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Abstract

We investigatg4 + 1)- and (5 + 0)-dimensional gravity coupled to a non-compact scalar field sigma-model in the context
of a single-brane-world scenario with separable metric and a bulk fluid. We briefly discuss the standard cosmological solutions
and the family of warp factors (which includes both the original Randall-Sundrum [Phys. Rev. Lett. 83 (1999) 3370, hep-
ph/9905221; Phys. Rev. Lett. 83 (1999) 4690, hep-th/9906064] solution and the solution of Kachru, Schulz and Silverstein
[H.A. Chamblin, H.S. Reall, Nucl. Phys. B 562 (1999) 133, hep-th/9903225; S. Kachru, M. Schulz, E. Silverstein, Phys. Rev. D
62 (2000) 045021, hep-th/0001206]) for the case of a rolling fifth radius [C. Kennedy, E.M. Prodanov, Phys. Lett. B 488 (2000)
11, hep-th/0003299]. We show how this model can be adjusted so that it describes the standard cosmology on a self-tuning
domain wall (with static fifth radius) [C. Kennedy, E.M. Prodanov, hep-th/0010202] and we discuss the solutions. Searching for
a possible relation to the negative Euclidean stress energy, appearing in the Giddings and Strominger’s axion induced topology
change in quantum gravity and string theory [S.B. Giddings, A. Strominger, Nucl. Phys. B 306 (1988) 890], we modify the
non-compact sigma-model into a single-field model (with a rolling fifth radius, separable metric, and no bulk fluid) for the more
general case of a brane with non-zero curvature parameter. We find a solution (with a Kachru—Schulz-Silverstein warp factor
[Phys. Rev. D 62 (2000) 045021, hep-th/0001206]), representing a Tolman wormhol& ferS® brane with Lorentz metric
and for aR x AdS3 brane with positive definite metricl 2002 Elsevier Science B.V. All rights reserved.

PACS 04.50.+h; 11.27.+d; 98.80.Cq

Keywords: Extra dimension; Localization of gravity; Randall-Sundrum; Kachru—Schulz-Silverstein; Domain walls; Warp factor; Cosmology;
Wormbhole; Tolman

1. Introduction Letter investigates a model of a single brane, embed-
ded in a five-dimensional spacetime. In particular, we

Theories with extra dimensions where our four- Study cosmological solutions ¢4+ 1)- and (5 + 0)-
dimensional world is a hypersurface (three-brane) dimensional gravity coupled to a scalar field sigma-
embedded in a higher-dimensional spacetime and atmodel. In much of the current literature it is assumed
which gravity is localised have been intensely stud- that such scalars depend only on the fifth dimension

ied since the work of Randall and Sundrum [1]. This and that the target space metric is of Euclidean signa-
ture. By contrast, we consider a non-compact sigma-

model and allow the scalars to depend on time, as well
E-mail address: prodanov@physics.dcu.ie (E.M. Prodanov). as the fifth dimension, which we take to be infinite
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in extent. We also include a bulk fluid with energy—
momentum tenso?,?(p) =diag(—p, p, p, p, P) and
equation of statep = wp, P = @p and show that the
fluid exists, providedw = @ = 1 (i.e., the fluid is
isotropic and stiff). A family of warp factors that in-
cludes both the original RS solution [1] and the self-
tuning solution of Kachru, Schulz and Silverstein [3]
is found. Conventional cosmology is also obtained.

Further, we simplify our model by taking a projec-
tion in the target space (onto a dilatonic degree of free-
dom) and by making the fifth radius static. This results
in a Kachru—Schulz-Silverstein warp factor [2,3]. We
show that the cosmology on this self-tuning brane is
standard, but that the pressure in the fifth direction is
constrained by the relatioh = 3%L. In particular, we
find that the pressure in the fifth direction vanishes for
a radiation-dominated brane with=1/3.

Finally, we again consider the case of a rolling fifth
radius and we exclude the fluid from our analysis. By
a different projection in the target space, we end up
with a model of one classical scalar field minimally
coupled to gravity within the same separable metric

ansatz. We also introduce a non-zero curvature pa-
rameter on the brane: that is, we consider the most
general four-dimensional homogeneous and isotropic

Robertson—-Walker metric [7] (with a time-dependent
scale factor), naturally generalized to a separable five-
dimensional Randall-Sundrum [1] context. We find
that the warp factor in this case is a Kachru—Schulz—
Silverstein one [3] and we find that the solution to
the Einstein’s equations represents a Tolman worm-
hole [8] for aR x S brane with Lorentz metric and
for R x AdSs brane with positive-definite metric. This
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on the othem boundaries, the Ricci tensor gfhas
negative eigenvalues somewheradrn6]. In the four-
dimensional case, considered there, the minimal cou-
pling to gravity of a time-dependent only free scalar
field resulted in negative kinetic energy and instan-
tonic wormholes, associated with it. In the present
‘rolling-radius’ five-dimensional case we show that
there is no negative kinetic energy, associated with this
wormhole.

