus)

The aim of this study was to investigate whether the chemical changes induced by
mechanical damage and ageing of mushrooms can be (a) detected in the mid-infrared
absorption region and (b) identified using chemometric data analysis. Further, the ability to
develop a rapid tool that could detect physical damage and age before browning becomes
visible would be of importance to the mushroom industry and could reduce economic

losses.

3.1. MATERIAL AND METHODS

3.1.1. Mushrooms

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin,
Ireland) and harvested damage-free. A set of 160 (n = 160) closed cap, defect-free A.
bisporus strain Sylvan A15 (Sylvan Spawn Ltd., Peterborough, United Kingdom)
mushrooms (3-5 cm cap diameter) were selected for this study and immediately
transported by road to the testing laboratory. Special trays were designed to hold
mushrooms by the stem using a metal grid to avoid contact between (a) the mushrooms, (b)
the tops of mushroom caps and (c) the tray lid during transportation. Mushrooms arrived
at the laboratory premises within 1 hour after harvesting and were either damaged for the
specified time length or remained damage-free and then stored at 4 °C until required for

analysis.
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3.1.2. Mushroom Treatments

Mushrooms (n = 160) were harvested in the conventional manner on a single occasion. On
the day of harvest a random subset (n = 80) was subjected to physical damage using a
mechanical shaker (Gyrotory G2, New Brunswick Scientific Co., USA) set at 300 rpm
(rotations per minute) for 20 min giving these mushrooms an L-value of 86 which
according to Gormley and O’Sullivan places them in a category of good quality and
acceptability at the beginning of the storage experiment (Gormley and O'Sullivan, 1975).
These samples were labelled as damaged (D). The remaining 80 mushrooms were
untreated and labelled undamaged (UD). 10 damaged and 10 undamaged mushrooms were
selected at random from their respective subsets on the day of harvesting and prepared for
spectroscopic analysis (see below). These are referred to as day 0 samples. The remainder
of the mushrooms (70 each of damaged and undamaged) were placed in plastic punnets
and stored as separate batches at 4 °C in a controlled temperature facility (Labcold
sparkfree refrigerator, UK). On each of the seven consecutive days of such storage, a set of
10 damaged and 10 undamaged mushrooms were randomly selected, removed from

storage and prepared for FTIR spectroscopic analysis.

3.1.3. FTIR Spectroscopy

Sample preparation involved the manual dissection of each mushroom into its three main
tissue types (cap, gills and stipe) before freezing overnight at -70°C in a cryogenic
refrigerator (Polar 340V, Angelantoni Industrie spA, Massa Martana, Italy) followed by
freeze-drying (Micromodulyo, EC Apparatus Inc, New York, USA) for 24 h. Freeze-dried
samples were manually ground into fine particles using a pestle and mortar. Then 9 mg
(3% w/w) of each sample was mixed with 291 mg (97%w/w) of KBr (Sigma Aldrich,
Dublin, Ireland). KBr pellets were prepared by exerting pressure of 100 kg/cm? (1200 psi)

for approximately 2 min in a pellet press (Specac, United Kingdom). To eliminate any
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interference which might be caused by variation in pellet thickness different pellets were
prepared from the same sample and their infrared spectra were compared. These samples
were identical with their average spectra used for analysis (Garip et al., 2009).

Spectra were collected using a Nicolet Avatar 360 FTIR E.S.P (Thermo Scientific,
Waltham, MA, USA) over the frequency range 4000-400 cm™. One hundred scans of each
pellet were collected at 4 cm™ resolution at room temperature using OMNIC software
(version ESP 5.1). The average of the 100 scans was used for further data analysis. FTIR
spectral data were discretized resulting in spectra containing 1868 individual points
(discretized every 2 cm™) for chemometric analysis.

The table (Table 3.1) below contains a summary of the sample numbers, sample ages and

number of spectra taken during the study.

Table 3.1 Summary of samples analysed by FTIR spectroscopy

Age (Day) Damage (Min) Tissue Number of Spectra
0 0 C,G,S 30
0 20 C,G,S 30
1 0 C,G,S 30
1 20 C,G,S 30
2 0 C,G,S 30
2 20 C,G,S 30
3 0 C,G,S 30
3 20 C,G,S 30
4 0 C,G,S 30
4 20 C,G,S 30
5 0 C,G,S 30
5 20 C,G,S 30
6 0 C,G,S 30
6 20 C,G,S 30
7 0 CG,S 30
7 20 C,G,S 30

C,G,S: Cap, gills, stipe

3.1.4. Chemometric Data Analysis

Multivariate models for damage and age prediction in mushrooms using both raw (i.e.

unmodified) and pre-treated spectral data were developed. The pre-treatment used was
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standard normal variate (SNV) and was intended to reduce scatter-induced effects in the
spectra (Preisner ef al., 2008). The frequency region studied was 2000-400 cm’
(fingerprint region). This spectral region encompasses absorptions from most of the
chemical species present and attenuation of the dataset in this way avoids spectral regions
which have low information content and may therefore interfere with effective model
development.

Principal component analysis (PCA) was used to identify patterns in data in a way which
emphasises differences and similarities. It is used to indicate relationships among groups of
variables in a data set and show relationships that might exist between objects (Zheng et
al., 2009).

Random forest (RF) models were built to (a) discriminate between damaged and
undamaged mushrooms and (b) to predict mushroom ages. The number of trees fitted to
build the random forest was 1000. The number of random wavenumbers tried at every
node of the tree was set at 500 after optimization and the RF model trained was made using
a stratified random sampling strategy of the sample spectra that would take the same
number of samples from each of the tissues.

Partial least squares (PLS) regression was applied to the spectral data sets to develop a
quantitative model for prediction of the age of damaged mushrooms. A common problem
in development of multivariate prediction models is selection of the optimum number of
PLS loadings. Often this selection is based on an examination of the root-mean-square
error of cross-validation (RMSECV). But identification of a minimum is not always
possible or unambiguous and sub-optimal models incur a significant risk of overfitting.
Experience has shown that this can be a problem when parameters which are of practical
relevance, such as post-harvest age or damage, but have unclear molecular basis are being

modelled. To avoid overfitting, model cross validation was employed as follows:
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1. Samples were randomly-designated from each tissue/damage status/time grouping
as calibration (60%) or validation (40%) samples. The validation subset was left
out during the optimization of model based on the calibration set.

2. The model optimization step was carried out in order to estimate optimal
dimensionality of the PLS model built on the calibration set. The method employed
for this was based on the observation that an indication of overfitting is the
appearance of noise in regression vectors. This takes the form of a reduction in
apparent structure and the presence of sharp peaks with a high degree of directional
oscillation. A simple method (Gowen et al., 2010) for objectivity quantifying the
shape of a regression vector, combined with the root mean square error of cross-
validation (RMSECYV) for the calibration set was applied in this study.

3. The random sample designation, model development and evaluation were
performed 100 times. At the end of this cycle, models were initially examined on
the basis of the number of latent variables selected. The most common number was
then chosen as the optimum.

Mushroom discrimination (damaged versus undamaged) was performed using partial least
squares discrimination analysis (PLS-DA). For PLS-DA, analytical contrasts were used to
specify the damaged and undamaged factor. PLS-DA calibration models were developed
and assessed using 100 randomly-populated calibration and validation sample sets.

Principal component analysis (PCA) and partial least squares (PLS) regression were
performed using MATLAB and The Unscrambler software (v.9.7; Camo A/S, Oslo,
Norway). The routine for selection of the optimum number of PLS loadings was also
performed in MATLAB. Random forest (RF) modelling was performed using R 2.8.0 (R

Development Core Team, 2007).
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Univariate statistical analysis was carried out on specific wavenumbers highlighted by RF
models as being important variables for detecting damage in mushrooms. The significance
of damage and tissue factors and their interactions was tested by analysis of variance

(ANOVA). R 2.8.0 was used to analyse the data.

3.2. RESULTS AND DISCUSSION

3.2.1. Spectral Data

Average raw spectra of each of the three tissue types collected from all the damaged and
undamaged samples (day 0-7) are shown in Figure 3.1(a-c). A number of observations may
be made on these spectra:

First, the major feature is a vertical offset from one average plot to another. This offset
originates in light scatter effects and may be a complication in further data analysis.
Average spectra of the three tissue types also bear a close resemblance to each other with

little visible difference in peak minima locations in Figure 3.1.
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Figure 3.1 FTIR transmittance spectra of all mushroom tissues in (a) 400-1800 cm™ (b) 2800-3050- cm™
and (c) 3050-4000 em” ranges

In terms of minima locations there are major bands at 1650, 1090, 1020 and 935 cm’ and
minor minima may be seen at 1560, 1150 and 1050 cm™ (Figure 3.2). Unambiguous
identification of the molecular source of features in mid-infrared spectra of biological
material is difficult but the peak at 1650 may be attributed to an amide I group vibration
while the peak at 1560 cm™ may be identified as resulting from vibrations of amide II

groups (Belton et al., 1995; Di Mario et al., 2008).
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Figure 3.2 Average FTIR spectrum of undamaged cap tissue 4000-400 cm™ (raw data)
Both major absorption peaks at 1090 and 1020 cm™ have been attributed to vibrations of
chitin, a major structural polysaccharide in mushrooms. Absorption at 1090 cm™ may also
arise from vibrations of secondary alcohols. Smaller features at 1150 and 1050 cm™ have
been attributed to vibrations of tertiary and primary alcohol structures (Workman, 2001).
Minima at 935, 890 and 874 cm™ correspond to a- and B-anomer C;-H deformations. The
vibrations at 935 and 890 cm™ are attributed to glucan vibrations, while the vibration at
874 ¢cm™! is assigned to a mannan vibration (Pierce and Rast, 1995; Sandula et al., 1999;
Mohacek-Grosev ef al., 2001). An inability to attribute all spectral features is a common
feature of spectroscopy of complex biological matrices, but the presence of such spectral
detail implies the detection of a significant quantity of information which may be usefully

interrogated by multivariate mathematical methods.

3.2.2. Principal Component Analysis

Undamaged samples were studied separately on the basis of their tissue type i.e. caps, gills

and stipes. The initial PCA of the mushroom caps data revealed a single sample (day 7)
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that lay anomalously at some significant distance from the others. This was deleted and the
resulting score plot is shown in Figure 3.3 for PC1 versus PC2. These first two principal
components accounted for 97 and 2% respectively of the total variance in the spectral
dataset and some sample clustering on the basis of storage time is readily apparent. As a
general observation, it may be stated that the majority of the day 0 mushroom caps have a
score value on PCI1 greater than zero and are therefore located on the right-hand-side of
Figure 3.3(a). While there are indications in the plots that samples of different storage time
cluster together, the spread of these clusters is quite large and it is not possible to readily
discern any trend relating plot position and storage time. There is a suggestion that the
dispersion of the samples decreases as the length of storage time increases. With regard to
undamaged gill tissue, observations similar to those made above in relation to undamaged
caps may be made although the distribution patterns are somewhat different.

In the case of damaged mushroom tissues, a different pattern was found. It is clear from
Figure 3.3(d-f) that day 0 samples clustered together but separately from those of day 1 to
day 7 samples, irrespective of tissue type. This strongly suggested that physical damage
had a significant effect on tissue structure and the subsequent ageing process. Some
implications regarding the rate of change of mushroom tissue composition with ageing
may be garnered from the observation that separation of day 0 from all other subsequent
days accounts for the most variation in the spectral collection of damaged mushroom caps,

gills and stipes.
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Figure 3.3 PClversus PC2 score plots of undamaged mushroom tissue (a) caps (b) gills (c) stipes and

damaged tissue (d) caps (e) gills and (f) stipes; 0-7: Sample ages from zero to seven days
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3.2.3. Detection of Damage

3.2.3.1.  Random Forests

The first random forest model developed attempted to identify which wavenumbers could
be used to predict damage specifically. The model tried to predict damage in mushrooms
using the IR spectra, a variable indicating the tissue from which the spectra originated (cap,
gill or stipe) and the age of the mushroom (in days from 0-7) as explanatory variables. This
resulted in good classification between damaged and undamaged samples with an out-of-
bag error rate (OOB) of 5.9%, sensitivity 93.3% and specificity 95%.

In RFs there are two measures of importance to indicate how informative a particular
variable (a wavenumber in our case) is, the mean decrease in accuracy and the Gini index.
The decrease in Gini index is not as reliable as the marginal decrease in accuracy
(Breiman, 2001; Pang et al., 2006) and for that reason the latter was analysed. The most
important variables for predicting damage in the model are shown in Figure 3.4(a). The
most important variable was the age of the mushroom samples followed by the
wavenumbers 1868, 1870 and 1845 cm.

Induced damage in mushrooms leads to an enzymatic response which is followed by
brown discolouration. The enzymes involved in this response, tyrosinase or polyphenol
oxidases, catalyse the oxidation of phenols, which in turn promote the formation of
melanin-like compounds. This reaction is found not only in damaged mushrooms, but is
also part of the natural ageing process, with mushrooms becoming darker and less firm
during storage (Eastwood and Burton, 2002). The three wavenumbers identified can be
used to differentiate between the chemical changes that are induced by the mechanical
damage and are independent of those that take place due solely to ageing. The three

wavenumbers are unassigned peaks.
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Figure 3.4 Relative importance plot of variables that are important in the random forest model for
predicting damaged/undamaged samples. (a)The most important variables are age followed by the
wavenumbers 1868, 1870 and 1845 cm™ (b) When age is not an explanatory variable, the most
important variables are tissue type followed by the wavenumbers 1868, 1870 and 1560 cm !

By removing the variable age from the model a second model was built and used to predict
whether there was damage or not. This random forest could be used as a classifier of
mushroom damage and gave a very good prediction model with an OOB error rate of
9.8%, sensitivity of 89.2% and specificity of 91.2%. Even receiving mushrooms whose
storage time after harvest was unknown, the model could still classify damaged and
undamaged mushroom samples with a very good classification rate. The variables of
importance involved in this classification model are shown in Figure 3.4(b).

The most important variable for predicting damage according to the mean decrease
accuracy plot is the tissue used in the analysis followed by the wavenumbers 1868, 1870
and 1560 cm”. The peak located at 1560 cm™ is attributed to amide II vibrations of
proteins (Mohacek-Grosev et al., 2001). Amide II bands are associated with an out-of-
phase combination of in-plane C-N stretching and N-H bending of amide groups (Militello

et al., 2004). Absorption of this band was found to be higher in damaged samples and
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therefore an important variable for detecting damage in mushroom samples. The
wavenumbers 1868 and 1870 cm™ are unassigned.

Appropriate univariate statistical treatment was applied to the wavenumbers identified by
RFs as being important variables for detecting damage in mushrooms. These wavenumbers
were 1868, 1870, 1845 and 1560 cm™. The significance of damage along with other factors
such as tissue type and their interactions were tested by analyses of variance (ANOVA).
Box-plots for the wavenumbers at 1560 and 1868 cm™ (Figure 3.5) show an increase in
absorbance within damaged samples, a trend which was seen for all important

wavenumbers.

Cap Gill Stalk

Cap Gill Stalk

SNV
Absorbance at 1560.21 cm [|

T
SNV
Absorbance at 1868.78 cm |

,,,,,
5

,,,,,

,,,,,,,,,,

D upD D upD D uD D ub D ub D ub

Damage Damage

Figure 3.5 Box plot showing the absorbance values for each tissue at (a) 1560 cm™ and (b) 1868 cm™
D=Damaged samples
UD=Undamaged samples
SNV=Standard normal variate (pre-treatment)

The significance of the Damage factor (p<0.001) for each wavenumber (Table 3.2)
indicates that the difference in absorbing species at these wavenumbers was significant
between damaged and undamaged samples. For all the important variables identified by
RFs, they each had higher absorption levels within damaged samples, an example of this

was seen for 1560 and 1868 cm™ in the box-plots (Figure 3.5).
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The Tissue factor also had a significant effect (p<0.001) on the absorption at these
wavenumbers. This meant that each tissue type may react differently to physical damage.

The significance of the Day*Tissue interaction means that damage and tissue type i.e. cap,
gills or stipe had an effect on the absorption of the specific wavenumbers. It should be
noted that tissue type was identified as an important variable for predicting damage (Figure
3.4b) in RF models. The box-plot (Figure 3.5) clearly shows that damaged samples had

higher absorption than undamaged samples for all tissue types.

