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A Context Quality Model to Support Transparent
Reasoning with Uncertain Context *

Susan McKeever, Juan Ye, Lorcan Coyle, and Simon Dobson

susan.mckeeverQucd.ie

Abstract. Much research on context quality in context-aware systems
divides into two strands: (1) the qualitative identification of quality mea-
sures and (2) the use of uncertain reasoning techniques. In this paper,
we combine these two strands, exploring the problem of how to identify
and propagate quality through the different context layers in order to
support the context reasoning process. We present a generalised, struc-
tured context quality model that supports aggregation of quality from
sensor up to situation level. Our model supports reasoning processes
that explicitly aggregate context quality, by enabling the identification
and quantification of appropriate quality parameters. We demonstrate
the efficacy of our model using an experimental sensor data set, gaining
a significant improvement in situation recognition for our voting based
reasoning algorithm.

1 Introduction

The information used by context-aware systems to recognise different contexts
is often imperfect. Sensor data is prone to noise, sensor failure and network
disruptions. Users actions can contribute to degradation of information quality,
such as the failure of users to carry their locator tags. Further uncertainty can
be introduced in the reasoning process, such as the use of fuzzy functions to
quantify vague context or difficulty in defining accurate inference rules [14].
Existing work in the area of context quality focuses on two main areas: (1) The
qualitative identification of context quality parameters, often as part of a context
modelling exercise, such as the work done by [4,6,5]; and (2) the quantitative use
of reasoning techniques that incorporate context uncertainty such as Bayesian
networks [10] and fuzzy logic [7].

The qualitative work provides a useful vocabulary for identifying and mod-
elling context quality. However, such measures are usually associated with ‘con-
text‘, without specification of quality for each layer of context. Quality issues
for low level sensor data are different to those at higher levels of context and
a context quality model must reflect this [9]. Also, the aggregation of quality
across the layers must be addressed in order to produce a meaningful and use-
able indicator of context quality to applications. This aggregation will support

* This work is partially supported by Enterprise Ireland under grant number
CFTD 2005 INF 217a, and by Science Foundation Ireland under grant numbers
07/CE/I1147 and 04/RPI/1544



reasoning schemes that can propagate uncertainty from sensor level upwards. For
example, Dempster Shafer [13] or voting algorithms [2] for context reasoning can
incorporate explicit quantification of uncertainty of context sources.

This paper presents a UML-based structured model of context quality for
each layer of context. We also include an aggregation model that contains a
general set of quality measures and their propagation across context layers. De-
signers of context-aware systems can use our combined models to (1) identify
and model context quality issues and (2) to support the specification of quality
aggregation. In particular, context-aware systems using transparent reasoning
techniques that aggregate quality from sensors upward will benefit from our
modelling approach. We demonstrate our work by generating quality parame-
ters for an experimental dataset. We incorporate these quality parameters into
a voting-based reasoning algorithm. Our results show that situation recognition
significantly improves with the inclusion of our modelled context quality than
when quality is not used.

This remainder of this paper is organised as follows: Section 2 describes
related work by other researchers; Section 3 details our structured quality and
aggregation models and their relevance to context reasoning schemes; In Section
4, we demonstrate and critique our model with an experimental dataset. Finally,
in Section 5, we conclude our work and define our future research direction.

2 Related work

Previous work on modelling context quality provides various well documented
parameters for context quality, such as context confidence [11,3,10] to indicate
probability of correctness and freshness [3,4,8,1] to indicate the degradation of
information over time. Lower level sensor quality measures such as precision,
accuracy and resolution [4,1] are used to define sensor data issues. Such work
provides useful semantics for exploring the nature of context quality issues. Other
modelling approaches include placeholders for quality parameters within struc-
tured models of context. For example, Henricksen and Indulska’s [6] Object Role
Modelling context model associates context facts with zero or more quality pa-
rameters and associated metrics. Similarly, Gu et al. [5] describe a context model
that includes a quality ontology with specific parameters and metrics. They in-
clude a set of commonly used parameters in their ontology. Both of these models
use similar modelling constructs for quality. However, sensor and situation qual-
ity parameters are not separately identified.