2. Standard cosmology from sigma-model

In this section, following [4], we shall present our
calculations in(4 + 1)-dimensional spacetime with
flat spatial three-sections on the brane and only quote
analogous results for the-5 0 case. The action for
gravity coupled to a scalar field sigma-model is:

d*x dr (‘C;\/Sl,)ATTER + ESEQAVITY)’ (1)
here:
- _% —g® VIV ;G (9)g )
—/=e®U@) — @V(qb)é(r)v
EGRAVITY = i —8®R. @

Here, g is the pull-back of the five-dimensional

metric g,5) to the (thin) domain wall taken to be at
r = 0. The wall is represented by a delta function
source with coefficien¥ (¢) parametrising its tension.
We take G;; = diag(1, —1). The “correctly-signed”

solution represents a collapsing Universe which starts scalar, ¢, may be interpreted as the dilaton and

expansion just before encountering a big crunch singu-

larity. The Universe reaches a moment of minimal spa-
tial volume. This minimum volume edgeless achronal
spacelike hypersurface is calledbaunce [9]. The

wormhole is time-dependent and the bounce involves

the entire Universe. The motivation for this part of
our analysis is based on the the possibility for nega-
tive kinetic energy, associated with the non-compact
sigma-model. In 1988 Giddings and Strominger [6]
showed that for a four-manifoltf with » > 1 bound-
aries of arbitrary topology and one boundary, which is
topologically $3, and with a Euclidean signature met-
ric g on M, which is asymptotically Euclidean near
the $2 boundary and has vanishing extrinsic curvature

the “wrongly-signed” scalarg?, as an axion. (It is
possible to consider a non-trivial coupling between the
two—for exampleG;; = diag(1, —eo9! ) is discussed
in [10].)

We assume a separable metric of RS type with flat
spatial three-sections on the wall and a ‘rolling’ fifth
radius:

e A0 dr? 4 oA g (1) (dx2 +dy?+ dzz)
+ f(t)dr?. (3)

Given the above ansatz, it is not unreasonable to
assume scalars of the form

P (t,r)=a'y(t) +b x(r). (4)
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The linear independence of the scalar fighdgwhich
are coordinates on the target spacetime) leads to:

1 1
det(ZZ Zz) 5& 0,

anf, consequently, to the Schwarz mequ%
< 1.

We also make the ansatz that both the potentials
andV are of Liouville type (see, for instance, [2]):

(6)
)

The energy—momentum tensor for the scalar fields is:

®)

U($) = Upe®?
V(g) = Voebi?'.

1 ; j
T;w = EV;AP V,,(P Gij

1 1 . .
- E&w(évad)l Vﬂ(i)]Gijgaﬂ + U(¢)>

1,/—g®
2,/ =4®

We introduce a bulk fluid via its energy—momentum
tensor [11]:

T+, =diag—p. p. p. p. P) 9)
with p the density ang and P the pressures in the

4
V()8(r)gly 8as°.

(©)
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3 2 2
EA’Z—’%19~19;</2+%fU=o, (14)
3 ,f .

Sad +K2%a- by =0. (15)

2 f

In the above equations we have assumed separability
and we have set all separation constants equal to zero
(thus losing classes of solutions). In the next sections

we will analyse cases with non-zero separation con-

stants.

The density and pressures are each of the Yorm
eA") times a function ofr. We are interested in
solutions with f # 0 (‘rolling’ fifth radius), thus
a-b#0.