Table 3.2 ANOVA table of the effect of damage, tissue and age on the absorption at specific
wavenumbers identified as important variables for predicting damage by RFs

Wavenumber Factor P-Value Significance Level

(em™)

1868 Damage 22x107"° A

Tissue 5.1x 10 A

Damage*Tissue 3.5x 10" A

1870 Damage 22x10"° A

Tissue 22x107° A

Damage*Tissue 0.7 x 10 ok

1845 Damage 22x107"° otk

Tissue 4.0x 10 b

Damage*Tissue 1.8x 10" oAk

1560 Damage 22x107° ok

Tissue 22x10™ s

Damage*Tissue 0.7 x 10 *x

Significance levels at 95% (*), 99%(**), 99.9% (***)

In conclusion damaged samples had higher absorption at the wavenumbers 1868, 1870,
1845 and 1560 cm™ compared to undamaged samples regardless of tissue type. The
ANOVAs are therefore complimentary to RF models for damage as the variables of
importance for predicting damage were significantly different between damaged and

undamaged samples.
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3.2.3.2.  Partial Least Squares

PLS-DA models were developed to discriminate between undamaged and damaged
mushrooms of all tissue types separately. A summary of the average and dispersion of the
results obtained on a percentage basis for each tissue is shown in Table 3.3.

Table 3.3 Summary of results for mushroom discrimination using PLS-DA on the basis of damage

Tissue type #Samples #Loadings % % damaged
undamaged misclassified
misclassified mean (std.

mean (std. deviation)
deviation)
Caps 160 7 4.1 (4.3) 7.6 (4.0)
Gills 160 9 2.1 (3.0 0.8 (1.7)
Stipes 160 12 1.7 (2.1) 0.6 (1.5)

It is apparent that misclassification errors associated with all models are low, especially so
in the case of gills and stipes. In terms of numbers of samples misclassified, these
percentages translate to only 1 or 2 samples in each case. These results indicate that FTIR
of freeze-dried mushroom tissues (especially gills and stipes) may be used to discriminate
between damaged and undamaged mushrooms aged post-harvest from 0-7 days with
almost complete confidence.

Modelling damage in mushrooms has been reported in literature in 2008 by Gowen and
colleagues and Esquerre et al., in 2009 (Gowen et al, 2008a; Esquerre et al., 2009).
Gowen and colleagues investigated the use of hyperspectral imaging and principal
component analysis (PCA) to develop models to predict damage on mushroom caps with
correct classification ranging from 70-100%. Using near infra-red spectroscopy and partial
least squares (PLS) regression, Esquerre and colleagues were able to correctly classify
undamaged mushrooms from damaged ones with an overall correct classification model
with 99% accuracy. The models for predicting damage using FTIR and random forests
correctly classified 94 and 90% of samples respectively, whilst the PLS predictive models

correctly classified 92-99% of undamaged samples from damaged ones.
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These results highlight the usefulness of FTIR and chemometrics for detecting damage in
mushrooms. This could lead to the development of a monitoring and classification system
to detect physical damage before browning becomes visible, using specific wavenumbers

identified as important variables in the ‘fingerprint region’ of mushroom spectra.

3.2.4. Predicting Postharvest Age

3.2.4.1.  Random Forests

Initial random forest models were built to predict the mushroom age from day zero to
seven (0-7) using the IR spectra from the tissues and knowing whether they had been
subjected to damage or not with the aim to identify specific wavenumbers associated with
ageing. The random forest model produced an OOB error rate of 32% i.e. 68% of samples
were correctly classified. The results of the model fit are shown in Table 3.4.
Misclassification of samples was seen for all mushroom ages particularly days 4, 5 and 7.
Classification of day zero samples performed quite well in the model with 82% of samples
correctly classified, which leads to the possibility of using IR spectroscopy as a tool to
discriminate fresh mushrooms (D0) from mushrooms that have been subjected to
refrigeration. This type of tool could enable packers and producers to avoid fraud and

‘recycling’ of product, supporting the evidence from visual inspection.
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Table 3.4 Confusion matrix and the error rate for the prediction of mushroom age. The OOB error
rate: 32%. The numbers in bold are correctly classified samples

Predicted Age
0 1 2 3 4 5 6 7 Error rate
0 49 3 0 3 2 0 3 2 0.18
° 1 1 42 2 4 0 1 4 6 0.30
Eﬂ” 2 4 5 43 2 3 0 0 3 0.28
= 3 1 3 5 47 2 1 0 1 0.22
g 4 3 0 3 3 32 2 8 9 0.47
< 5 0 0 3 12 3 29 4 8 0.51
6 1 0 6 0 2 0 48 3 0.20
7 2 1 5 2 2 6 8 34 0.43

0-7: Sample age in days from day zero to day seven
Error rate: The % misclassification for each sample age

The variables of importance identified by the mean decrease accuracy plot were damage,
tissue type and the wavenumbers 399, 952 and 1508 cm’ (Figure 3.6a).

A second model was developed to predict age using the same approach as above but
removing the damage variable from the model. The model performed similarly to above
with an OOB error rate of 33%. Again misclassification within all samples ages was seen.
The model correctly classified 79% of day zero samples. The important variables identified
to predict age were tissue type and the wavenumbers 399, 954, 952 and 1508 cm™ (Figure
3.6b). The peak located at 952 cm™ is assigned to a vibration of glucan (B-anomer C-H
deformation) (Mohacek-Grosev et al., 2001). Glucans play many different roles in the
physiology of fungi, with some accumulating in the cytoplasm as storage. However most
are present in the cell wall structure (Ruiz-Herrera, 1992). This suggests that the ability to
model ageing in mushrooms may depend on the effect of glucan levels changing in the cell
wall due to natural senescence. The bands at 399 and 1508 cm™ are unassigned. The OOB
errors produced to model ageing were quite large >33% which may be due to the low

sample numbers.
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Figure 3.6 Relative importance plot of variables that are important in the random forest model for
predicting age. (a) The most important variables are damage followed by tissue type and the
wavenumbers 399, 952 and 1508 cm” (b) When damage is not a variable, the most important variables
are tissue types and the wavenumbers 399, 954, 952 and 1508 cm™.

3.2.4.2.  Partial Least Squares

PLS regression was applied separately to the caps, gills and stipes datasets in an attempt to
develop separate quantitative models for prediction of the age of mushrooms, both
damaged and undamaged. Selection of the appropriate number of latent variables for each
model was assessed on the basis of the frequency of their occurrence. As shown in Figure
3.7, this was a clear and unambiguous choice. A summary of the results obtained using
mushrooms from day 0 to 7 inclusive is shown in Table 3.5. In the case of undamaged
mushrooms, root mean squared error of cross validation (RMSECV) values achieved were
relatively high, only permitting the prediction of post-harvest age of damaged mushrooms

to within £2 to 3 days approximately (95% confidence limit) depending on tissue type.
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Figure 3.7 Frequency of generation of PLS regression models for mushroom post-harvest age on the
basis of the number of latent variables selected. (a) undamaged caps, (b) undamaged gills, (c)
undamaged stipes, (d) damaged caps, (e¢) damaged gills and (f) damaged stipes. Abiscissa — no. of
latent variables in model; ordinate — no. of occurrences

Table 3.5 Summary of PLS regression results for the prediction of post-harvest age (day 0-7 inclusive)

in undamaged and damaged mushrooms

Treatment Tissue #Samples  #Loadings RMSECV* RER**
Undamaged Caps 80 7 1.2 2.0
Gills 80 7 1.5 1.6
Stipes 80 7 1.2 1.9
Damaged Caps 80 7 1.3 1.9
Gills 80 8 0.8 3.1
Stipes 80 6 1.2 2.2

*RMSECV= root mean square error of cross-validation (mean of 100 runs); **RER = SD/RMSECV

The practical utility of such accuracy levels may be gauged by examination of the
SD/RMSECYV ratio, all but one of which are below 3.0, the generally accepted minimum
value for a model to be of practical utility. With regard to damaged mushrooms, model
predictive accuracies were similar for caps and stipes with RMSECV (and RER) values of
1.3 (1.9) and 1.2 (2.0) respectively. In the case of gill tissue, better predictive accuracy was
achieved with RMSECYV and RER values equal to 0.8 and 3.1 respectively. The number of

latent variables associated with these models was low and similar in all cases, with a
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variation between 6 and 8 only. The application of an objective indicator of the optimum
number of PLS loadings to include in any model contributed to their stable performance.
The results presented for modelling age in mushroom using FTIR and chemometrics had
misclassification errors of over 30% (RFs) yielding relatively unsuccessful results.
However, random forest models were able to classify day zero samples reasonably well
with correct classifications of 82 and 79% which leads to the possibility of using IR
spectroscopy in detecting fresh mushrooms from old mushrooms and could be used within
the sector for detecting fraud and ‘recycling’ of product.

The time required for freeze-dried sample preparation and measurement in this protocol is
of the order of hours. Thus this approach would be applicable for research and quality
control purposes. However, this may be reduced to the order of minutes by the use of
specific wavenumbers, possibly raw mushroom tissue and alternative IR sample handling
(i.e. attenuated total reflectance). This study highlights the usefulness of FTIR coupled

with chemometric data analysis in particular for evaluating damage in mushrooms.

3.3. CONCLUSIONS

FTIR and chemometric data analysis was applied to evaluate damage and age in
mushrooms. RF models were produced with the ability to predict damage in mushrooms
with low error rates (<10%). The first model developed used the IR spectra, a variable
indicating the tissue type and the age of the sample as explanatory variables. This model
produced a very low OOB error rate of 5.9%. A second model was produced with the age
variable removed and this model performed well with an OOB error rate of 9.8%.

PLS-DA models were developed to discriminate undamaged and damaged mushrooms of
all tissue types separately. Misclassification errors were low in all models, particularly in

the case of gills and stipes. The use of FTIR coupled with PLS-DA produced strong
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models with the ability to discriminate between damage and undamaged samples with
almost complete confidence.

Random forest (RF) models were developed to try to predict mushroom age from day zero
to day seven (0-7). Unfortunately models produced high error rates (>30%). However the
model could correctly classify 82% of day zero samples, which could be used to
discriminate fresh mushrooms from mushrooms that are one day or older and have been
subjected to refrigeration.

PLS regression was applied to tissue types separately in an attempt to develop separate
quantitative models for age prediction. Undamaged and damaged samples were treated
separately. The models were able to predict postharvest age to within 2-3 days depending
on tissue type for undamaged mushrooms. Damaged models resulted with predictive
accuracies similar for caps and stipes (2 days), with better predictive accuracy achieved for
gills.

Results presented in this work show that FTIR spectroscopy and chemometrics could be
used to classify mushrooms according to their damage class (i.e. undamaged or damaged).
This study demonstrates the potential use of FTIR as a tool for discriminating damage in

mushrooms with the potential for developing a classification system for the industry.
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4. The use of nuclear magnetic resonance spectroscopy and chemometric
data analysis to evaluate low damage levels in mushrooms (Agaricus
bisporus)

The aim of this study was to investigate the chemical changes induced by low levels of

mechanical damage in mushrooms using 'H NMR spectroscopy and to identify the extent

of damage using NMR together with chemometric data analysis.

4.1. NMR Li1rID PROFILE OF MUSHROOMS

Lipid extracts from Agaricus bisporus have been analysed by 1D-proton and 2D-proton
COSY NMR spectroscopy. Bonzom and colleagues studied a series of lipids extracted
from freeze-dried mushrooms and performed qualitative and quantitative analysis. The
data obtained was both accurate and detailed and obtained without chemical modification
of the samples (Bonzom et al., 1999).

In addition, similar success with this method was observed for metabolic profiling of
lettuce leaves by Sobolev et al.. In this study a large number of water soluble metabolites
and complex spectra of metabolites extracted in organic solvents were fully assigned
(Sobolev et al., 2005).

The results of both these studies demonstrate the potential of NMR spectroscopy as a
method for the study of plant metabolism. It could also provide a useful tool for the studies

of plant diseases, toxicity and the monitoring of metabolic changes.
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4.2. MATERIAL AND METHODS

4.2.1. Mushrooms

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin,
Ireland) and harvested damage free. A set of 120 closed cap mushrooms (n = 120) were
selected each week for three weeks (i.e. 3 repetitions) for this study. A subset (n = 60) were
labelled day zero mushrooms and the remaining sixty samples were labelled as day one
samples. From each subset of sixty, thirty (n = 30) were labelled as damaged (D) and
subjected to physical damage using a mechanical shaker set at 300 rpm (rotations per
minute) for 30 seconds, giving these mushrooms an L-value of 98, which according to
Gormley and O’Sullivan places them in a category of excellent quality (Gormley and
O'Sullivan, 1975). The remaining samples (n = 30) were labelled as undamaged (UD).

Day zero samples were prepared for analysis while day one samples were stored overnight
at 4 °C before being prepared for NMR analysis. A total of 1200 (600 polar and 600 non-

polar) samples were analysed by NMR spectroscopy, a summary of which is given in

Table 4.1.
Table 4.1 Summary of samples analysed by NMR spectroscopy
Age Damage Tissue Number of Number of
(Day) (Seconds) Samples Spectra (polar
& non-polar)
0 0 Cap 30 60
Gills 10 20
Stipes 10 20
0 30 Cap 30 60
Gills 10 20
Stipes 10 20
1 0 Cap 30 60
Gills 10 20
Stipes 10 20
1 30 Cap 30 60
Gills 10 20
Stipes 10 20
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4.2.2. NMR Profiling Protocol & Overview

Sample preparation involved the manual dissection of each mushroom into its three main
tissue types (cap, gills and stipes). The samples were then frozen overnight at -70 °C in a
cryogenic fridge (Polar 340V Cryogenic fridge, Angeelantoni Industrie spA, Massa
Martana, Italy), followed by freeze-drying (Micro-modulyo, EC Apparatus Inc, New York,
USA). Dried sample tissues were then ground into a fine powder using a pestle and mortar
and an extraction of polar and non-polar phases was performed as described by Wu et al.,
with minor modifications (Wu et al., 2008). An overview of the experimental procedure is

described in Figure 4.1.

{Freeze-dried sarnples}

s N

(Extraction of polar phase} (Extraction of non-polar phase}
[Dissolve in DMSO] [Dissolve in CDCly ]

l l

Figure 4.1 Overview of metabolite fingerprinting NMR spectroscopy protocol

4.2.2.1. Extraction

A tissue sample (400 mg) was homogenised in methanol (4 ml/g) and cold water (0.85
ml/g) in a Teflon tube. The homogenate was placed into a glass vial and the following
solvents were added; chloroform (4 ml/g) and water (2 ml/g). Samples were then vortexed
for 60 seconds, left on ice for 10 minutes to partition and centrifuged for 10 minutes at

2000 g at 4 °C. The polar phase samples were dissolved in dimethyl sulfoxide-dg (DMSO-
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ds, 99.99 atom % D) (Sigma Aldrich, Dublin, Ireland). The non-polar phase samples were
dissolved in deuterated chloroform (CDCl;, 99.98 atom % D, containing 0.1% (v/v)
tetramethylsilane (TMS)) (Sigma Aldrich, Dublin, Ireland). All solutions were filtered
through glass wool and transferred to standard 7 mm NMR tubes (Sigma Aldrich, Dublin,

Ireland).

4.2.3. NMR Measurements

'H NMR experiments were carried out on a Bruker Avance III 500 MHz spectrometer
(Bruker Avance III UltraShield 500 MHz NMR, Germany) with a transmitter frequency of
500.13 MHz for protons (Figure 4.2). The pulse programme used was zg30 using a 30
degree flip, dwell time of 48.4 ps, acquisition time of 3.17 seconds and acquisition mode
was DQD. 16 scans and 2 dummy scans were used and the sweep width was 20.7 ppm and
receiver gain was 456. For processing a line broadening of 0.3 Hz was applied and the
baseline correction used a 5 degree polynomial.

Spectra were referenced using the residual chloroform for DMSO signals. All spectra were
obtained at 198 K. The NMR preprocessing software used was TOPSPIN 2.1 (version

2.1.4, Bruker BioSpin, Germany).
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Figure 4.2 (a) Bruker Avance III 500 MHz spectrometer and (b) NMR spectroscopy tubes containing
mushroom samples stacked in the autosampler

4.2.4. Chemometric Data Analysis

The analysis of NMR data involved the following steps:

1. A preliminary observation of the data using principal component analysis (PCA) to
identify clusters of data and outliers as appropriate.

2. Modelling the data using random forests (RF) was performed in order to confirm
the ability of multivariate statistics to predict damage with the purpose of
identifying important frequencies (signals) in the discrimination which may be used
for the identification of markers of low level damage.