The modelling approaches described do not model or aggregate quality pa-
rameters at each layer of context. We address this as follows: (1) We provide
a structured (UML) extendable context quality model that includes quality pa-
rameters for sensor, abstracted context and situations, as illustrated in Figures
1 and 2. (2) We provide an aggregation model that aggregates quality across
each layer of context, as shown in Figure 3. To illustrate our work, we provide
a demonstration of how context quality can be used to support the reasoning
process, as explained in Section 4.



3 Our Approach to Modelling Context Quality

Context-aware applications are usually decoupled from the intricacies of lower-
level sensor data, Instead, they liaise with higher-level human-understandable
situations [14], such as a user ‘preparing breakfast’ at home. For such applica-
tions, a usable expression of quality at situation level will be useful, rather than
having to interpret lower level measures such as sensor precision. We approach
our context quality modelling work with the following principles in mind: (1)
Quality issues at each layer of context (sensor, abstracted context, situation) are
different [9], requiring parameters to be specified for each layer; (2) Known ag-
gregations between quality parameters along the layers should be shown to assist
in quantifying quality. However, prescription of explicit aggregation formulae is
avoided to allow for system-specific calculations; (3) A model of context quality
should be extendable to allow for system-specific requirements; (4) A standard
modelling technique should be used to maximise use of the structured model.
We incorporate these principles into our structured (Figures 1 and 2) and aggre-
gation models (Figure 3). These models are general and flexible enough to suit
different types of sensors and context and their associated quality issues. We use
UML for our structured model.
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Fig. 1. Sensor quality modelling in UML.



3.1 Modelling sensor quality

In our UML model, sensors represent any physical (e.g. Ubisense !) or virtual
data source (e.g. tracked user calendar) that provides dynamic information about
an entity, such as location of a user. Sensors are heterogeneous. Therefore, it is
challenging to provide a set of quality parameters that applies across all sensors.
Our structured model is generic and flexible, describing placeholders for mod-
elling quality without prescribing what parameters to model. Our sensor quality
model as shown in Figure 1 shows zero or more quality parameters for each
sensor. For each quality parameter in our sensor class, one or more metrics may
be stored. Each sensor system may have one or more sensors, and each sensor
tracks one or more entities. A quality parameter is an instantiated sensor quality
class and (at least one) sensor quality metric class. E.g., our structured model of
our in-house Ubisense system includes a quality parameter of ‘precisionx‘ (for
x-axis), with a metric value of 1.65 and unit of metres.

Our aggregation model (Figure 3) describes aggregation of quality from sen-
sor level to situation. We specify a base set of sensor quality parameters that are
used to determine quality at higher levels of context abstraction. This set may
be reduced or expanded according to the individual sensor system. Precision
indicates the range within which a sensor reading or part of a sensor reading is
believed to be true; Accuracy indicates the error rate or frequency of correctness
of sensor readings, for a given precision; Frequency of sensor readings can be
used to support calculation of a freshness measure of abstracted sensor readings.
Other commonly used parameters such as resolution and coverage are not in-
cluded here as we do not use them to determine higher level quality, but they
can be instantiated in the structured model for system specific scenarios.

3.2 Modelling abstracted context quality

As shown in Figure 2, sensor readings are abstracted to more meaningful context
by passing one or more sensor readings through a static mapping or filter. e.g. a
Ubisense coordinate of (12.3, 32.4, 84.1, ID34) may be mapped via a building
map to ‘John’s desk‘. Abstracted context is modelled as a UML association class
that describes the relationship (e.g. has location, has temperature) between an
entity class and a context filter class at a particular point in time. A context
event is an instantiation of the association class for an instantiated entity class
and context filter class for a particular time ¢. A context event may also be mod-
elled as an association between two entities, such as ‘John located near Susan‘.
Context confidence is included for each context event. It will be derived from
zero or more context event quality parameters as used for the system in question.
Our structured model therefore allows for any type of context relationship and
associated quality to be modelled.