The equations of motion for the scalar fields

(@) V—gWav(e)

V29I G — 8(r)=0 (18)

Ak /—g® B¢k
result in the following bulk equations [4]:
o (f125%%) =0, (19)
bi(2A'x" — x") + feiUg=0, (20)
and the jump condition [4]:
Sim [5i(x'(©) = X' (=) | =i 12V (9.0, 0)).
(21)

three spatial directions on the brane and in the fifth Eq. (15) implies that we can make the following choice
dimension, respectively. We assume that the equations;q - the scalar fields [4]:

of state areP = @p and p = wp. The preferred

coordinate system (3) is taken as the rest frame of the x x'(r) = V6 A’ (r),
fluid. The anisotropy can be considered as a result of

the mixing of two interacting perfect fluids [12].
Einstein’s equation&,, = K2(le + T,») reduce
to [4]:

1fg  ¢% 1f% 1) § «* .,
ZJ46 486 45 =4 5 —a-ay
4fg g% 4f2 2f g 2

—«%e 4 (p+p) =0, (10)
3-. 3.2 2 .
_ig _g__K_a.awz—Kze_Ap:o, (11)
dfg 48 4
3 K2
Z(A?—A")+ —b-by'?
2( )+4 X

K2 %

+ 7fU + ?fl/ZV(S(r) =0, (12)
35 2 .
_g_’_K_a.awz—{—Ke_AP:O, (13)

2g 4

(22)
Lo B 1 fo
Inserting (22) into (14) give# (¢) as:
__3Yi2q .
U= KZfA A-b-b). (24)

L In principle, Einstein's equations can hangleand p in the
form

(16)
an

pt,r) = (5(0) + Ft,r),
pt.r)=eO (p() — F(t.1)),

for arbitrary F (¢, r).

However, the constaut in the equations of state is in the range
—1< o < 1. The generic case # —1 implies thatF should be
zero. We shall assume this also to be so in the special®ase-1.
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Expressing the domain wall potential Bsf (1) ~1/2 x It can be shown [4] that the fluid exists if, and only
3(r), we get the following equation if, @ = 1. This implies thato = 1, thatisP = p. Thus

) the fluid, if exists, is isotropic (perfect)P(= p) and
A" —2b.bA2 — K—VO(S(r) -0 (25) stiff (w = @ = 1). The attribute “stiff” refers to the fact

3 that the velocity of sound in the fluid is equal to the
and options forA (r) and Vg [4]: velocity of light.

The only essential difference between the®case

Q) fb-b=0, we findA(r) = 20k|r|, whereo = and the 4 1 case considered above is tfat, flips

+1. Then Vg = 120kk 2. 0 = —1 is the RS1 sign. This changes the sign pfin (28) so that the
solution ando = +1 is the RS2 solution, as density is positive it: - a/(a - b)? > —2.

described in [13]. We note in passing that the scalar field equations of
(2) Ifb-b+#£0,wefindA(r) = & In(k|r| + 1) where motion, (18), imply thatv#T,,, = 0 (and conversely
£ =-1/2b-b and Vo = —3k«?/b - b. If b - off the brane only). This, in turn, implies that the fluid

b and k are both positive, then this represents equation of motiorv, 7#, = 0 is automatically satis-
the self-tuning solution of Kachru, Schulz and fied. In this sense, the same results in the bulk can be
Silverstein [3]. obtained from Einstein’s equations awg 7, = 0.

The above forms fot/ andV are consistent with (6) if

Bi =ai/2=2cb;/vEandUp= -5 A’*(0)(1—-b-b). 3. standard cosmology on a self-tuning domain
It can now be verified that (20) is equivalent to (25) in g

the bulk, whilst (21) yields no further information.

The equation of motion (19) implies that [4]: . . . L
quatl lon (19) impli 41 In this section we will make a projection in the

f@) 32 target space onto a dilatonic degree of freedom (i.e.,
FO2 T g (t) =%, (26) setal = a? = b%=0, b1 = 1), consider the case of a
dtatic fifth radius (i.e., setf(r) = const), and, again,
wherep = —4a - b/+/6. take Liouville type potentials:
This equation, together with the time-dependent
Einstein’s equations and the above equations of state,U(¢) — Uge®™ (30)
leads to the following three relations [4]: '
Lo 1 V($) = Voel?. (31)
wp=p==p+=-P==(1+2a)p, 27 o ) i i
p=p 3p 3 3( )P 27) (Note that in this section the scalar figldr) will be
the equation for the density: excluded from the analysis.)
Wi o " Introducingnon-zero separation constand andM
ot r) = 3" (f& L& _aa Je 28) on the right-hand-sides of Einstein’s equations (11),
’ 42\ fg g2 8a-b2f2) (12) and (13), (14), respectivelywe get the solu-
and the cosmology defining equation: tions [5]:
.2 .. ;e A '2 . M
@g—2+2§+@£5+(1—@)“7“2f—2:o. S'r*?q(\/y’)v M >0,
g & fs 8a-b)° f (29) g~ 1%, M =0, (32)
. ) Sinzq(/%t), M <0,
We seek either power lawf ~ 9, or exponential 3