3. Univariate statistics (ANOVA) were used to assess the ability of the selected
frequencies (signals) in the NMR spectra to discriminate low levels of damage.

4. A further step of modelling the data was performed in which the data was split into
a training and test database using a random sampling procedure and resulting in

75% of the data being used for training and 25% for testing (Figure 4.3).

78



Chapter 4. NMR

5. Partial least squares discriminant analysis (PLS-DA) using the indications of the

PCA and optimising the hyperparameter of the number of components in the PLS
regression step was performed. Confusion matrices for the training and test sets
were used to identify the ability of PLS-DA models to discriminate damage.

Principal component analysis (PCA), random forests (RF), partial least squares
(PLS) and univariate statistical analysis were performed using R 2.10.0 (R

Development Core Team, 2009).

75% of sampy \2\5% of samples

{Training Data set}

S <ed learning ¢ Used as a masked test
upervised learning to set to assess prediction
determine optical

parameters

{Sensitivity and Speciﬁcity)

Figure 4.3 Illustration of the splitting into training & test datasets to assess the prediction of damage in

mushrooms (Pers et al., 2008)

4.3. RESULTS AND DISCUSSION

4.3.1. Non-polar Phase Spectral Analysis

Figure 4.4 represents a typical 'H NMR spectra for a day zero undamaged non-polar phase

fraction of a mushroom sample. Three distinct regions are apparent.

1.

Aromatic groups are represented by signals between 6-10 ppm. A number of
phenolic compounds are present in mushrooms. The main natural phenolics present
in  Agaricus bisporus are glutaminyl-4-hydroxybenzene, p-aminophenol,

phenylalanine and tyrosine (Jolivet et al., 1998). A number of other phenolics have
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been reported in literature as being indentified in mushrooms such as p-
hydroxybenzoic acid, p-coumaric acid and cinnamic acid (Gasowska et al., 2004;
Tsai et al., 2009; Vaz et al., 2011).

. Carbohydrate groups are typically represented by signals between 3-6 ppm.
Numerous carbohydrates have been reported in literature as present in mushrooms
such as ribose, xylose, mannose, glucose, sucrose and trehalose (Beecher et al,
2001; Heleno et al., 2009; Kalac, 2009).

. Finally lipid groups (aliphatic) are typically represented by signals between 0-3
ppm. A number of lipids have been reported in literature as present in mushrooms
including fatty acids (Holtz and Schisler, 1971; Byme and Brennan, 1975; Yilmaz
et al., 20006), sterols (Yokokawa and Mitsuhashi, 1981; Weete et al., 1985; Bonzom
et al., 1999; Teichmann et al., 2007), acylglycerols (Bonzom et al., 1999) and

phospholipids (Bonzom ef al., 1999).

Figure 4.4 Representative '"H NMR spectrum of undamaged day zero non-polar phase cap tissue
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Unfortunately poor resolution of the peaks hinders identification and assignment of
individual groups for qualitative purposes. However, distinct variations can be observed

between damaged and undamaged samples (Figure 4.5).

Figure 4.5 "H NMR spectrum of (a) undamaged cap versus (b) damaged cap day zero (non-polar
phase)
Arrows and circles are used to highlight differences between the spectra

Figure 4.5 depicts the typical spectra of (a) undamaged day zero cap and (b) damaged day
zero cap. Visible differences in the spectra are highlighted. Peaks in the same areas appear
less resolved and in some instances, signals are completely lost in the damaged samples.
This is highlighted in the carbohydrate and aromatic regions (arrows and circles).

Although the identification of phenolic compounds was inconclusive, there were noted
differences between this region in the damaged and undamaged mushroom samples. A
definite decrease can be seen for the peak located at 7.3-7.4 ppm. There was also a loss of
a number of signals beside this peak suggesting that phenolic compounds in mushrooms
may be affected by low levels of damage indicating that this region of the spectra could

possibly be used to discriminate between damaged and undamaged mushrooms.
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The carbohydrate region also showed variation between the spectra of damaged and
undamaged mushroom samples. The spectra for damaged mushroom caps contains less
peaks in this region (as for all regions) again indicating that this type of damage may have
an effect on carbohydrates present in mushroom cap samples which might be measureable
by NMR spectroscopy.

Fatty acid chains are represented in the aliphatic region, with differences in the spectra also
suggesting possible effects of damage to the mushrooms on these lipid groups. Differences
in the spectra of both gills and stipes are also evident (Figure 4.6). The ability to detect
these levels of damage i.e. 30 seconds, illustrates the potential of NMR analysis as a tool

for profiling damage in mushroom samples.

Figure 4.6 '"H NMR spectra of non-polar phase day zero undamaged (red) and damaged (blue) (a) gills
and (b) stipes
4.3.1.1. Assignment of Signals

The assignment of individual metabolites by NMR analysis has been shown by Bonzom
and colleagues. In this study lipid mixtures were separated on solid phase by ion exchange

chromatography into four separate fractions corresponding to neutral lipids, free fatty

82



Chapter 4. NMR

acids, neutral phospholipids and acidic lipids. The total lipid content was found to be
represented by resonances at 2.31 ppm. This peak corresponds to the carboxylate protons
(CH>COO), which are present in all free fatty acids or conjugates. Hence the total lipid
fraction was measurable (Bonzom et al., 1999). Similar results were noted in the study of
lettuce leaves (Sobolev et al., 2005). NMR analysis also showed a similar peak at 2.3-2.4
ppm representing the CH,COO protons of the lipid fraction of the sample.

In addition further lipid protons were also identified in these two studies, allowing
unequivocal assignment of individual fatty acid groups. For example, Bonzom et al
reported the following signals: A resonance at 2.0-2.1 ppm was assigned to protons next to
the double bonds in the lipid chain (CH,CH=CHCH,). 'H resonance at 1.6-1.7 ppm was
assigned to protons next to the carboxylate groups (CH>CH,COO). The 'H resonance
peaks between 1.2-1.4 ppm were attributed to CH, protons in the lipid chain, with signals
around 0.86 ppm assigned to methyl groups of the lipids (CH3) (Bonzom et al., 1999).
These findings are also supported by lipids identified in lettuce leaves (Sobolev et al.,
2005).

Figure 4.7 shows the expanded aliphatic region of the spectrum of undamaged day zero
cap tissue. Although the peaks are not resolved, comparisons can be made between results
obtained in this study and the aforementioned studies. A peak at around 2.3 ppm (Figure
4.7) may represent the carboxylate protons (CH,COO) of the lipids present in the sample,
potentially identifying the total lipid content. The remaining groups identified by Bonzom
et al CH,CH=CHCH,, CH,CH,COO, CH, and CH; may also be represented by peaks 2 to

5 respectively in Figure 4.7. Further resolution is needed to fully assign these signals.
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Figure 4.7 '"H NMR spectrum (expanded) of lipidic fraction of undamaged cap tissue day zero
containing possible signals for 1: CH,COO, 2: CH,CH=CHCH,, 3: CH,CH,COO, 4: CH,, 5: CH;

Identification of individual peaks was not attempted for signals in the aromatic or
carbohydrate regions. Interpretation of the 'H NMR spectra was difficult in these regions

without better resolution of the signals.

4.3.2. Polar Phase Spectral Analysis

Figure 4.8 shows a typical '"H NMR spectrum of undamaged polar phase cap tissue in
DMSO. The polar phase spectra are not as information rich compared to the non-polar
phase spectra, nonetheless peaks are present in the aliphatic (amino acids) and midfield

(carbohydrate) regions of the spectra.
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Carholyrdratgs

Brnino acids
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Figure 4.8 Representative '"H NMR spectrum of undamaged day zero polar phase cap tissue

Although a number of differences were noted between non-polar phase spectra for
damaged and undamaged mushroom samples, this trend was not as clearly observed for

polar phase samples (Figure 4.9).

(@

(b)

Figure 4.9 "H NMR spectrum of (a) undamaged cap day zero versus (b) damaged cap day zero (polar
phase)

Further extraction and purification procedures would be recommended in an attempt to

identify individual peaks qualitatively and quantitatively. Suitable extractions may be
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performed which specifically target individual groups. For example, extraction of
phenolics using an acetone and water mixture described by Cheung et al. may be used to
isolate these groups. The purpose of this study was to analyse the antioxidant activity and
total phenolics of edible mushroom extracts. This extraction procedure could also be used
for NMR analysis. The procedure involved freeze-drying the mushroom samples, followed
by extraction using a Soxhlet extractor under reflux conditions. The residues were then
extracted by boiling water with the organic solvent extracts removed using rotary
evaporation and the water extracts dried in a freeze-dryer. Analysis was then carried out
(Cheung et al., 2003).

The Bligh and Dyer method was used by Bonzom ef al. to extract lipids from freeze-dried
and powdered cultivated Agaricus bisporus prior to NMR analysis (Bligh and Dyer, 1959).
This was followed by solid phase chromatographic extraction, as it provides a rapid and
effective way of isolating compounds of interest from complex matrices. Bond Elut ion-
exchange chromatography was successfully used to separate lipids into four fractions,
which were then analysed separately by NMR analysis (Bonzom et al., 1999).

The successful extraction of individual groups of metabolites may optimise this method as
a possible technique for profiling the effect of damage on mushroom metabolites. As seen
by Bonzom et al., integration of the signals aid in identification of individual metabolites,
which may then be measured as means of assessing the effects of damage and time on the

type and amounts of metabolites in these mushrooms.

4.3.3. Principal Component Analysis

Samples were studied separately based on their tissue type i.e. cap, gills and stipes and on
their age i.e. day zero and day one. Polar and non-polar phase groups were examined
individually. PCA is an unsupervised method which converts high-throughput instrumental

data (i.e. NMR) into a qualitative visual presentation (score plot) (Lindon et al., 2001),
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resulting in sample clustering into either similar or different groupings. The purpose of
PCA in this study was to discriminate between classes i.e. damaged and undamaged
mushrooms.

Score plots were analysed for a number of principal components (PCs). However, there
was no separation between clusters i.e. no clear differentiation between damaged and
undamaged samples. This trend was seen for all tissue types, days and phases (polar/non-
polar). Examples are given in Figure 4.10 for non-polar gill tissue and in Figure 4.11 for

polar gill tissue.

Figure 4.10 PC1 versus PC2 score plots of non-polar phase gill tissue for (a) day zero samples and (b)
day one samples

The score plots for non-polar phase gill tissues are shown in Figure 4.10 for PC1 versus
PC2. These first two principal components accounted for 46 and 43% respectively for day
zero samples and 47 and 34% for day one samples. No clear separate clusters were found
for non-polar phase samples. A similar trend was found in polar phase samples (Figure

4.11).
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Figure 4.11 PC1 versus PC2 score plots of polar phase gill tissue for (a) day zero samples and (b) day
one samples

4.3.4. Detection of Damage

4.3.4.1. Random Forests

Overall random forest models were produced for all non-polar phase spectra (cap, gills,
stipes) and for all polar phase spectra (cap, gills, stipes). RF models were developed for
each day (day one/day zero) and for the individual tissues separately (Table 4.2). Non-
polar phase samples produced the best models for discriminating between damaged and
undamaged mushrooms, with non-polar phase stipes having the lowest OOB error rate
(10%), followed by non-polar phase gill tissue (>15%). Visible differences could be clearly
seen between damaged and undamaged non-polar phase '"H NMR spectra for all tissue
types prior to chemometric analysis (Figure 4.5).

Differences between damaged and undamaged spectra were not clearly seen for polar
phase samples. RF models produced high error rates when polar phase samples were used
with gill and stipe tissue having error rates of >25% and therefore only non-polar phase

samples may be used to predict damage in mushrooms.
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Table 4.2 Summary of RF models produced to discriminate between damaged and undamaged

mushrooms using NMR data

Mushroom RF Model OOB (%) Important  Corresponding Spectral
phase Variables Signals region
(ppm)
All Samples 17.33 14579, 14582, 7.299, 7.297, Aromatic
13240, 14505, 8.144, 7.346,
22721 2.167 Lipid
N Cap tissue 25.0 14642, 14638, 7.24,7.262, Aromatic
0 14631, 14630,  7.266, 7.267,
26155 0.002
N Gill tissue 14.17 23297, 24641, 1.804, 0.957, Lipid
- 24645, 24635,  0.954, 0.960,
P 23289 1.809
Stipe tissue 10.83 14577, 14579,  7.301, 7.299, Aromatic
0 14536, 14584,  7.327,7.296,
L 14578 7.300
A Day zero 11.42 23289, 24644, 1.809, 0.955, Lipid
samples 24626,24042,  0.966, 1.334,
R 24635 0.960
Day one 9.97 22126,22154,  2.542,2.524, Lipid
samples 23092, 23113, 1.933, 1.920,
14639 7.262 Aromatic
All Samples 45.67 22231,22811, 2.476,2.110, Amino
22934,22198,  2.293,2.497,
22237 2.472
Cap tissue 13.33 22233,22241, 2.475,2.469, Amino
22193, 20944, 2.499, 3.287,
P 22196 2.498
O Gill tissue 25.83 20912, 23667,  3.307, 1.564, Carb
L 22846, 14158,  2.088, 7.565, Amino
13701 7.853 Aromatic
A Stipe tissue 35.0 17022, 22817,  5.760, 1.571,
R 17087, 12995,  2.088, 7.565, Amino
26048 7.853 Aromatic
Day zero 25.72 17095, 16040, 5.713, 6.378, Aromatic
samples 14712, 17331, 7.216, 5.565,
22826 2.101 Amino
Day one 19.0 23667, 23117, 1.571,1.917, Amino
samples 14027, 14042, 7.647,7.638, Aromatic
23651 1.581

RF: Random forest

OOB: Out of bag error rate
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Variable importance plots (VIP) were produced for all of the RF models with non-polar
phase samples indicating signals in the lipid and aromatic regions of the spectra as being
important for modelling damage in mushrooms. RF models produced using the polar phase
spectra identified signals in the amino acid and aromatic regions of the 'H NMR spectra as
important for differentiating damaged and undamaged samples. Figure 4.12 shows
examples of VIP plots produced for non-polar phase stipe tissue and non-polar phase gill

tissue.
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Figure 4.12 Relative importance plot of variables that were identified as important by RF models for
predicting damage (a) non-polar phase stipe tissue and (b) non-polar phase gills tissue

The signals of importance, as indicated by the RF models, were examined by univariate
statistical methods (ANOVA) to determine the significance of damage in mushroom
samples. The significance of the Damage factor for each important variable (Table 4.3)
indicated that the difference in NMR signals between damaged and undamaged samples

were significant and therefore important as damage markers in mushrooms.
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Table 4.3 ANOVA table of the effect of damage on each important variable as indicated by the RF
model for all non-polar phase samples

NMR Signal Factor P-Value Significance Level
14579 Damage 4.4x 10" ok
14582 Damage 0.2x107 sk
13240 Damage 0.6x 107 sk
14505 Damage 0.9x 1072 sk
22721 Damage 1.5x10° * k%

Significance levels at 95% (*), 99%(**), 99.9% (***)

4.3.4.2. Partial Least Squares

PLS-DA models were developed to discriminate between undamaged and damaged
mushrooms of all tissue types and sample phases (i.e. polar/non-polar) separately. Table

4.4 shows the performance statistics of the models for each tissue.

Table 4.4 Performance statistics of PLS-DA models built using NMR data
Sensitivity® Specificity”  Sensitivity” Specificity”

Model #LV (%) (%) (%) (%)
NP caps 4 98 97 95 96
NP gills 7 95 94 83 92
NP stipes 5 89 89 73 80

Polar caps 3 89 84 75 64
Polar gills 3 78 80 68 73
Polar stipes 4 85 66 79 44

#LV: Number of latent variables used in the model
*: Training Set
®: Testing Set

The PLS-DA model produced for non-polar phase caps achieved the best classification for
damage in mushrooms with high sensitivity (i.e. percentage of samples correctly classified)
and high specificity (i.e. percentage of samples from the other classes that are well
classified by the model). Overall non-polar phase data models achieved better

classification than polar phase data, with polar phase gills and stipes achieving the highest
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misclassification of samples. These results showed that a high percentage of the spectra of
the mushrooms that had been damaged were correctly classified.

When the models were applied to the test set of spectra, sensitivity and specificity were
still high with a low misclassification error rate. This trend was not seen for the other tissue
groups, with the sensitivities decreasing in the test set models, particularly for polar phase

groups (caps and stipes).