In our aggregation model (Figure 3), we capture context event quality in a
base set of quality parameters; these quantify the imperfections of vague context

! Ubisense is a networked location system : www.ubisense.net
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Fig. 2. Context event quality modelling in UML

(fuzzy membership), erroneous or conflicting context (reliability), imprecision
(precise membership) and out of dateness (freshness). These values are com-
bined to produce a final context event confidence value. As shown in Figure 3,
context event confidence is a function of the other context event quality param-
eter values, such as the product of their values as per [2] or as their averaged
value. Fuzzy membership is used when fuzzy context filters are used in the ab-
straction process. In our experimental work, a computer activity sensor that
tracks keyboard/mouse activity classifies its context values as ‘active’ or ‘in-
active’. We apply a fuzzy membership value using a linear fuzzy membership
function for the context filter. For context filters with crisp boundaries such as
location, precision membership of the bounded value is derived using the sen-
sor reading precision. This captures the impact of general sensor precision for
a particular context instance. For example, we use Ubisense precision to define
a bounded area within which the true Ubisense coordinate should occur, as de-
scribed in [9]. This area may intersect more than one location (e.g. desk), leading
to quantifiable membership of each desk location. e.g. User John is 0.8 in Desk
1, and 0.2 at Desk 2. Reliability captures the error rate associated with a con-
text event. The reliability can incorporate any sources of error, including user
error and sensor system accuracy. It can be measured objectively by training or
observation. Freshness indicates the extent to which time has eroded the credi-
bility of the context event. It can be calculated in various ways, such as use of a
decay function [9], or a valid lifetime, derived from sensor reading timestamp or
frequency. We avoid prescribing explicit hard-coded formulae for freshness and
other parameters as their calculation may differ from one scenario to another.
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3.3 Modelling situation quality

The provision of situation confidence allows adaptive applications to assess the
risk associated with responding to a situation. Our structured model therefore
explicitly includes at least one situation confidence parameter. Situation confi-
dence is modelled as an attribute in a situation association class. The calculation
of situation confidence will depend upon the reasoning scheme employed. For
schemes that aggregate quality from sensor level upwards, situation confidence
will be derived by fusing confidences of causal context events, as shown in our
aggregation model (Figure 3).

3.4 Using Context Quality in the Reasoning Process

Reasoning with uncertain context typically involves reasoning schemes from the
AT domain employed within context middleware, such as Bayesian networks [10],
probabilistic logic [10], neural networks [11], Dempster Shafer [13], voting [2],
and fuzzy logic [7]. The selection of one reasoning scheme over another will
depend on a variety of factors such as: the availability of training data versus
domain knowledge; the requirement for end users to understand the reasoning
process; and the level of re-training required due to flux in the environment.
Such reasoning schemes typically produce a quantified confidence in each of
the possible situations. Applications can then use confidence to safeguard their
adaptation strategy, such as accepting situations above a particular threshold
value.

The extent to which sensor and context quality is transparently incorpo-
rated into the reasoning process depends on the reasoning mechanism involved.



Bayesian networks can be naively trained using a ‘black box‘ approach. In this
way, there is no transparent quantification or aggregation of sensor or context
event quality. The degree of uncertainty appears as ‘output’ via the root node
variable’s probabilities. Alternatively, other finer grained reasoning mechanisms
can specifically aggregate lower level sensor and context quality in a way that
is transparent to the systems designer. Examples of such mechanisms are voting
[2], Dempster Shafer [13] and fuzzy logic [10]. Uncertain reasoning processes that
transparently aggregate quality of context up to situation level need to identify,
model and aggregate appropriate quality parameters along each layer of context.
Our model supports the identification of quality issues and quality aggregation
as part of such transparent reasoning processes.

4 Demonstration of Model

We used our model to identify and aggregate quality parameters for a sensed
data set. We wanted to determine whether the the use of our quality parameters
improved the situation recognition rates when we used a transparent reasoning
scheme based on voting. We contrasted two approaches to reasoning: : (1) Basic
reasoning, where quality was not used, selecting the user activity situation that
received the most ‘votes‘ from its causal context events (2) The same voting
algorithm but with quality parameters used to attentuate the contribution of
each vote.