: ; N . § )
(mﬂatlon.ary), f . e?’, solutions of (25(92); 1)'2e cor whereg = 1/(2 + @) = 2/(3(1 + ®)) = gstandard
responding solutions fog(r) are g ~ 1?>~9/3 and

g ~ e~ v'/3 respectively. The exponengsandy are
non-zero but otherwise arbitrary. The density is posi- 2 Ejnstein's equations lead to (see [3])= 2M andw — 1a+
tiveifa-a/(a-b)? < —2. 20).
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Defining A(0) = 0, we see that thbrane density

is [5]:
2 s cin=2( /M
K lemh (/$t>, M >0,
pi=1 3T M=0 (33

K_2|M|Sin_2( /g’q”—z‘z), M <0

When M > 0, we also obtain the de-Sitter solutions
g = eT2VM/31 These solutions have vanishing density
o and were discussed in [3,14-16].

For the caseM = 0, we obtain conventional cos-
mologyH = a/a \/E on the brane with evolution at
the standard rate.

Of particular note is the case of radiation-dominated
fluid on the braned¢ = 1/3), for which the pressure
in the fifth direction vanishes and the stress tensor is
given by:

Tﬂv(p) == eA(r)ﬁ(t) dlaq_lv %’7 %7 %a 0)5 (34)

with gstandare—= 1/2.
It should be noted that the case of a bulk cosmo-

logical constantd = @ = —1) is not covered here;
however, it corresponds to the choitx) = const
instead.

The self-tuning domain wall (solution (1) of [3]) is
given by

U=M=0, ﬂs«éial, (35)
x(r)y=artIn(d — cr), (36)
A(r):—%ln(d—cr) —e, (37)

wherea = % andr is a sign that takes opposite values
either side of the brane at= 0. The parameters d,
ande are constants of integration such that:

2

cy = —§K2d+(a,3$+ — 1) VgePr+109d+ (38)
2

.= _§K2d_ (aBry + 1) Voe®PT+1094+ (39)

1

dy = > 0, (40)
1

ey = —E In d.;,_, (41)
1

e_ =—§Ind_, (42)
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with the conventionA(0) = 0 and the+ subscript
denoting the right (left) side of the brane. The solution
is self-tuning because givey, 7. = +1 andf #
+1/a, there is a Poincaré-invariant four-dimensional
domain wall for any value of the brane tensigg Vo
does not need to be fine-tuned to find a solution.

Other warp factors are possible both whiegh= 0
and whenM # 0. Solution (Il) of [3] withU = 0 and
solution (Il) of the same reference witti = 0 are
examples of the former case. The solution presented
in [14] with U = 0 provides an example the latter.

To summarize this section, we state that the self-
tuning domain wall, with warp factor given by (37),
has vanishing separation constavit and therefore
expands according to the power law (32) at the
standard rate and exhibits conventional cosmology
when coupled to aulk anisotropic fluid. The pressure
of the fluid in the fifth direction,P, vanishes for a
radiation-dominated brane.

4. Bouncing branes

In view of the Giddings—Strominger theorem [6]
(stated in the introduction), which allows negative
kinetic energy associated with a free time-dependent
only scalar field, minimally coupled to gravity, and
in view of the possibility of negative kinetic energy,
associated with the sigma-model, we will try to find
a wormhole solution for our set-up. For this purpose,
we will take another projection in our target space,
namely,al = b1 =1, a% = b = 0. In other words, we
will consider only one of the scalar fields:

¢, 1) =y @)+ x(r). (43)
Again, both the potential§ andV will be of Liouville
type:

U ($) = Uoe™?, (44)
V() = VoeP?. (45)
We will exclude (for simplicity) the fluid from the
analysis, consider again a ‘rolling’ fifth radius case,

and introduce non-flat spatial three-sections on the
brane. That is, the metric will be:

—A) 442
N e " g()
[14 (2 + y2 42912

ds? = se

(dx? + dy? + dz?)
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+qf(1)dr. (46)

This is a natural generalisation of the most general
isotropic V(¢(f r))

four-dimensional homogeneous and
Robertson—-Walker metric [7] to a five-dimensional
Randall-Sundrum context [1]. The scale factdr)
is a strictly positive function (we are working with a
mostly-plus metric) and the functiofi(¢) is strictly

positive as well (the metric is never degenerate). The

factorss andg are signs {2 = g2 = 1). The curva-
ture parameter is = +1 (for spherical spatial three-
sections) ore = —1 (for hyperbolical spatial three-
sections).