4.4. CONCLUSIONS

NMR spectroscopy coupled with chemometric tools had the ability to predict low levels of
damage in mushrooms. Non-polar phase spectra revealed visible differences between
damaged and undamaged. RF models were able to predict damage with OOB error rates of
10% (stipe tissue). VIP plots indicated signals in the lipid and aromatic region of the
spectra as being an important area for detecting damage. However, an inability to identify
specific metabolite peaks indicated that further work in the extraction process would be
required. NMR spectroscopy coupled with PLS-DA yielded models with very low error
rates and could therefore be used for modelling damage in mushrooms.

Visible differences were not seen as clearly between damaged and undamaged polar phase
spectra. However, when coupled with chemometric multivariate data analysis, RF models
were produced. The majority of models produced high error rates and could not be used to
successfully model damage in mushrooms. PLS-DA models were able to predict damage

with low error rates.
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5. Metabolic profiling of mushrooms (Agaricus bisporus) using GC/MS &
chemometrics to identify markers for damage and investigation of
metabolic pathways

The aim of this study was to use a metabolic profiling approach using gas chromatography
mass-spectrometry coupled with chemometric methods to profile damaged and undamaged
mushrooms and to identify specific metabolites that could be used as markers of damage in

mushrooms.

5.1. MATERIAL AND METHODS

5.1.1. Mushroom Treatments

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin,
Ireland) and harvested damage-free. A set of 120 closed cap mushrooms (n = 120) were
selected for this study. A subset (» = 80) was subjected to physical damage using a
mechanical shaker set at 300 rpm. Two damage levels were studied, damage after 20
minutes (D20) which gives these mushrooms an L-value of 86 and places them in a good
quality category and damage after 40 minutes (D40) which gives these mushrooms an L-
value of 73 and places them in a poor quality category (Gormley and O'Sullivan, 1975).
For each damage level twenty mushrooms were analysed. Mushroom samples were
analysed on day zero and after 24 hours. The remaining samples (40) were labelled as
undamaged (UD), a set of twenty for day zero and twenty for day one. All tissues i.e. cap,
gills and stipes were analysed separately in this study. All sample handling was carried out
with the utmost care to avoid damage to the mushroom samples. A summary of the

experimental design is shown in Table 5.1.
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Table 5.1 Summary of samples analysed by GC/MS

Age Damage Tissue Number of Number of
(Day) (Minutes) Samples Spectra (polar
& non-polar)
0 0 Cap 20 40
Gills 20 40
Stipes 20 40
0 20 Cap 20 40
Gills 20 40
Stipes 20 40
0 40 Cap 20 40
Gills 20 40
Stipes 20 40
1 0 Cap 20 40
Gills 20 40
Stipes 20 40
1 20 Cap 20 40
Gills 20 40
Stipes 20 40
1 40 Cap 20 40
Gills 20 40
Stipes 20 40

5.1.2. Metabolic Profiling Protocol and Overview

Sample preparation involved the manual dissection of each mushroom into its three main
tissue types (cap, gills and stipes) before freezing overnight at -70 °C in a cryogenic fridge
(Polar 340V Cryogenic fridge, Angeelantoni Industrie spA, Massa Martana, Italy). Once
frozen, extraction and fractionation was carried out. Methoxyamination of carbonyl
moieties followed by derivatisation of acidic protons with N-methyl-N-(trimethylsilyl)-
trifluoroacetamide (MSTFA) prior to GC/MS analysis was performed as described by
Fernie and Lisec with minor modifications (Lisec et al., 2006; Fernie, 2007), following
private communication with the authors. An overview of the protocol is described in

Figure 5.1.
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‘ Extraction of polar phase

'

[ Extraction of lipid phase]

l

Transmethylation & derivatisation
of lipid phase

:

[ Derivatisation of polar phase]

:

Data analysis

Figure 5.1 Overview of metabolic profiling (GC/MS) protocol

5.1.2.1. Extraction of Polar Phase

200 mg of frozen mushroom tissue and 1 ml of methanol (Sigma Aldrich, Dublin, Ireland)
were added to an eppendorf tube. The sample was then mixed using a vortex mixer for 10
sec. The methanol was used to inhibit enzymatic processes in the mushroom sample. Two
internal standard (IS) compounds were added to the eppendorf tube, one polar (ribitol) and
one non-polar (nonadecanoic acid) (Figure 5.2). The internal standard solutions were 50 pul
of 0.2 mg / ml distilled water solution of ribitol (Sigma Aldrich, Dublin, Ireland) and 50 ul
of 0.2 mg / ml of CHCI; solution of nonadecanoic acid (Sigma Aldrich, Dublin, Ireland).

The contents of the eppendorf tube were mixed again using a vortex mixer for 10 sec.

HO OH
g 0
HO OH
OH HO
ribitol nonadecanoic acid

Figure 5.2 Structures of internal standards injected during the metabolic profiling study
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The sample was then placed in a shaking bath for 15 min at 70 °C. The different phases
were then separated using a Micro Centrifugette 4212 (Medical Supply Co. LTD., Dublin,
Ireland) at 14,000 rpm (rotations per minute) for 5 min. The supernatant (polar phase) was
transferred from the eppendorf tube using a 200 pl micropipette and placed in a Teflon

tube, and 1 ml of distilled water was added and mixed using the vortex.

5.1.2.2. Extraction of Lipid Phase

An aliquot of 750 pl of chloroform (Sigma Aldrich, Dublin, Ireland) was added to the
pellet (lipid phase) and the eppendorf was shaken in a water bath at 37 °C for 5 min. After
centrifugation at 14,000 rpm for 5 min the supernatant was transferred to the same Teflon
tube as the polar phase and homogenised with methanol, distilled water and chloroform

using the vortex. The remaining phase was discarded.

5.1.2.3. Fractionation

The polar phase was separated from the lipid phase into a new eppendorf tube and dried in

a freeze-dryer (Micro-modulyo, EC Apparatus Inc, New York, USA) for 24 h.

5.1.2.4. Transmethylation & Derivatisation of Lipid Phase (non-polar)

To extract the lipid phase 900 pl CHCI; and 1 ml MeOH solution containing 3 % v/v
H,S04 (Sigma Aldrich, Dublin, Ireland) were added to the Teflon tubes. The lipids and free
fatty acids were transmethylated for 4 h in an oil bath at 100 °C.

The next step involved removing the remaining polar phase. 4 ml of distilled water was
added to the Teflon tube. After homogenisation using a vortex mixer and centrifugation at
4,000 rpm for 15 min, the water phase was removed using a pipette. This procedure was

conducted twice.

96



Chapter 5. GC/MS

The lipid phase was transferred to a glass vial. The vial was left unscrewed for 24 h or
more to allow the chloroform to evaporate. After the evaporation, 10 pl of methoxyamine
hydrochloride solution (20 mg / ml pyridine) and 10 pl of the silylation agent N-methyl-N-
trimethylsilyltrifluoracetamide (MSTFA, Sigma Aldrich, Dublin, Ireland) (Figure 5.3)
were added to the vials. After silylation for 30 min at 37 °C, 1 pl was injected into the

GC/MS. A total of 360 non-polar injections were taken.

|
/N\[H
O
Figure 5.3 Structure of the silylating agent N-methyl-N-trimethylsilyl-fluoroacetamide (MSTFA)

5.1.2.5. Derivatisation of Polar Phase

When the polar phase was dried, 50 pl of methoxyamine hydrochloride (20 mg/ml
pyridine) was added and the solution was mixed using a vortex mixer. The sample was
placed for 90 min in a shaking water bath at 30 °C. Then 80 pl of MSTFA was added and
the sample placed in a water bath at 37 °C for 30 min. The sample was stored at room
temperature for 120 min and 1 pl was injected into the GC/MS. A total of 360 polar

injections were taken.

5.1.3. Analysis of Metabolites by GC/MS

The polar and non-polar samples were analysed similarly using a Varian CP-3800 gas
chromatograph coupled to a Varian Saturn 2200 quadrupole MS (JVA Analytical Ltd.,
Dublin, Ireland). Chromatography was performed on a Cp-sil 24 CB low bleed/MS
capillary column (length 30 m, diameter 0.25 mm and film thickness 0.25 pl) using helium

at 1.0 ml/min. Samples (1 pl) were injected into a programmed temperature ramp with a
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split of 5:1. The GC temperature was initially 70 °C for 5 min, increased at 3 °C/min to 300
°C and then isothermal for 5 min. The GC/MS interface temperature was 220 °C. MS
acquisition conditions were electron impact (EI) ionisation at 70 eV, solvent delay of 1
min, source temperature of 200 °C, and mass range of 45-650 amu (atomic mass unit) at 2
scans/sec. Data were acquired using the Saturn software (Saturn GC/MS WS Ver 5.5,

Varian Inc, USA).

5.1.4. Data Analysis

A number of raw GC/MS data files were selected as representative examples for both polar
and non-polar metabolites. These files were used with the Automated Mass Spectral
Deconvolution and Identification System (AMDIS, V2.1, NIST, USA) software package to
verify the presence of individual analytes and to deconvolute co-eluting peaks. Specific ion
characteristics of each metabolite were selected to be used for compound detection in
processing methods. Compounds were identified by analysis of standards, comparison with
MS libraries and literature data.
Typical chromatograms obtained in this study are shown in Figures 5.4, 5.5 and 5.6.
During the analysis of the chromatograms the following steps were taken.
e The chromatogram components were deconvoluted and the baseline noise
subtracted with representative MS spectra selected (Figures 5.4, 5.5 and 5.6)
e In a preliminary search with a reduced number of sample chromatograms, the
representative spectrum of every component was compared with the NIST library
of MS spectra (NIST Mass Spectral Search Programme Version 1.7a, USA, 2001).
e Compounds identified which yielded weighted probabilities of over 70% were
compiled in a library for automated batch search, which is an acceptable level to

avoid false positives as reported by Norli and colleagues (Norli et al., 2010).
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e An automated analysis to report the presence and quantification of all the
compounds in the built library was performed by analysis of MS spectra and
retention index. The quantification of the compound concentration was done
through the use of internal standard area and the known concentration of this
internal standard.

e A matrix table with the concentration of each selected library metabolite in each of
the samples was produced in the batch job, complete with sample information (i.e.
flush, phase, tissue, storage age and damage level) and used for multivariate

analysis.

Figure 5.4 Initial AMDIS window of a typical non-polar phase mushroom showing the chromatogram
total ion count (TIC) in the top window and a raw MS spectrum in the bottom window
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Figure 5.5 AMDIS component window of a typical non-polar phase mushroom chromatogram showing
the chromatogram (top) with all the deconvoluted components identified, the purity window and
component information window (middle) and a deconvoluted and noise removed mass spectrum

belonging to the selected component (bottom)

Figure 5.6 AMDIS component window of a typical polar phase mushroom chromatogram showing the
chromatogram (top) with all the deconvoluted components identified, the purity window and
component information window (middle) and a deconvoluted and noise removed mass spectrum
belonging to the selected component (bottom)

5.1.5. Chemometric Data Analyses
Principal component analysis (PCA), random forests modelling (RF), Partial least square
discriminant analysis (PLS-DA), correlation matrices and univariate statistical analysis

were performed using R 2.10.0 (R Development Core Team, 2009).
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PCA was used to provide a preliminary observation of the data in order to identify clusters
of data and outliers as appropriate. Samples were studied separately on the basis of tissue
type and age (day zero/day one).

Random forest (RF) models were built to (a) discriminate between damaged and
undamaged mushrooms and (b) to identify specific metabolites as markers for damaged
mushrooms. The number of trees fitted to build the random forest was 1000. The number
of random metabolites was set at 100 after optimization and the RF model trained was
made using a stratified random sampling strategy of the targeted/identified metabolites that
would take the same number of metabolites from each of the tissues.

Univariate statistical analysis was carried out on metabolites identified by RF models as
being important markers of damage, which included analysis of variance (ANOVA) and
Tukey tests.

PLS-DA was applied to the GC/MS data to develop models for the prediction of damage in
mushrooms using the Caret (classification and regression training) package in R (R
Development Core Team, 2009). The data was split into training and test sets, with 75% of
the data used for model training and the remainder used for evaluating model performance
i.e. the test set. For more information on the PLS-DA models refer to section 4.2.4.
Correlation matrices were used to determine patterns of correlation between (a)
metabolites from the same group of compounds i.e. fatty acids, phenolic compounds,
sugars and polyols or amino acids and (b) inter-correlations between metabolites in
different groups of compounds. This approach can identify both biosynthetically related

and co-ordinately regulated metabolites (Steuer et al., 2003; Dobson et al., 2008)
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5.2. RESULTS AND DISCUSSION

During the analysis of the 720 chromatograms a library with 105 metabolites was built.
Table 5.2 contains 62 metabolites from both polar and non-polar phases. A number (44) of
metabolites were not included in the table as they were only found in a very small
percentage of chromatograms (<10%). In the non-polar phases (360 chromatograms) fatty
acids and phenolics were identified and the internal standard (IS) nonadecanoic acid was
found with an average retention time of 56.42 min.

Sugars, polyols and amino acids were identified in polar phase chromatograms (360
chromatograms) and ribitol the polar IS was detected as ribitol, 1,2,3,4,5-pentakis-O-
(trimethylsilyl), indicating that derivatisation was successful. This compound was found in

the samples at an average retention time of 30.49 min.

5.2.1. Non-polar Metabolites

5.2.1.1. Fatty Acids (FAs)

Fatty acids are chain-like structures with a carboxylic acid (HO-C=0) at one end and a
methyl group (CHj;) at the other. The remainder of the compound consists of a
hydrocarbon (CH,) chain varying in length from 2-20 or more carbons. Fatty acids have
the general formula C,H,,-;COOH. A representative non-polar phase total ion
chromatogram containing the fatty acids and phenolics that were present in abundance in
Agaricus bisporus are identified in Figure 5.7. A number of fatty acids have been
previously reported in mushrooms (Byrne and Brennan, 1975; Hiroi and Tsuyuki, 1988;

Hong et al., 1988; Senatore et al., 1988; Bonzom et al., 1999; Yilmaz et al., 2006).
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Chapter 5. GC/MS

Figure 5.7 Non-polar phase GC/MS total ion chromatogram (TIC) of a mushroom extract. Numbers in
the figure correspond to compounds detailed in Tables 5.3 and 5.4
Peaks 1-11 fatty acids
Peaks 12-16 phenolics

It should be noted that some fatty acid metabolites (e.g. dodecanoic acid and octadecanoic
acid) produced two peaks corresponding to methyl esters and trimethylsily derivatives. Of
these two peaks only one was included in the study. However, peaks 5 and 6 represent
hexadecanoic acid methyl ester and hexadecanoic acid trimethylsilyl ester respectively
(Figure 5.7) and are included to highlight this occurrence. A total of 18 fatty acids were

separated and identified.

5.2.1.1.1. Saturated Fatty Acids

Saturated fatty acids contain no double bond in their hydrocarbon chain (Hui, 2006).
Saturated fatty acids were largely predominant in non-polar phase chromatograms with 14
compounds identified. A number of other fatty acids were identified by mass spectrometry

but only occurred in a small percentage of chromatograms (Table 5.2).
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Fatty acid metabolites (and all other metabolites) were identified on the basis of their
molecular weight, molecular ions, retention times, literature data and comparison to library
databases and standards.

The electron impact (EI) mass spectra of saturated fatty acid methyl esters are very similar,
having a reasonably abundant molecular ion and a characteristic base peak at m/z 74,
which is a product of the well-recognised McLafferty rearrangement process (McLafferty,
1959; McCloskey, 1970). Other characteristic ions include an ion at m/z 87, the first
member of the carbomethoxy ion series ([(CH)nCO,CH3]", where n =1, 2, 3, 4..... m/z
73, 87, 101, 115...), a hydrocarbon series of ions that are abundant in the low mass region
and an acylium ion [M-31]" (Zirrolli and Murphy, 1993).

The McLafferty rearrangement ion is central in the identification of most fatty acid ester
derivatives and its mechanistic aspects are shown in Figure 5.8. The resulting ion is

important for identification purposes.

o HL
9) (CcH—(CHynCH,

rearrangement B/H
H;CO—CL2CH, 2-3 bond cleavage ¢
i, H;CO™ ~CH,
m/z="74

Figure 5.8 McLafferty rearrangement mechanism of fatty acids

A site-specific rearrangement is involved where a hydrogen atom from position 4 of the
aliphatic chain migrates to the carbomethoxy group, presumably through a six-membered
transition state, which is sterically favoured. If one of the hydrogen atoms on carbon 4 is
substituted, the McLafferty ion will be noticeable lower than expected. This may explain
why it is less evident in the mass spectra of unsaturated fatty acid derivatives with

increasing numbers of double bonds, which can readily migrate to position 4 under
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electron bombardment (Christie, 2010). The mass spectrum of octadecanoic acid methyl

ester is presented in Figure 5.9.