4.1 Approach

We collected a data set tracking a user in our office. We wanted to determine at
any point in time whether a user was ’'in’ any one of three possible situations:
‘busy‘ at their desk, on a ‘break‘ or at a ‘meeting‘. To support this, we needed
to know where the user was located, whether they were using their computer,
and where they were scheduled to be at a meeting. We used three sensors in
our dataset: (1) Ubisense location tag sensor that tracks the user’s location (2)
a computer activity sensor on the user’s computer that monitors keyboard and
mouse activity and (3) a calendar sensor that indicates whether a meeting is
scheduled or not in the user’s diary. For example, the situation of user ‘busy ‘ is
occurring when the user is at their desk, using their keyboard or mouse and no
meeting is scheduled in their diary: ‘user hasLocation desk’, ‘computer hasStatus
active‘, and ‘calendar hasSchedule free‘. When each of these context events is
detected, each contributes a vote towards the ‘busy‘ situation. Situation checking
occurs every 30 seconds. The user maintained a diary to track the actual ground
truth situations.

When quality parameters are used, each vote is attenuated by the confidence
value of its associated context event. In order to determine context event confi-
dence, we needed to determine the underlying sensor and context event quality.
We analysed data from the sensors and context events, using our aggregation
model in Figure 3. as a basis for finding which quality parameters we should use.



Sensor ‘Sensor quality Context event quality

Ubisense PrecisionX (1.65 m), PrecisionY |Precision membership,
(1.11m), accuracy (0.8) reliability (0.72)
Calendar Precision (10 mins) Precision membership,
reliability (0.6)
Comp. Activity |None used Fuzzy membership, reliability
(0.95)

Table 1. Quality parameters used

Quality parameters for our experiment are shown in Table 1. Values for constant
parameters such as reliability are shown. Parameters that are dynamically cal-
culated from sensor readings, such as fuzzy membership, are listed without an
accompanying value. The parameters and their values are derived as follows:

— For the Ubisense sensor, precisions (1.65 x-axis, 1.11 y-axis) and accuracy
(0.8) were captured using training data where we gathered readings and com-
pared actual location versus sensor readings. We used these precision num-
bers to generate a precision membership for ‘has Location‘ context events,
as described in Section 3.2. An accuracy of 0.8 for Ubisense was degraded at
the context event level to a reliability of 0.72 because the user neglected to
carry their tag during the data set collection 10% of the time.

— For the calendar sensor, we observed that over a period of a month, the user
adhered to 22 out of 36 total meetings in her diary. Therefore, reliability of
the calendar sensor is 0.6 based on 60% adherence to diary entries. Start
and end times of attended meetings during this time were imprecise by an
average of 10 minutes.

— For the computer activity sensor, no noise in sensor readings was observed.
However, when abstracted to context event, we applied a fuzzy function to
capture the gradual move from active status to inactive and vica versa. The
function degraded linearly from fully active (fuzzy membership value of 1)
if activity was detected in the last 30 seconds, reducing to 0 after 3 minutes
of no activity.

— Context confidence for each event was calculated as the product of the con-
text event quality parameter values, as also used by [2]. For example, if at a
particular point in time ¢, a context event of ‘user hasLocation desk® has a
calculated precision membership of 0.9, and Ubisense reliability is 0.72, the
overall confidence of the ‘user hasLocation desk‘ context event at that point
in time is 0.65.

— Situation confidence for each of the three user situations was calculated as
the average of the context event confidences for that situation. For example,
at time t, the context events relevant to the user ‘busy‘ situation have the
following context event confidences: ‘user hasLocation desk, conf 0.65¢, ‘cal-
endar hasSchedule free, conf 0.9° and ‘computer hasStatus active, conf 0.4‘.
Therefore, the confidence of the user ‘busy‘ situation at this point in time



t is the average of the three underlying context events, 0.65. At time ¢, the
situation with the highest confidence is deemed to be occurring.