Einstein’s equations for this cas6,,, = k2T,
equivalently written in terms of the Ricci tensor as

5
Ruv = k(T — 320 T2), are:

_ile—A /2+il —AA//
f 2qf
+1f2 1f 3g
452 2f 2g
K2w2+K2 AU+ 5 e Avs(
== —se — —5€ r),
2 3 6 f12
(47)
26_E§6—AA/2+i§ —A 41
qf 2q f
1/, 142 1
4s fg 4s g 2s
K2 A K2 _4 &
= ge gU + Ee f1/2 Vé(r), (48)
- 30 s
A/2 24" qf_A qd = A _qu
+ +4s f 2sfe 4sfge
K2 12 ic? 22 1/2
=X +—qu+ — 4/ V@), (49)
;o
A/ — Yy 50
Vi =5V (50)

Similarly to the sigma-model case, the-equation,
(50), implies:

F@
= 51
K () = =3~ o (51)
3
ex'(F) = %_A/(r). (52)
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Wheng =
the form:

f’ the potentialV (¢) can be written in
1
2 qf12
whereW is a constant.

Let us assume that the potenti&l(¢) can be
written as a function of andr in the separable form:

(53)

171
U(p(t,r)) = —[—Ul(r) —I—eAUz(t)]. (54)
( ) K2 qf
At the end we will recast the potenti&él back into the
original exponential form (44).

Einstein’s equations then reduce to:

1 /2 1f'+1f'g g% §  2es 3f'2_0
4f2 2f 4fg g2 g g 2f2
(55)

1f¢ 162 1 2 1

_ire g 1l 2 1, _C 0 (s
4s fg 4sg? 2sg g 3 f

172 3f3 2 25D

_f_z__ig_i__s _=D (57)

2f< 2fg f 3 qf

A2 241 Syt S = cet (58)

2 3 6

11 1 2

“A% 24" 4+ UL+ =W8(r) = De? 59

A +3 1+3 (r) (59)

whereC and D are separation constants.
We will be looking for a bounce solution in the
form:

g()=f()=Br?+h >0, (60)

where B is a positive constant, not equal to 1 (so
that the pull-back of the metric to 4 dimensions is
flat only asymptotically), and z is another strictly
positive constant.

Upon substitution of the solutions (60) into the
Einstein’s equations, (55) gives:

B=———.
3

On the otherhand® must be positive. Therefor®, =

2/3 ande ands must have opposite signs. Thus the

solution is either a brane with spherical three-sections
and Lorentz metric or a brane with hyperbolical three-
sections and positive definite metric. Clearly, these

(61)

6—6B
Bi2+4h’

3 The curvature of the brane B=
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two solutions can also be related by a Wick rotation
(time ¢ is changed tair and the positive-curvature
spacetime becomes a negative-curvature spacetime).

The last term in (55) is the kinetic energy of the
scalar fieldy. One can easily see from (55) that it
is strictly positive, unlike the Giddings—Strominger
case [6].

Einstein’s equations (56) and (57) are consistent if
we choose
£
g2(1)’
whereo is a constant.

The next Einstein’s equation, (56), yields that the
separation constaut is 8;‘1 and thatr = — 3

The remaining time-dependent Einstein’s equation,
(57), givesD = § = %4,

Ther-dependent Elnsteln s equations (58) and (59)
yield:

Us(t) =0 (62)

21
Ui(r) = 10eqe ) — §A’(r)2 (63)

and these two equations reduce to a single equation:

1 1 1 2¢q
_A/Z__A// “Ws ___A 4
5 SA" + gWam) (64)
A solution of this equation is of KSS [3] type:
A(r)=In 1 (65)
r)y= s
(k|r| + 1)

wherek is a constant, such that = %. Therefore,

e andg must have the same signk?(= 4/3). The
constantW in the brane tensioW is —12%.
The equation of motion for the scalar field:

U@ VIgWI8V(g)
5o 1g®| ¢
after integration over the fifth dimension in an infin-

itesimal interval, gives a jump condition accross the
brane:

V2 — 8(r) =0, (66)

A'(+0) — A'(-0) = —

Let us now write the potential

(67)

171 B
U(p(t,r) = ﬁ[ﬁUl(V) +e U2(t)]

E.M. Prodanov / Physics Letters B 530 (2002) 210-217

back in the exponential forl = Uge®?. Substituting
the solution (65) forA (r) into (63) gives:

Ui(r) = —4eqe™ ™. (68)

Using this form ofU1(r), together with (62) fol/>(¢)
and the value oB, we easily find that:

Ve ==-"72= (69)

For a realistic model, one could chodssufficiently
small.
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