Figure 5.9 Mass spectrum of octadecanoic acid methyl ester

Its fragmentation mechanism is characterised as follows. The molecular ion peak of
octadecanoic acid methyl ester is found at m/z 298 [M]'. After the McLafferty
rearrangement and o cleavage m/z 74 is produced, which was the base peak ion of the C6-
(C26 saturated fatty acid methyl ester. The peak at m/z 255 [M-43]" was the result of C-C

bond cleavage and the loss of C3H;'. These cleavage processes are shown in Figure 5.10.

H,
C14H29\(/U\ \k/k C14H29 I(IC)
+ N
OCH, ./ oCH,
m/z 298 m/z 74

McLafferty Rearrangement

Figure 5.10 Cleavage process of octadecanoic acid methyl ester

The series of related ions giving rise to peaks at m/z 43, 55, 74 and 87 is formed by loss of
neutral aliphatic radicals i.e. CH, fragmentation. The characteristic ions of saturated fatty
acid esters are therefore m/z 74 (McLafferty rearrangement), [M-43]" the molecular ion
[M]" and the series of ions resulting from CH, fragmentation (Zirrolli and Murphy, 1993;
Cheung et al., 1994; Wu et al., 2007).

The mass spectrum of dodecanoic acid (Figure 5.11), shows a molecular peak at m/z 214

which corresponds to the molecular weight of the compound.
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Figure 5.11 Mass spectrum of dodecanoic acid methyl ester
The molecular ion peak at m/z 214, the peak at m/z 171 [M-43]", the presence of the peaks
at m/z 74 (McLafferty ion) and the series of related peaks at m/z 87, 101, 55 and 41 (CH;
fragmentation) confirm this metabolite to be dodecanoic acid methyl ester (Wu et al.,

2007).

5.2.1.1.2. Unsaturated Fatty Acids

An unsaturated fatty acid is a fatty acid that contains at least one double bond within the
fatty acid chain (Hui, 2006). A total of 4 unsaturated fatty acids were separated and
detected by GC/MS; Linoleic acid, ricinoleic acid, erucic acid and palmitelaidic acid.

Linoleic acid (9, 12 octadecadienoic acid) was detected and identified in non-polar
mushroom extract chromatograms with an average retention time of 52.56 min. It is the
main unsaturated FA of mushroom lipids and is the precursor of the mushroom alcohol (1-
octen-3-ol) (Mau et al., 1992). The molecular ion peak at m/z 294, the peak at m/z 263 [M-
317", the peak at m/z 67 (the result of double bond transfer) and the series of related peaks
at m/z 41, 55, 67, 81, 95, 109 and 123 (CH, fragmentation) confirm this metabolite to be

linoleic acid methyl ester (Wu et al., 2007; Christie, 2010).
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Figure 5.12 Mass spectrum of linoleic acid methyl ester
The gas chromatographic retention times and mass spectrometric characteristic ions of
fatty acid methyl esters detected abundantly in Agaricus bisporus are shown in Table 5.3.
Table 5.3 Mass spectrometric characteristic ions and gas chromatographic retention times of fatty acid

methyl esters

N Fatty Acid Common MW  RT BP Characteristic

o name (min) ions
1 Dodecanoic Lauric 214 32.28 74 74,171, 214
acid
(12:0)
2 Tridecanoic (13:0) 242 38.03 74 74, 199, 242
3 Tetradecanoic Myristic 300 41.04 74 74,257, 300
acid
(14:0)

4 Pentadecanoic (15:0) 256 41.15 74 74,213,259
5 Hexadecanoic Palmitic 270  45.01 74 74, 227,270

acid
(16:0)

6 Hexadecanoic As above 328  46.66 73 73, 285, 328

acid TMS
7 trans-9- Palmitelai 268  46.82 55 55, 236, 268
hexadecenoic dic acid

acid (16:1)

8 Heptadecanoic Margaric 284  47.77 74 74, 241, 284
acid
(17:0)

9 Octadecanoic Stearic 298  50.74 74 74,255, 298
acid
(18:0)

10 9,12- Linoleic 294 52.56 67 67,263,294
Octadecadienoic acid
acid (18:2)

11 Eicosanoic Arachidic 326  55.82 74 74, 283, 326
acid
(20:0)

Peak numbers 1-11 correspond to Figure 5.7
TMS: trimethylsilyl ester; MW: molecular weight; RT: retention time; BP: base peak (ion)

108



Chapter 5. GC/MS

5.2.1.2. Phenolic Compounds

Phenolics are compounds possessing one or more aromatic rings with one or more
hydroxyl groups and can range from simple molecules (phenolic acids, phenylpropanoids,
flavonoids) to highly polymerised compounds (lignins, melanins, tannins) (Bravo, 1998).
A number of phenolic compounds found in mushrooms have been previously reported in
literature (Ribeiro et al., 2008; Barros et al., 2009; Vaz et al., 2011).

Ten phenolic compounds were identified by mass spectrometry on the basis of their
molecular weight, molecular ions, retention times and comparison to library databases and
standard compounds. Out of these phenolic compounds seven were present in abundance
in non-polar phase chromatograms (Table 5.4); 2,6-bis(1,1-dimethyl ethyl)-4-chloro-
phenol, 2-(4-methoxyphenyl)ethanol, 3,4-dihydrobenzyl alcohol, 8-phenyl-6-thio-
theophylline, diphenyl ether, tyrosine trimethylsilyl ester and benzoic acid methyl ester.
The following three compounds were only present in a low percentage of chromatograms;
1,3,8-trihydroxy-6-methylanthraquinone, phenol 2,4-bis(1,1-dimethylethyl) and 4-phenyl-
2-hydroxystilbene. The fragmentation pattern of benzoic acid methyl ester is described
below.

Benzoic acid methyl ester had an average retention time of 20.56 minutes. The mass
spectrum of benzoic acid methyl ester (Figure 5.13) on EI ionisation shows the molecular

ion at m/z 136.

Figure 5.13 Mass spectrum of benzoic acid methyl ester
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Its fragmentation mechanism is as follows; the molecular ion of benzoic acid methyl ester
was m/z 136. The base peak is characterised by C¢HsCO" benzoyl ions at m/z 105. Other

prominent fragments are C¢Hs' ions at m/z 77 and C4H;" ions at m/z 5 (Opitz, 2007).

Table 5.4 Mass spectrometric characteristic ions and gas chromatographic retention times of abundant
phenolic compounds

Peak Phenolic Molecular Retention Base Characteristic
Number Weight Time Peak ions
(min)
12 Benzoic acid 136 17.04 105 136, 105, 77
13 2-(4- 152 25.50 121 152,121, 77
methoxyphenyl)ethanol
14 Diphenyl ether 170 31.75 170 170, 141, 77
15 2,6-bis(1,1-dimethyl 240 33.00 225 240, 225
ethyl)-4-chloro-phenol
16 8-phenyl-6-thio- 272 63.45 272 272,243,211
theophylline
17* Tyrosine O- 325 44.53 179 73,179
trimethylsilyl-
,2trimethyl ester
18 * 3,4-dihydroxybenzyl 356 35.37 73 356,267,179,
alcohol 73

Peak numbers 12-16 correspond to Figure 5.7
Peak numbers 17-18* correspond to Figure 5.14b

* Metabolites found in polar phase chromatograms

5.2.2. Polar Metabolites

5.2.2.1. Amino acids

A total of ten amino acids (AA) were separated and identified by GC/MS (Table 5.2). The
following AA were found abundantly in polar phase chromatograms (Figure 5.14a &
5.14b): alanine, asparagine, glycine, aspartic acid, proline, threonine, tryptophan, valine
and serine. Glutamine was detected in a small percentage of polar phase chromatograms.
Amino acids contribute to the flavour of mushrooms with a number being reported in

literature as being present in Agaricus bisporus (Tseng and Mau, 1999; Tsai et al., 2007).
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Figure 5.14 (a) Polar phase GC/MS total ion chromatogram (TIC) of a mushroom extract (b) enlarged
version. Numbers in the figure correspond to compounds detailed in Tables 5.5 and 5.6

The fragmentation mechanism of valine is shown in Figure 5.15, with a table of all the
amino acids and their characteristic ions given in Table 5.5. The common characteristic
ions for identifying trimethylsilyated amino acids by EI ionisation are [M-CH3], [M-
COCHzs], [M-CO,TMS] and [M-sidechain] (El-Khoury, 1999).

The molecular ion (m/z 261) was not detected in the mass spectrum; [M-15] ion m/z 246

was found in small proportion.
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Figure 5.15 Mass spectrum of the amino acid valine

Table 5.5 Mass spectrometric characteristic ions and gas chromatographic retention times of amino

acids
Peak Amino Acid Molecular Retention Base Characteristic
Number Weight Time Peak ions
(min)
19 L-Valine,N-(TMS)- 261 15.85 144 246, 144,73
,TMS ester
20 Glycine, N,N- 291 17.58 174 248, 174,73
bis(TMS)-TMS ester
21 Serine, bis(TMS)- 259 18.46 116 132,116, 73
22 L-Threonine,O- 263 19.82 73 219,117,73
(TMS)-,TMS ester
23 Alanine, N,N- 305 22.86 248 248, 174,73
bis(TMS)-TMS ester
24 L-Aspartic acid, N- 349 28.53 232 232,73
(TMS)-,bis(TMS)

ester
25 Glutamine, tris(TMS) 363 31.87 246 246,73
26 L-Proline (TMS)- 273 32.04 156 156, 73

,TMS ester
27 Aspragin,N,N,N- 420 41.70 188 405, 188, 73
tris(TMS)-, TMS

ester

28 L-Tryptophan,N-1- 420 57.26 202 202,73
bis(TMS)-,TMS
ester
TMS trimethylsilyl

Peak numbers 19-28 correspond to Figure 5.14b

5.2.2.2. Sugars & Polyols

Nine sugars and sugar alcohols were identified by MS. Table 5.6 shows the major ions
appearing in the mass spectra of sugars and sugar alcohols. Those found abundantly in

polar phase chromatograms were: D-mannose, sucrose, D-glucitol/mannitol, D-ribo-
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hexitol, myo-inositol and glycerol. A number of sugars and polyols are present in
mushrooms and have been reported in literature. Mannitol is the most abundant polyol
found in mushrooms (Hammond and Nichols, 1975; Beecher et al., 2001; Yang et al.,
2001; Kim et al., 2009). Glucitol was identified by MS with a very high probability. It
should be noted that glucitol and mannitol are isomers.

D-mannose produced ions at m/z 73, 147 and 217 that are characteristic of aldohexases. A
molecular ion was not observed but the [M-15] ion was present in small proportions
(Figure 5.16a). The sugar alcohol myo-inositol produced characteristic ions at m/z 318, 147
and 73 and the parent ion [M]" was detected at m/z 612 (Figure 5.16b) (Reineccius ef al.,

1970; Schoots and Leclercq, 1979; Roessner et al., 2000; Mederios and Simoneit, 2007).

Figure 5.16 Mass spectrum of methyl-silyated (a) D-Mannose and (b) inositol (Myo-inositol)

Table 5.6 Mass spectrometric characteristic ions and gas chromatographic retention times of abundant
sugar and polyols

Peak Sugar & Sugar Molecular Retention Base Characteristic
Number Alcohols Weight Time Peak ions
(min)
29% Glycerol 308 15.59 73 293, 147,73
30 D-ribo-hexitol 526 38.50 73 333,231, 73
31 Myo-inositol 612 40.75 73 318, 147,73
32 D-glucitol/mannitol 766 49 .45 73 751, 215,73
33 D-mannose 721 52.34 73 706, 387, 73
34 Sucrose 918 60.16 361 361,217, 73

Peak numbers 29-34 correspond to Figure 5.14b
*Not visible on chromatogram as peak too small
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5.2.3. Principal Component Analysis

Samples were studied separately on the basis of their tissue type i.e. caps, gills and stipes
and also on their age i.e. day zero and day one. The score plot for day zero caps is shown
in Figure 5.17a for PC1 versus PC2. These first two principal components accounted for 50
and 40%, respectively of the total variance in the GC/MS data set, and some samples
clustering on the basis of damage is readily apparent. The majority of undamaged caps
(blue) formed a cluster on the left hand side of the centre of the plot, with D20 (pink) caps
forming a cluster to the right hand side of the centre. D40 samples were spread randomly
throughout the score plot with some samples found in UD and D20 clusters.

In the case of day one caps (Figure 5.17b) a pattern can be seen in the score plot for PC1
versus PC2 (accounting for 64 and 25% of the total variance) and again clusters have

formed for UD and D20 samples indicating that metabolite levels are affected by damage.

0 o 0
20 © 20 ©
40 © 40 ©
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(a) - pc2 (b) pc2

Figure 5.17 PC1 versus PC2 score plots of cap tissue for (a) Day zero samples and (b) Day one samples
0: Undamaged
20: 20 min damage
40: 40 min damage

In the case of gill and stipe tissue clusters for different damage levels were not clearly

evident, with overlapping of damage levels seen for both day zero and day one.

114



Chapter 5. GC/MS

5.2.4. Detection of Damage

5.2.4.1. Random Forests (Model 1: all data used)

The first model developed attempted to identify specific metabolites that could be used as
possible markers for damage in mushrooms. The model tried to predict damage in
mushrooms using all metabolites identified by GC/MS, a variable indicating the tissue
from which the metabolite originated (cap, gill, or stipe) and the age of the mushroom (day
zero/day one) as explanatory variables. This resulted with an out-of-bag (OOB) error rate
of 11.11%, sensitivity of 88.9% and specificity of 92%. The variable of importance (VIP)
plot for predicting damage (Figure 5.18) identified pentadecanoic acid, linoleic acid, myo-
inositol, benzoic acid and hexadecanoic acid as the five most important metabolites as
damage markers. The variables tissue and day were identified in the VIP plot as the 13"
and 22" most important variables respectively. By removing the variable age and tissue
another model was built that took the identified metabolites in mushrooms and tried to
predict whether there was damage or not. This RF could be used as a classifier of
mushroom damage and gave a good prediction model with an OOB error rate of 11.39%,
sensitivity of 88.6% and specificity of 92% (similar to the previous model). The important

variables (top five) identified were the same as Figure 5.18.
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Figure 5.18 VIP plot of metabolites that are important variables in the RF model for predicting
damage

The metabolites of importance as indicated by the RF model were examined by univariate
statistical methods (ANOVA and Tukey tests) to determine the significance of damage for
each of the three damage levels. A box plot (Figure 5.19) indicated that there was an
increase in the quantity of myo-inositol from UD to D40 samples (undamaged samples to

samples that had been exposed to high levels of damage).
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Figure 5.19 Box plot showing the quantity of myo-inositol at each damage level
0: Undamaged
20: 20 min damage
40: 40 min damage

Myo-inositol is found in Agaricus bisporus in low quantities compared to other sugar
alcohols, such as mannitol. Recent studies showed that levels of myo-inositol (like
mannitol) increased with maturation (Tsai et al., 2007). The increased levels in damaged
samples also suggest that myo-inositol is affected by mechanical damage and may be a
metabolic marker of damage. Sugars play important roles in all aspects of mushroom life.
They provide the main respiratory substrates for the generation of energy and metabolic
intermediates that are then used for the synthesis of macromolecules and other cell
constituents. The sugars ribose and deoxy-ribose form part of the structure of DNA and
RNA. Polysaccharides such as chitin and glucan are the major structural elements of
mushrooms cell walls (Ruiz-Herrera, 1992). A linkage to sugar is required for proper
functioning of many lipids and proteins and therefore as a consequence, the abundance and
depletion of sugars, polyols and their derivatives initiate various responses in mushrooms

and have profound effects on mushroom metabolism, growth and depletion (Yu, 1999).
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The phenolic compound benzoic acid was identified as an important metabolite by the RF
model for differentiating between damaged and undamaged mushrooms. A number of
phenolic compounds including benzoic acid have been identified in Agaricus bisporus and
other mushrooms (Rajarathnam et al., 2003; Kim et al., 2008). Browning is a reaction that
occurs when polyphenol oxidase (PPO) acts on a phenolic compound in the presence of
oxygen to produce a dark colour (Martinez and Whitaker, 1995). Reports have found that
the majority of phenolic compounds are present in mushroom skin rather than the flesh
(Rajarathnam et al., 2003). In this study the benzoic acid content was higher in stipe and
gill tissue compared to cap tissue. Levels of benzoic acid were at their highest at 20 min
damage for each of the tissue types. The levels decreased substantially in gills and stipe at
40 min damage (Figure 5.20) and to a lesser extent in the cap tissue suggesting that the
browning reaction had come to completion i.e. the mushroom was completely damaged

with levels of benzoic acid becoming depleted.