4.2 Analysing our results

Situation recognition rates (see Table 4.2) were better when we used our quality
model parameters: 90% of situations that could not be identified by the basic
reasoning technique were identified when our quality parameters were included
in the reasoning process. Basic reasoning failed when the sensor data was noisy
(e.g. imprecise Ubisense reading) or user errors were encountered (e.g. user forgot
to carry locator tag). The 'meeting‘ recognition rates were the same because the
underlying sensor information was of good quality. I.e. The user always had a
meeting scheduled when the meeting was on, the user remembered to wear their
Ubisense locator tag to the meeting, and the sensor readings were accurate.
Reasoning with quality parameters failed for 7% of situation checks for three
reasons: (1) The ground truth was captured in a manual diary, with the user
rounding up to minutes. This led to mismatches at situation start and end times
between ground truth and situation detection. Annotation of ground truth with
time in seconds will be important to avoid this problem in future experiments.
(2) Some situation rules were inadequate. For example, when a user is reading
at their desk without using their computer, the ‘busy‘ at desk situation is not
fulfilled because the computer activity sensor is inactive. The inactive computer
activity sensor has a higher vote due because its context events are more reliable
than the Ubisense related context events, so at ‘break’ was selected (3) The
fuzzy membership of the activity context events led to the system gradually
recognising that the computer was no longer active. In reality, the user finished
the ‘busy‘ situation in an abrupt manner as recorded in the ground truth diary.
This requires some thought as to how specific situation transitions and associated
application behaviour should work: are instantaneous changes versus gradual
changes in situation or behaviour required? Such analysis will help to determine
the appropriateness of using fuzzy and decay functions for underlying contexts.

Situation # of readings| basic reasoning: % reasoning with
identified quality: % identified

User busy 720 52 96

User on break 199 75 85

User at meeting 53 91 92

Table 2. Situation recognition results: basic and quality reasoning

Our results highlighted a number of weaknesses that may be resolved by
more a robust reasoning mechanism rather than changes to our quality model.
At various points, it was difficult to identify the winning situation because the
situation confidences were so close. e.g. How meaningful is it to choose situation



of (busy, conf 0.45) over (break, conf 0.44)7 Therefore, an algorithm that can
support greater convergence on situation confidence is desirable. It was also clear
that conflict between the sensors was manifested by a lack of a clear winner on
the voting process. However, the source of conflict is not identified by our voting
algorithm. Finally, it was not obvious how to allocate the vote uncertainty. E.g.
the contexts events from the calendar sensor had a reliability of 0.6, resulting in
0.4 of the vote being unallocated, which seems intuitively incorrect. We propose
that these weaknesses may be addressed by using Dempster Shafer theory as our
reasoning mechanism, as discussed in Section 5.

5 Conclusion and future work

In this paper, we presented a general context quality model. The structured
model in UML provides a flexible and generalised way for designers of context-
aware systems to incorporate context quality into their design process; the ag-
gregation model identifies quality issues and their aggregation across context
layers. We applied our model to an experimental data set, using a transparent
voting algorithm to identify situations. Situation recognition results improved
when we used quantified quality measures in our reasoning process.

Currently, we are integrating our quality model work with a more robust
uncertainty reasoning algorithm based on Dempster Shafer theory (DST). DST
is a mathematical theory of evidence that propagates uncertainty values [12],
providing an indication of the quality of inference. We anticipate that use of
DST will allow us to address the weaknesses of the voting algorithm identified
in 4.2. Early results from this work using a sample of our data set results in
situation recognition rates similar to the voting algorithm. However, DST also
provides a conflict metric quantifying the extent of context disagreement during
situation recognition. Analysis of this conflict may allow us to detect a number
of scenarios. We noted that conflict levels were high when sensors are in conflict,
rule problems occur or situations are in transition. This is valuable information
that we hypothesise can improve our ability to reason with context, particularly
in dynamic environments subject to changes in sensors and situations.
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