Benzoic acid
25
2
g 1.5 O Cap DI
S | Gill D1
=]
S 1 O Stalk D1
0.5 }
0 L L L =
0 20 40
Damage level

Figure 5.20 Bar plots with the semi-quantitative concentration of benzoic acid in mushroom tissues at
different damage levels in day one samples. A similar trend was found in day zero samples

The fatty acids pentadecanoic acid, linoleic acid and hexadecanoic acid were identified as
important variables by the model for detecting damage. Linoleic acid is the most abundant

fatty acid found in Agaricus bisporus (Yilmaz et al., 2006) and is the precursor of the
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mushroom alcohol 1-octen-3-ol, which is considered to be responsible for the characteristic
flavour obtained by the physical disruption of the edible mushroom. The biosynthesis of 1-
octen-3-ol is due to aerobic oxidation (Holtz and Schisler, 1971) by lipoxygenase (LOX) of
linoleic acid into regio- and stereo-specific hydroperoxides (HPODs), followed by an
enzymatic cleavage by hydroperoxide lyase (HPL) of the corresponding HPODs to
produce 1-octen-3-ol (Tressl et al., 1982; Chen and Wu, 1984; Mau et al., 1992; Assaf et
al., 1995). The enzymatic pathway in which linoleic acid is converted into 1-octen-3-ol and
10-oxo-trans-8-decenoic acid by Agaricus bisporus has been reported (Wurzenberger and
Grosch, 1984; Combet et al., 20006).

Lipids afford the means for fundamental metabolic processes and provide the basic
composition for cell membranes. The primary function of fatty acids is as an energy
reserve (Karlinski et al., 2007) and they also play an important role in storage since most
lipids are in the cell envelope which undergoes change as the mushroom deteriorates,
either by damage or over time.

The significance of the Damage factor for each metabolite (Table 5.7) indicated that the
difference in metabolite concentration between damaged and undamaged samples was
significant and therefore these important metabolites, as indicated by RF models, may be
markers of damage in mushrooms.

Table 5.7 ANOVA table of the effect of damage on individual metabolites

Metabolite Factor P-Value Significance Level
Linoleic acid Damage 2.0x10° oAk
Myo-inositol Damage 52x10* ok

Pentadecanoic acid Damage 1.7x 107 HoA*
Benzoic acid Damage 1.5x 107 kol
Hexadecanoic acid Damage 9.7x 107 ok

Significance levels at 95% (*), 99% (**), 99.9% (***)

Tukey tests were carried out on the five important variables to determine which means
among a set of means differ from the rest. The different samples ages (day zero and day

one) were examined separately and the Tukey plots (Figure 5.21) showed that there were
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significant differences in mean levels of damage for myo-inositol after day one. This trend

was seen for all identified metabolites.
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Figure 5.21 Tukey multiple comparison test plots comparing differences in mean levels of damage in
(a) Day zero samples and (b) Day one samples (myo-inositol)
0: Undamaged
20: 20 min damage
40: 40 min damage

5.2.4.1.1. Random Forests (models 2-6)

RF models were produced separately for both day zero and day one samples. As before the
model tried to predict damage in samples using the metabolites identified and separated by
GC/MS and a variable indicating the tissue from which each sample came from as
explanatory variables. The RF model for day zero samples (model 2) produced an OOB
error rate of 10% and the variables identified by the model as being the most important for
detecting damage were the following metabolites; linoleic acid, nonanoic acid, diphenyl
ether, hexadecanoic acid and pentadecanoic acid.

The RF model for day one samples (model 3) produced an OOB error of 6.67% with the

VIP plot indicating the following metabolites as the most important variables in the model
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to discriminate between damage and undamaged mushrooms; phthalic acid, myo-inositol,
pentadecanoic acid, glucitol and linoleic acid.

It has been previously reported that the metabolic response in the form of enzyme
expression in mushrooms to both age (Mohapatra et al., 2008) and damage (O'Gorman et
al., 2010) is delayed in time and it takes at least one day to develop. Therefore metabolite
identification with day one samples is important in the sense of examining indicators of
damage/aged metabolism, whereas the analysis of day zero samples will be useful for
finding early indicators of damage (before it is perceived by the consumer).

Individual tissues were then subjected to RF modelling. Each tissue (model 4-6) was
examined once (day zero and day one) to determine which metabolites were important in
the model. A summary table of the OOB error rates for the tissues and VIPs are shown in

Table 5.8 including previous models for damage.
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importance and associated metabolic pathways

RF Model OOB (%) Important variables Metabolic pathways involved
(top five)
Model 1 (all 11.11 Pentadecanoic acid B-oxidation
samples) Linoleic acid Lipoxygenase pathway (LOX)
Myo-inositol Isomerisation of glucose
Benzoic acid
Hexadecanoic acid B-oxidation
Model 2 10 Linoleic acid LOX
(day zero Nonanoic acid B-oxidation
samples ) Diphenyl ether
Hexadecanoic acid B-oxidation
Pentadecanoic acid B-oxidation
Model 3 6.67 Phthalic acid
(day one Myo-inositol Isomerisation of glucose
samples) Pentadecanoic acid B-oxidation
Glucitol/Mannitol Polyol metabolism
Linoleic acid LOX
Model 4 8.33 Linoleic acid LOX
(Cap) Hexadecanoic acid B-oxidation
Heptadecanoic acid B-oxidation
D-mannose Glycolysis
Glycerol B-oxidation
Model 5 13.33 Myo-inositol Isomerisation of glucose
(Gills) Glucitol/Mannitol Polyol metabolism
Citric acid Product of TCA cycle
Benzoic acid
D-Ribo hexitol Polyol metabolism
Model 6 9.17 Benzoic acid
(Stipe) Propanedioic acid

Serine
D-Ribo hexitol
Ricinoleic acid

Proteolysis
Polyol metabolism
B-oxidation

OOB: Out of bag error rate

5.2.4.2. Patrial Least Squares (PLS)

A PLS-DA model was developed to discriminate between the three levels of damage
including all data i.e. all tissue types and mushroom ages (day zero & day one). Accuracy
was used to select the optimal model i.e. appropriate number of latent variables to be used

in the model and the number used was 4 (Figure 5.22).
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Figure 5.22 Evolution of bootstrap resampling accuracy as a function of latent variables

The initial PLS model built used all the data i.e. all tissues, damage levels and days to
evaluate if it could differentiate between damaged and undamaged samples with high
sensitivity and specificity. The results are presented in the Table 5.9 which shows the
values of sensitivity (i.e. percentage of samples correctly classified as such) and specificity
(i.e. percentage of samples from the other classes that are well classified by the model).
The overall model performed with an accuracy of 55%. The training set performed with an

accuracy of 53% and the test set with an accuracy of 63%.

Table 5.9 Summary of results for mushroom discrimination on the basis of damage (all data)

Damage Level Sensitivity Specificity

(Minutes) (%) (%)

0 86" 46"

93° 53°

20 44* 89*

48 96

40 29° 93"

48" 95°

? Training set, ® Testing set
The overall models for both the training and testing models performed well for predicting
undamaged samples (0 min damage) with high sensitivities (specificities were average).
However, the models did not perform as well in classifying D20 and D40 samples. Models

were then developed to differentiate between the different damage levels for each tissue
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type. A summary of results is shown in Table 5.10. The models were able to detect
undamaged samples quite well, particularly for cap tissue with high sensitivity and
specificity. The RF model produced for cap tissue performed very well with an OOB error
rate of 8.3%, which suggests that cap tissue alone could be used to predict damage in
mushroom samples using PLS-DA and RF modelling.

There was misclassification of samples between D20 and D40 seen for all tissues.
However, lower error rates were seen for cap tissue (training and testing models).
Although the models did not perform as well for differentiating between the damage levels
(D20/D40) they did perform well for differentiating undamaged samples from damaged
ones, making PLS-DA an important tool for detecting damage in mushrooms.

Table 5.10 Performance statistics of PLS-DA models built using GC/MS data

Damage Level #LV Tissue Sensitivity Specificity
(Minutes) (%) (%)
0 4 Cap 92% 97° 76% 81°
Gills 74, 69" 78%, 60°
Stipes 76%, 81° 857, 82°
20 4 Cap 69°, 71° 66°, 72°
Gills 56° 61° 79°, 74°
Stipes 62°, 54° 71%, 67°
40 3 Cap 65°, 75° 80°% 85"
Gills 36, 54° 89°, 81°
Stipes 45° 51° 75, 80°

*Training set, ° Testing set
#LV: Number of latent variables

Modelling damage in mushrooms has been reported in literature in recent time (Gowen et
al., 2008a; Esquerre et al., 2009; O'Gorman et al., 2010; Taghizadeh et al., 2010) using
different techniques including fourier transform infrared spectroscopy, hyperspectral
imaging and near infrared spectroscopy coupled with chemometrics.

These studies yielded models with low error rates for predicting damage in mushrooms
highlighting the usefulness of imaging and spectroscopy for detecting physical damage in
mushrooms, with the possibility of using these tools to develop classification systems for

the industry.
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The use of GC/MS and chemometrics also produced models with low error rates for
detecting damage. RF models indicated the important variables for discriminating damage
i.e. specific metabolites that could be used as metabolic markers for damage in mushroom
samples. The ability to detect specific metabolites for damage allows the ability to gain
understanding into metabolic pathways associated with the specific metabolites identified.
Metabolomics (GC/MS) coupled with chemometrics has not to the authors knowledge
been used to detect damage in mushrooms. However, it has been used as a tool in the food
industry for similar use e.g. identification of volatile quality markers for ready to use
lettuce and cabbage (Lonchamp et al., 2009). Metabolic profiling using GC/MS to profile
metabolic changes in sound and brown pears was investigated using a PLS-DA
multivariate statistical approach (Pedreschi et al., 2009). GC/MS profiling has also found a
function in determining phytochemical diversity in tubers of potatoes (Dobson et al,
2008).

These examples highlight the usefulness of GC/MS profiling and when coupled with
chemometrics the ability to develop models to predict damage with low error rates, making

it an invaluable tool for the mushroom industry.

5.2.4.3. Metabolic Pathways

A general overview of metabolism is given in Figure 5.23. Metabolites that were found in

GC/MS analysis of mushroom samples are highlighted in red in the diagram.

125



Glucose

Ph) Q ( ATP  \app+
H 0 ADP

ucose 6-phosphate

Fructose-6-phosphate

Chapter 5. GC/MS

NADPH, H!

Ribulose-5-phosphate

CO, ‘ PPP

“)Q ATP
Hy0 ADP
Fructose-1-6-bispohosphate e
Glycolysis l 1 e
Dihydroxyacetone phosphate + Glyceraldehyde 3-phosphate
l T NAD, Pi Jt NAD+, Pi
NAD", Pi NADH, H" NADH, H!
\—/ 1,3-bisphosphoglycerate
Glyceraldehyde-3-phosphate ?/ ADP

e

Ribose-5-phosphate
.

. NaD", NAPH-HATp ATP
Prfteln Pi 3phosphoglycerate
Amino Acids l T
l 2-phosphoglycerate
Ammonia
H,0 H,0
Phosphoenolpyruvate
ADP
Urea )
Kitrulline ATP l
Arginjne Ornithine/Urea Pyruvate Trielveerides
NAD+ CoA-SH gy
B-Oxidation
NADH, H* NADH, H Faity Acids
FADH, v | T
Fumarate Acetyl-Co Acyl-CoA AcyTl-CoA
Asp|
— Oxaloac€tate .
Asn L.,« CoA-SH  CoA-SH Acetyl-CoA
( TCA Cycle Cityate Citrate

Phe| — Fumlarate
Tyr J

CoA

Succiny

Val, Ile,
Met, Thr

Figure 5.23 A general overview of metabolism adapted from KEGG (KEGG, 1995)
ATP: Adenosine triphosphate, ADP: Adensoine diphosphate, NADPH: nicotinamide adenine dinucleotide
phosphate, PPP: pentose phosphate pathway, Acetyl-Co-A: Acetyl co-enzyme A, Pi: phosphatidylinositol,
TCA: Tricarboxylic acid cycle, Asp: aspartic acid, Asn: asparagine, Phe: phenylalanine, Tyr: tyrosine, Val:
valine, Ile: isoleucine, Met: methionine, Thr: threonine

5.2.4.3.1. Lipoxygenase Pathway (LOX)

Linoleic acid was identified by RF models (1-4) as being an important variable for
predicting damage in mushrooms. Day zero samples found levels of linoleic acid to be at
their highest for cap and gill tissue in D40 samples. Stipe samples also had high levels of

the compound (although the trend in stipe tissues was unusual). This shows that levels of
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linoleic acid increased with damage. Day one samples showed levels that were found to be
highest for gill and stipe tissue (D20). Levels in cap tissue were very low across all damage
levels. It has been reported that the compound is found in higher concentrations in the gill
tissue, particularly when damaged (Holtz and Schisler, 1971; Mau et al., 1992; Cruz et al.,
1997). The trend for day one samples (Figure 5.24b) indicated that after 20 min damage
linoleic acid levels decreased (gills and stipes). This suggests that over time and after a
certain level of damage linoleic acid underwent oxidation to produce volatile components

and therefore levels found in day one samples became depleted after D20.
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Figure 5.24 Bar plots with the semi-quantitative concentration of linoleic acid in mushroom tissues at
different damage levels in (a) Day zero samples and (b) Day one samples
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Linoleic acid levels may also be higher in damaged samples due to the degree of cellular
disruption, as this could induce the release of fatty acids from membrane lipids.

As stated in section 5.2.1.1.2 and discussed in section 5.2.4.1 linoleic acid is the precursor
of the mushroom alcohol 1-octen-3-ol. This aliphatic alcohol is the principal compound
that contributes to the unique fungal aroma and flavour (Murahashi, 1938). Together with
I-octen-3-one, 3-octanol, 3-octanone and octanol it makes up the main eight-carbon

volatile compounds present in mushrooms (Flegg et al., 1985) (Figure 5.25).

OH 0
\)\/\/\ \)J\/\/\
1-octen-3-ol

1-octen-3-one

\j.l\/\/\ \)Oi/\/\
3-octanone 3-octanol
I N N
HO
octanol

Figure 5.25 Structures of the main eight-carbon volatiles. Structure in red was identified by GC/MS
Eight-carbon volatile formation is unique to fungi and is likely to involve a fungal specific
pathway. It is evident in literature that lipid and fatty acid metabolism has been under
investigated in the fungal kingdom, with few genes and enzymes yet identified. This lack
of knowledge adds to the difficulty in understanding unique systems such as eight-carbon
compound production, having to depend on animal and plant resources, for sequence
information to model biochemical pathways, complicating the characterisation of such

unique systems (Combet ef al., 2006).
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The lipoxygenase pathway is described in Figure 5.26. Linoleic acid is oxidised to form the
eight carbon volatile 1-octen-3-ol, which is then cleaved to form a ten-carbon oxoacid (10-
ODA) (Wurzenberger and Grosch, 1984).

It has been recently reported that 1-octen-3-ol may only be produced due to cellular
damage, and the small amount detected from whole sporophores could be result of damage
caused by the separation from mycelial cells upon harvest. The study indicated that tissue
damage had a major effect on volatile formation. Mushrooms that had been sliced resulted
in 10 times more volatiles being produced in comparison to whole sporophores indicating
that the enzymic machinery was not operating maximally in whole mushrooms. This could
possibly due to substrate limitation e.g. oxygen, or substrates in different intracellular
locations. Damage also increased the range of volatiles (Combet et al., 2009).

3-octanol was the only volatile identified in this study. There are two possible reasons for
this. The first being that the mushroom is sliced into its three tissue types prior to
extraction, causing damage (wounding). The second is the mushroom samples were
subjected to mechanical damage (D20 and D40). These sources of damage could lead to
the decline in volatile levels due to the reaction substrate(s) available, fatty acid and/or
molecular oxygen, may rapidly become expended or that compartmentalisation reoccurs

after wounding, preventing the access of enzyme to the substrate (Combet et al., 2009).

129



Chapter 5. GC/MS

OH

\
Lipoxygenase
HO, 10-hydroperoxyoctadeca-8,12-dienoic acid
O 10-HPOD
o
HO
Hydroperoxide lyase

OH 0
1-octen-3-ol

10-oxodecenoic acid
10-ODA

Figure 5.26 Formation of 1-octen-3-0l (Wurzenberger and Grosch, 1984)
Metabolite in green was identified as an important variable by RF models

5.2.4.3.2. p-oxidation Pathway (fatty acid metabolism)

The saturated fatty acids identified as important variables by RF models were
pentadecanoic acid (model 1, 2 & 3), hexadecanoic acid (model 1, 2 & 4), heptadecanoic
acid (model 4) and nonanoic acid (model 2). The unsaturated fatty acid ricinoleic acid was
an important variable in model 6. The compound glycerol was present in mushroom
samples and identified in RF model 4 as an important variable for detecting damage in
mushroom caps. Lipases hydrolyse triglycerides releasing glycerol and fatty acids. The

subsequent breakdown of glycerol (after phosphorylation) through glycolysis releases
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energy (Chang and Miles, 2004). B-oxidation is the principal means by which fatty acids
are metabolised by cells. The mechanism (Figure 5.23) involves a set of four consecutive
reactions catalysed by four major enzymes in the process of fatty acid oxidation: acyl-CoA
oxidase, 2-enoyl-CoA hydratase, 3-hydroxacyl-CoA dehydrogenase and 3-ketoacyl-CoA
thiolase. Through this four-step pathway, a two-carbon unit is split from each fatty acid in
the form of an acetyl-CoA unit, which can then be fed into the glyoxylate cycle or be
degraded in the TCA cycle to produce CO, and H,O. There are many other enzymatic
activities such as cis-enoyl-CoA isomerise, which are necessary for the degradation of
unsaturated fatty acids (Wang et al., 2007).

A trend was found in damaged samples for day zero and day one samples. In day one
samples levels of fatty acid were low in undamaged (UD) samples, increasing in D20
samples and even higher in D40 samples. The common trend seen in day one samples was
as follows: low levels in UD samples, increasing in D20, with a decrease seen in D40
samples. A recent study reported that pentadecanoic acid, hexadecanoic acid and nonanoic
acid levels decreased postharvest (Combet et al, 2009). This suggests that these
metabolites are affected by damage and could be used as markers of damage.

The cellular disruption caused by mechanical damage could induce the release of free fatty
acid from membrane lipids and lipid globules, as well as breaking down the cellular
compartments, increasing the levels of fatty acids. This suggests that when damaged or
under stress the mushroom produces higher levels of fatty acids, releasing its reserves in a
possible protective capacity or to do with a possible repair function. However, after certain
levels of stress (i.e. D40) and after a certain length of time the levels of fatty acids begin to

decrease.
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5.2.4.3.3. Isomerisation of Glucose (myo-inositol)

The polyol myo-inositol was identified in RF models (1, 3 & 5), making it an important
marker for damage particularly in the overall model, modelling damage in day one samples
and in gill tissue samples. Myo-inositol can occur in the free form and in compounds such
as inositol phospholipids (Ikawa et al., 1968). Myo-inositol was synthesised by
isomerisation of glucose-6-phosphate and dephosphorylation (Figure 5.27) (Loewus and
Murthy, 2000) and is utilised by several pathways including phosphatidylinositol

phosphate pathways.

Glucose-6-phosphate

¢ Isomerase
Myo-inositol-1-phosphate
l Desphosphorylase

¢ Isomerase

Neo-inositol  Scyllo-inositol

HO OH HO, OH H OH

HO “1OH Ho—é"'OH HO

< -

HO OH HO OH HO  OH

neo-inositol scyllo-inositol

-\\O

“1OH

Figure 5.27 Formation and structures of myo-, neo- and scyllo-inositols. Metabolite highlighted in
green was identified as an important variable by RF models

Levels of myo-inositol were slightly higher in damaged samples (D40) for day zero
samples and levels were also higher in damaged day one samples (D20) indicating that this

metabolite increased in damaged samples and may be a useful marker for damage.
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5.2.4.3.4. Glycolytic Pathway (D-mannose)

D-mannose was identified as an important metabolite for modelling damage in mushrooms
(RF model 4). This particular model was built using cap data only and it gave a very good
OOB error rate of 8.33%. Mannose (Figure 5.28) undergoes glycolysis i.e. converts
glucose-6-phosphate or fructose-6-phosphate to pyruvate and is phosphorlyated by
hexokinases. Glycolysis occurs in the cytosol and is the ubiquitous means to convert
glucose into pyruvate, providing the cell with energy, precursors and NADH (Van Laere,

1995; Arraes et al., 2005).

HO OHO
o=
HO OH
D-mannose
Figure 5.28 Structure of D-mannose
The bar plot below (Figure 5.29) shows that the highest levels of D-mannose were in

samples after D20. This suggests that after a certain amount of damage, D-mannose enters

glycolysis and therefore levels become depleted and is an indicator of damage.
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Figure 5.29 Bar plot with the semi-quantitative concentration of D-mannose in mushroom cap tissues
at different damage levels in day zero samples and day one samples
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5.2.4.3.5. TCA Cycle (Krebs cycle)

Citric acid was indicated in RF model 5 (gill tissue) as an important variable for
discriminating damage in the gill tissue of mushrooms. The biochemical pathways related
to citric acid accumulation and the role of the tricarboxylic acid cycle (TCA) (Figure 5.23)
in fungi has been well established. Citric acid accumulation can be divided into three
processes:

1. The breakdown of hexoses to pyruvate and acetyl-CoA by glycolysis

2. Formation of oxaloacetate

3. Condensation of acetyl-CoA and oxaloacetate to citric acid (Kubicek, 1988)
Succinic acid was also detected in mushroom samples and is a product of the TCA cycle,
although it was not identified as an important metabolite by RF models.

Levels of citric acid were at their highest in day zero samples after 40 minutes of damage.

5.2.4.3.6.  Polyol Metabolism (glucitol/mannitol & hexitol)

The sugar alcohol glucitol was identified as an important metabolite for modelling damage
in models 3 & 5 (day one samples and gill samples) and D-ribo-hexitol was identified in
models 5 & 6 (gills and stipe tissue). As mentioned previously in section 5.2.2.2 glucitol
and mannitol are isomers. A limitation of mass spectral libraries is the inability to
differentiate between structural isomers. Because mannitol is the main polyol found in
Agaricus bisporus (Beecher et al., 2001; Tsai et al., 2007), it is recommended that mannitol
was detected by mass spectrometry. Mannitol and hexitol together with myo-inositol and
glycerol were detected by mass spectrometry, with mannitol and hexitol identified as
important metabolites by RF models. Hexitols are synthesised from glucose by the routes

shown in Figure 5.30.
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Glucose— Fructose—> Mannitol

Glucitol
Figure 5.30 Hexitol synthesis

Overall levels of mannitol were found to be higher in day one samples, with concentrations
increasing with damage levels i.e. D40 samples had the largest concentrations of mannitol,
and this trend was also found in gill tissues. Hexitol levels decreased over time in gill and
stipe tissues indicating the use of this metabolite as a useful marker for damage in these
tissues.

Harvested mushrooms continue to have high rates of respiration linked to a switch from
nutrient import to the breakdown of storage compounds (Hammond and Nichols, 1975). It
has been reported that mannitol levels decrease postharvest while levels of cell wall and
urea increase (Hammond, 1979; Eastwood et al., 2001). In contrast mannitol levels were
found to be higher in day one samples and samples that had been damaged. This indicates
that mannitol could be used as a marker of damage in mushrooms as its levels increased
with damage. Trehalose and mannitol are thought to act as storage carbohydrates for
sporophores production and reserves, under conditions of water stress (Wells et al., 1987;
Burton et al., 1994). Trehalose may be converted to glucose and then mannitol in the upper
stipe and/or in the cap and transported to the upper stipe. This conversion of trehalose
could be the reason mannitol levels increase over time and damage and also the reason
trehalose is not identified by mass spectrometry.

Research has revealed over-expressed sugar transporter genes in A. bisporus cell
membranes between stage 2 and 4 mushroom sporophores (Beecher et al., 2001). This over
expression may also occur when a mushroom becomes damaged, however further studies

would be required.
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5.2.4.4. Correlation of Metabolites (correlation matrices)

Polar and non-polar metabolite groups were examined. Polar extract metabolites included
the amino acids and sugars/polyols whilst non-polar metabolites were the fatty acids and
phenolic compounds. Pair-wise correlation analysis was performed on the response ratios
of all metabolites. This approach can identify both synthetically related (Steuer et al.,
2003) and co-ordinately regulated metabolites. Correlations between metabolites were
examined at for each damage level (0, 20, and 40), each tissue type and each day (day
zero/day one) respectively. Two metabolites were considered to be highly correlated if the
coefficient had a value of >0.9, and on this basis there were 132 highly positively
correlated pairs for day zero samples and 121 medium correlated metabolites (>0.7-0.9).
Of the highly correlated metabolites 93 were between fatty acids, 21 between amino acids,
13 between sugars and 5 between phenolics. Day one samples gave 39 highly correlated
and 74 medium correlated metabolites. Of the highly correlated metabolites 13 were

between fatty acids, 13 between amino acids, 11 between phenolics and 2 between sugars.

5.2.4.4.1. Correlation Matrices (polar metabolites)

In the following sections only highly correlated metabolites will be discussed (i.e.
coefficient values >0.9). Correlation matrices for polar metabolites (day zero samples) of
cap tissue are shown in Figures 5.31, 5.32 and 5.33. A striking feature of the data was the
extent of correlation within amino acids in D20 cap tissue (Figure 5.32). There were a
number of high correlations between amino acids and sugars/polyols such as glucitol with
alanine and myo-inositol with glycine (Figure 5.31). Examples can also be seen in D40
samples: glycerol with alanine, glucitol/mannitol with tyrosine and myo-inositol with
proline etc (Figure 5.33). Amino acids play important roles as basic substrates and as

regulators in many metabolic pathways (Brosnan, 2003).
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Figure 5.31 Correlation matrices of polar metabolites in day zero cap tissues at 0 min damage

Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine
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Figure 5.32 Correlation matrices of polar metabolites in day zero cap tissues at 20 min damage

Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine
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Figure 5.33 Correlation matrices of polar metabolites in day zero cap tissues at 40 min damage
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine

The correlation matrix (Figure 5.31) for undamaged day zero caps showed a number of
correlations between the same groups of metabolites and also a number of inter-
correlations for e.g. alanine with myo-inositol. Metabolites that were highly correlated
produced plots with linear relationships (Figure 5.34). The highly correlated metabolites
between amino acids and sugars/polyols were not seen in D20 cap tissues. A number of
amino acid metabolites with high correlations were seen. The matrix for D40 samples had
fewer amino acid metabolite correlations with an increase of inter-correlations found,

similar to the correlation matrix for undamaged cap tissue.
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Figure 5.34 Selected plots of response ratios of highly correlated metabolites seen in undamaged cap
tissue
Ala: alanine, Gly: glycine, Tyr: tyrosine
R=correlation value

Correlation matrices were also examined for gill and stipe tissues (Day zero samples). The
following observations were made: No pairs of metabolites were highly correlated in UD
and D20 matrices for gill tissue, with 5 pairs found in D40 samples: glycerol with sucrose,
glycerol with myo-inositol, mannose with aspartic acid, mannose with tyrosine and sucrose

with myo-inositol. Stipe tissues had the following trends: UD samples had 3 highly
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correlated pairs of metabolites. D20 contained no correlated pairs, D40 samples had a
number of correlation pairs and followed the same trend as cap D20 samples i.e. highly
correlated pairs were found amongst amino acids only (Figure 5.32).

The observation of correlations shows that the metabolite concentrations are dependent on
each other and therefore must be strongly connected to the underlying biophysical system.
Cell metabolism constitutes a complex dynamical system, which is continuously subject to
fluctuations. These fluctuations arise from a continuously changing environment and also
from complex patterns of regulation, generated by the network itself. These fluctuations
induce variability in certain metabolites, propagate through the network and generate an
emergent pattern of correlations (Steuer et al., 2003). The strong correlations between
amino acids and sugars/polyols particularly in UD and D40 cap samples suggests the
possibility that amino acid synthesis might be controlled, at least partly, by carbohydrates
or associated factors.

Correlation matrices (polar metabolites) for day one cap samples (Figures 5.35, 5.36 and
5.37) gave 3 highly correlated pairs of metabolites in UD samples; glucitol/mannitol with
alanine, glucitol/mannitol with tyrosine and tyrosine with alanine. D20 gave 1 pair of
highly correlated metabolites; glucitol/mannitol with fructose and finally D40 samples had
the following pairs; myo-inositol and glycine, mannose with alanine, tyrosine and alanine
and glycine and alanine. The appearance of new correlations in the damaged samples in
comparison to undamaged samples indicate the activation of new metabolic pathways
through the effect of damage, affecting the ratios/relationships between the different
metabolites and imply de novo enzyme production. Correlations of cap tissue (day one)
show the adaption of mushroom metabolism to the mechanical damage (Figures 5.35, 5.36

and 5.37).
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Figure 5.35 Correlation matrices of polar metabolites in day one cap tissues at 0 min damage
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine
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Figure 5.36 Correlation matrices of polar metabolites in day one cap tissues at 20 min damage
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine
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Figure 5.37 Correlation matrices of polar metabolites in day one cap tissues at 40 min damage
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid,
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine

Day one gill samples had no highly correlated pairs for UD samples. The following pairs
of metabolites were highly correlated in D20 samples; tyrosine with glycine and threonine
with aspartic acid. The following were seen in D40 samples; glycerol with myo-inositol,
threonine with aspartic acid, glycine with alanine.

Day one stipe samples had no highly correlated pairs for UD samples. For D20 there were
a number of highly correlated metabolites seen, however, they were between amino acids
only. D40 samples contained no highly correlated metabolites.

There was no trend seen that could be used to differentiate between damaged samples and
undamaged ones. However, correlation matrices are useful in understanding metabolic
pathway interactions between metabolites. It seems that pathways controlling carbon and
amino acid metabolism should cross-link, since amino acids are based on carbon skeletons
(Morcuende et al., 1998) and therefore correlations between these groups can be seen in

the correlation matrices.
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5.2.4.4.2. Correlation Matrices (non-polar metabolites)

Non-polar metabolites included the fatty acid and phenolic compounds. The highest
number of highly correlated metabolites was found for cap tissue after 40 min damage.
There were high correlations seen between saturated fatty acids with expected correlations
between fatty acids with even carbon numbers (e.g. octadecanoic acid and eicosanoic acid)
and between those with odd carbon numbers (e.g. pentadecanoic acid and heptadecanoic

acid), the members of each series being biosynthesised sequentially from the same starting
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unit by addition of a C; unit from malonyl-CoA (O'Hara et al., 2002) (Figure 5.38).
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Figure 5.38 Correlation matrices of non-polar metabolites in day zero cap tissues at 40 min damage

Only a few correlations were seen between fatty acids and phenolic compounds in day zero
cap samples. However, a number were found in day one samples that had been extensively

damaged (D40). There were a total of 8 fatty acid and phenolic pair-wise correlations.
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Interestingly high correlations were seen between pentadecanoic acid and linoleic acid in
day zero caps (D20 & D40), day zero gills (D20, D40), day one gills (D20 & D40) and day
zero stipes (D20, D40), which were identified in the first RF model as variables of
importance for modelling damage in mushrooms. A correlation between these two
metabolites was not significant in cap, gill or stipe undamaged tissue, for both day zero and
day one samples. This suggests that a metabolic pathway (related to fatty acids and
possibly membrane regeneration) becomes switched on when a mushroom becomes
damaged.

These metabolites were also identified in a number of RF models as being important
variables for predicting damage. Figure 5.39 shows the response ratios of linoleic acid and

pentadecanoic acid for gill tissue at each day and damage level.
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Figure 5.39 Plots of response ratios for linoleic and pentadecanoic acid (gill tissue) at each damage
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DO: Day zero; D1: Day one
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A high correlation for these two metabolites was seen at damage levels D20 and D40 for
both days. These metabolites were not highly correlated for undamaged gills and therefore

may be used as indicators of damage. This pattern was also seen for cap and stipe tissue.

5.3. CONCLUSIONS

One hundred and five metabolites were identified by GC/MS analysis. These metabolites
included fatty acids, phenolics, sugars and polyols.

PCA found patterns of clusters in UD and D20 samples for both day zero and day one cap
tissues, indicating that damage had an effect on metabolite levels. Patterns were not so
clear in gill and stipe tissues.

An overall RF model was developed using all the samples, a variable indicating the tissue
from which the metabolite originated (cap, gill or stipe) and the age of the mushroom (day
zero/day one) as explanatory variables. This model gave a good OOB error rate of 11.11%.
A second model was produced removing the explanatory variables resulting with an OOB
error rate of 11.39%. The two models identified the following five metabolites as
important variables for predicting damage: pentadecanoic acid, linoleic acid, myo-inositol,
benzoic acid and hexadecanoic acid. Univariate analysis confirmed that the difference in
concentrations of these metabolites was significant between damaged and undamaged
samples.

RF models were then built for the different days (day zero/day one) and the different tissue
types (cap, gills or stipes). OOB error ranges were between 8-14% with model 3 (day one
samples only) having the best prediction with an OOB error rate of 6.67%. Out of the total
RF models produced (i.e. 6 models Table 5.8) 17 metabolites were identified (top 5 for
each) as important variables for detecting damage, with a number of the same metabolites

identified in different models. The RF models produced could be used as classifiers of
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mushroom damage as they all resulted with good prediction models (OOB >14%) and can
identify specific metabolic markers of damage.

The overall PLS-DA model did not perform as well in comparison to the RF models.
However, the model was able to classify correctly undamaged samples from damaged
samples very well in both training and testing sets. Models were then developed separately
for each tissue type. All the tissue types produced models with low error rates for
discriminating between undamaged and damaged samples. Gill and stipe tissues had the
highest levels of misclassification in their ability to discriminate D20 and D40 samples.
Cap tissue produced the best models (training and testing) for classifying correctly each
damage level.

Correlation matrices were produced for non-polar and polar metabolites, with each tissue
and age of sample examined separately. Correlation matrices yielded 171 highly correlated
metabolites (=0.9), which were mainly within each metabolite group. However, a number
of inter-correlated correlations were also identified.

Non-polar correlation matrices indicated that linoleic acid and pentadecanoic acid were
highly correlated within damaged samples. These metabolites were also highlighted by RF

models as important indicators of damage.
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6. Evaluating metabolomic technologies for identifying markers of
damage in mushrooms (Agaricus bisporus)

This study evaluated damage in mushrooms using a metabolomic approach. Three different
metabolomic techniques (FTIR spectroscopy, NMR spectroscopy and GC/MS) were used
coupled with chemometric methods (PCA, RF and PLS). The following chapter will aim to
describe and examine the stages of sample preparation, analysis and results in each of the

metabolomic trials.

6.1. SAMPLE PREPARATION

6.1.1. FTIR Spectroscopy

FTIR spectroscopy is a technique used to obtain a spectral fingerprint of biological
samples which represents a snap-shot of the biochemistry at a given time. Sample
preparation was minimal, no extraction procedure was involved and samples did not
require chemical derivatisation. FTIR spectroscopy enables reagentless analysis and is
comparatively inexpensive. The technique also facilitated high-throughput analysis in

terms of both sample preparation and analysis time (less than 1 min per sample).

6.1.2. NMR Spectroscopy

In NMR analyses sample preparation was a straightforward procedure, which involved a
simple extraction (chloroform/methanol/water) in order to separate the polar and non-polar
mushroom extracts. A suitable deuterated solvent was needed for each phase to allow for
locking of the signal. Derivatisation of analytes was not required. Like FTIR spectroscopy,
NMR spectroscopy is also as a high-throughput technique (2-3 min per sample) and non-

destructive, permitting subsequent analysis by other methods (Fan, 1996).
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6.1.3. GC/MS

In GC/MS analyses sample preparation was more extensive in comparison to FTIR and
NMR spectroscopy. It required sample drying, which can result in loss of volatile
metabolites. Subsequent two-stage chemical derivatisation was required to induce volatility
and thermal stability (Roessner et al., 2000). Oxime/silylation derivatisations which were
used in the protocol are time consuming (1-2 h) and the stability of derivatised samples is

an issue.
6.2. ANALYSIS

6.2.1. FTIR Spectroscopy

FTIR spectroscopy results in an absorption spectrum that provides a characteristic
fingerprint of the sample. Five major regions have been highlighted within the 4000 to 600
cm™ (MIR) region. These are broadly termed as the fatty acid region (3100-2800 cm™), the
amide region (1700-1500 cm™), which can be divided into the amide I and amide II bands,
the polysaccharide region (1200-1250 cm™) and a mixed region containing a variety of
weak features.

The fingerprint region of the mushroom spectra was examined (2000-400 cm™). This
region was information rich and a number of peaks were attributed to functional groups.

Spectra were highly reproducible.

6.2.2. NMR Spectroscopy

'"H NMR analyses of samples was carried out on polar and non-polar extracts to
discriminate low levels of damage in mushrooms. NMR spectroscopy is a specific and yet
non-selective technique. This meant that each separate resonance observed in an NMR

spectrum was specific to a particular compound, providing a wealth of structural
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information regarding the components of a sample. NMR spectroscopy did not require pre-
selection of the analysis conditions, such as ion source conditions for mass spectrometry or
chromatographic operating conditions (stationary phase, mobile phase, temperature).

Manipulation of spectra was difficult as they contained thousands of signals relating to
metabolites which made identification very difficult. However, it was possible to see
visible differences between the spectra of damaged and undamaged mushrooms, prior to
chemometric analysis. Non-polar extracts gave information rich spectra with more visible
differences seen between damaged and undamaged samples compared to polar extracts.
Polar phase spectra were not as information rich as expected compared to other NMR
studies of mushrooms (Cho et al., 2007). A reason for this could be that there are a range
of polar compounds extracted, but individually they are present in very small amounts and
are below the detection limit. Another reason could be that polar compounds are not too

soluble in methanol and therefore were not extracted efficiently.

6.2.3. GC/MS

In GC/MS analyses samples were analysed with small sample injection volumes (1 pl) on
a high resolution capillary column, allowing sensitive analyses, which is one of the most
important requirements for metabolomics (Sumner et al., 2003). An electron impact
spectrometer was used to provide molecular ion fragmentation to produce a mass spectrum
indicative of the metabolites structure. Metabolites were detected with good sensitivity and
spectra were highly reproducible.

The analysis of raw data was carried out using deconvolution software which verified
individual analytes and deconvoluted co-eluting peaks. Identification of metabolites was
achieved using commercially available libraries (NIST), standards and literature data.
There are a number of commercially available MS libraries e.g. NIST, EPA and NIH

which are extensive. However, they do not contain a large number of metabolites possibly
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perceived when studying metabolic pathway networks. There is a need for metabolite
specific libraries which are being produced within the community but are limited to the
metabolites commercially available or those that can be identified from mass spectral
interpretation (Dunn et al., 2005).

GC/MS sample preparation was a lengthy procedure and together with the run time for
each sample (90 min per sample) this makes the technique a much longer process in
comparison to FTIR and NMR spectroscopy.

GC/MS analysis of mushrooms resulted in a library of 105 metabolites being built. A range
of metabolites including amino acids, fatty acids, carbohydrates, polyols and organic acids
were detected in high probabilities.

An overview of the three techniques is shown in Table 6.1.

Table 6.1 Comparison of analytical platforms used for detecting damage in mushrooms

Method Advantages Disadvantages
FTIR e High-throughput Low sensitivity
e No sample preparation Requires larger samples
e Inexpensive Qualitative rather than
e Reproducible quantitative
e Requires no
derivatisation
NMR e Non-destructive Relative low sensitivity
e High throughput Expensive
e Little or no sample instrumentation
preparation requirement Requires larger samples
e Robust, mature (0.5 ml)
technology Limited metabolites
e Requires no coverage
derivatisation Relative poor selectivity
e Quantitative (signal overlap)
GC/MS e Robust, mature Sample not recoverable
technology Requires derivatisation

Relatively inexpensive

Sample bias (volatile &

e Quantitative (with stability)
calibration) Standards or data base
e Modest sample size dependence

Good sensitivity
Excellent separation
reproducibility
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6.3. RESULTS

Principal component analysis (PCA), random forests (RF) and partial least squares (PLS)
were used to extract information from each metabolomic technique in order to develop

models for predicting damage in mushrooms.

6.3.1. FTIR Spectroscopy

In FTIR spectroscopy RF models had the ability to discriminate between damaged and
undamaged samples with low error rates (5.9% and 9.8%). The models produced VIP plots
(variables of importance) which identified specific wavenumbers that were important for
detecting damage. The wavenumbers identified were 1868, 1870, 1845 and 1560 cm™. The
wavenumbers 1868, 1870 and 1845 cm™ are unassigned. However, they are all located
along the shoulder for the peak located at 1650 cm™, which is attributed to amide II. The
wavenumber 1560 cm™ was identified as an important variable and is attributed to an
amide I group. Univariate statistical analysis of these important variables showed that
damaged samples have higher absorbancies at these wavenumbers, indicating that amide
peaks are important for detecting damage using FTIR spectroscopy.

PLS-DA produced models with low error rates. Misclassification errors associated with all
models were low, particularly in the case of gills and stipes. Correct classification ranged
from 92-99% (different tissues), highlighting the usefulness of this technique to identify

mushrooms that had been physically damaged.

6.3.2. NMR Spectroscopy

In NMR spectroscopy RF models were produced for both non-polar and polar samples, and
for each tissue type and day i.e. day zero and day one. Non-polar samples produced RF

models with low error rates (10%) and indicated signals in the lipid and aromatic regions
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as being important variables for determining whether samples were damaged or not. Polar
samples resulted with models having large error rates and therefore it may be a useful tool
for modelling damage in non-polar samples only.

PLS-DA models resulted with low error rates for predicting damaged samples using both
non-polar and polar samples. However, non-polar samples were slightly more successful in
their discrimination ability.

NMR spectroscopy coupled with chemometric tools was successful for modelling damage
in mushroom samples that had been subjected to low levels of damage. The method did not
prove successful for profiling metabolites, although further extraction procedures may

yield more conclusive results.

6.3.3. GC/MS

In GC/MS analyses an overall model to predict damage using all data produced an RF
model with an OOB error rate of 11.1%. Further models were produced for the samples
ages (day zero and day one) and for each tissue respectively. Model errors ranged from
6.67 (day one samples) to 13.33% (gill tissue). VIP plots identified important metabolites
as being the most informative for discriminating between damage and undamaged samples.
Fatty acids were the most important variables for detecting damage, with linoleic acid
being identified in four out of six models.

This study identified a number of fatty acids as being important metabolic markers of
damage in mushrooms, suggesting that lipid membranes were affected by physical
damage, thereby changing the mushrooms physiology in some way. GC/MS allowed the
identification of specific metabolites, therefore enabling a more extensive understanding

into the metabolic pathways affected by damage.
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GC/MS metabolic profiling also allowed a library of metabolites to be built. A total of 105
metabolites were separated and identified by this analysis, including a number of fatty
acids, carbohydrates, amino acids, polyols and organic acids.

PLS-DA was applied to the GC/MS data, producing models with acceptable error rates.
Misclassification was seen between the different levels of damage (D20 & D40). However,
the models were ultimately able to differentiate between damage and undamaged samples
(low error rates) for both days.

An overview of chemometric results for the three methods used is given in Table 6.2

Table 6.2 Summary of metabolomic techniques and the best models used to evaluate damage in

mushrooms
Technique RF (%) PLS-DA
FTIR 5.9 Low misclassification
NMR 9.97 Low misclassification
GC/MS 6.67 Low misclassification

6.4. CONCLUSIONS

FTIR spectroscopy produced the model with the lowest error rate for predicting damage in
mushrooms in comparison to the other metabolic techniques used, with amides identified
as important variables for predicting damage using the random forest method. PLS-DA
also resulted with low errors of misclassification. The method was rapid with many
samples being analysed per day. The prospect of using ATR-FTIR would allow non-
destructive analysis with even more samples being analysed per day.

However, in order to profile the metabolites in mushrooms, GC/MS was the most useful in
terms of its ability to separate and identify specific metabolites with over 100 metabolites
identified. Models for discriminating damage were also low (6.67%) with specific

individual metabolites being identified as possible markers for damage. This allowed an
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insight into which metabolites were affected by mechanical damage and which metabolic
pathways were involved.

NMR spectroscopy also proved a useful tool for modelling low levels of damage in
mushrooms (9.97%) with signals identified in the lipid and aromatic regions highlighted as
important variables for discriminating damage. Further work would need to be carried out
in this area in terms of extraction in order to successfully profile individual metabolites.

In conclusion there is no single analytical technique that has the ability to profile all of the
metabolome and therefore a combination of techniques is useful and complimentary. This
was found for NMR and GC/MS analyses with lipids being identified by RF models as

important metabolites for detecting damage in mushrooms.
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7. Conclusions

7.1.

OVERALL CONCLUSIONS

This study employed metabolomic profiling and fingerprinting techniques (FTIR and NMR

spectroscopy and GC/MS) for the detection and discrimination of mechanical damage in

mushrooms. Mushrooms subjected to various levels of mechanical damage (from

mushrooms with low damage levels and general good acceptable colour to mushrooms

unacceptable for sale) were studied.

In summary, this study draws the following conclusions:

The metabolic fingerprinting techniques (FTIR and NMR spectroscopy) proved to
be the more efficient methods in terms of sample preparation and sample analysis.
Employment of FTIR spectroscopy and chemometric tools was successfully
applied to investigate the chemical changes induced by mechanical damage to
mushrooms. RF and PLS-DA had the ability to model damage in mushrooms with
low error rates. RF models identified specific wavenumbers (for amide vibrations)
as being important variables for indicating damage. The absorbance values for
these wavenumbers increased in the spectra of damaged samples and could be
therefore used as markers for damage.

FTIR spectroscopy was also used with chemometric tools to investigate whether
the age of the mushrooms could be predicted. Models did not predict age in
mushroom samples very well.

NMR spectroscopy and chemometric tools were successfully employed to detect
low levels of damage in mushrooms. Non-polar phase spectra yielded predictive

models of damage with low error rates. RF models identified signals in the lipid
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and aromatic region of the 'H NMR spectra as being important variables for
detecting damage. Polar phase spectra were not as successful for modelling damage
in mushrooms with high error rates produced using RF models. PLS-DA models
were however, successful for predicting low levels of damage.

Identification and assignment of individual metabolites for qualitative purposes
proved extremely difficult in NMR analysis.

The metabolic profiling tool GC/MS was employed in order to build a library of
mushroom metabolites. Over 100 metabolites were separated and identified
including carbohydrates, fatty acids, phenolic compounds, amino acids, polyols and
organic acids.

Chemometric tools were successfully applied to GC/MS data to predict damage in
mushrooms. RF models identified specific fatty acids as important markers of
damage. PLS-DA models were also able to predict damage in an acceptable

manner.

Overall the results from this study showed different metabolomics techniques had the

potential to differentiate between mushrooms that had been mechanically damaged and

those that were undamaged. These techniques could be used in the mushroom industry

replacing older slower methods, reducing time and labour costs.

7.2. FUTURE INVESTIGATIONS

The work presented in this thesis could be extended and improved taking the following

recommendations into consideration:

A study using ATR-FTIR spectroscopy as opposed to pellet sampling to evaluate

its ability to model damage using the same chemometric methods. If successful this
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would enable non-destructive analysis of fresh mushrooms. This would reduce
sample preparation time and allow analysis of fresh samples as opposed to freeze-
dried samples.

Further analysis needs to be carried out using NMR spectroscopy in terms of
extractions and solvents used. A targeted metabolomics approach may be required
in order to identify and assign individual metabolites. This would involve further
extraction and purification procedures coupled with 2D NMR analysis for a more
detailed profile of the metabolome.

Increasing the number of mushroom metabolites indentified in the library and a
further study of the relationship of these metabolites variation with different traits
(i.e. variety, diseases, agricultural practices) will provide a much more precise
knowledge of the mushroom metabolome and contribute to the general
improvement of its cultivation and production.

Investigating the use of these metabolomic techniques for the detection and
discrimination of other types of damage to mushrooms such as microbial damage

e.g. brown blotch disease and viral damage e.g. mushroom virus X.
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