


Fig. 6. Typical Effects of Turbulence on Power Curves (Source:[31])

low wind speeds (< 3.5m/s). Micro/small wind turbines are
designed to commence generating at such wind speeds and in
urban environments, mean wind speeds are characteristically
low. Thus there is a lack of confidence in the quantification of
TI in these environments. Wind speeds below the cut-in speed
of a turbine are normally regarded as being non productive;
however, this is not the case. In order to have an average wind
speed that equals the cut-in speed of say 3.5m/s some values
must be above and below 3.5m/s over a 10 minute window
so that the mean is 3.5m/s. The question is how erratic is this
deviation from the mean and can it be power productive?

Another issue concerning the evaluation of the TI is the
qualitative nature of its definition. Given the theoretical model
presented in this paper, in the following section we pro-
pose a method for evaluating the turbulence intensity based
computing the Fractal Dimension of a time series of two-
dimensional velocity data. This approach implies that tur-
bulence (as measured by a statistic computed from a wind
velocity field) is a self-affine phenomenon and we refer to
this metric as the Fractal Turbulence Intensity. In turn, this
metric is related to the Lévy Index used to characterise rural
and urban environments via equation (13) which provides a
‘link’ between the approach discussed in Section V and that
of the following section given the stochastic model developed
in Section IV.

VII. FRACTAL TURBULENCE INTENSITY

Observations are made at two urban locations in Dublin,
Ireland. St. Pius X National (Girls) School (Site 1), located
in Terenure, Dublin 6W (53o20’15.96”N, 6o18’19.02”W) and
Dublin City Council Buildings (Site 2), in Marrowbone Lane,
located in Dublin 8 (53o20’15.96”N, 6o17’10.27”W) as shown
in Figure 7. Site 2 is located closer to the city centre than Site
1 and is therefore more urbanised with a higher associated
roughness length. This Site is also characterised by a higher
building density in comparison to Site 1 which has a much
lower concentration of buildings. As site 2 is closer to the
city centre, the buildings consist mostly of office blocks and
high-rise residential building. Buildings in the area often reach
heights of 20 m and beyond, with some reaching 25 m with
topographical complexities located at all angles relative to the
anemometer used to record the wind velocity data. Site 1 has
a more consistent building morphology and the anemometer

is surrounded by a relatively lower average building height
that consists mostly of two-storey residential buildings and
vegetation which is also at similar heights - see Figure 7.

Fig. 7. Satellite image of Dublin city showing the relative positions of Sites
1 and 2.

Fig. 8. The high-resolution observation site located at Site 1.

At both sites, high-resolution wind speed measurements are
taken with a Campbell Scientific CSAT3 three-dimensional
sonic anemometer [34]. The observations are at 10Hz at an
associated resolution-between 0.5 and 1.0 mm/s, with data
that includes date and time-stamp, wind-speed, wind-direction
and standard deviation. The CSAT3 measures wind speed
employing a right handed orthogonal coordinate system Three
orthogonal wind components, which relate to the three di-
mensions in space, are each measured. Wind entering straight
into the anemometer is from the x-direction giving wind
velocity component vx; wind approaching from the left of
the anemometer is from the y-direction giving wind velocity
component vy; and, wind advancing upwards from the ground



is from the z-direction generating wind velocity component
vz . Thus, effectively, the Easterly, Northerly and vertical
components of the wind velocity are vx, vy and vz , respec-
tively, giving a wind velocity vector field v = (vx, vy, vz).
Measurements of this field are taken to an accuracy of 0.01m/s
at a frequency of 10 Hz over a 40 day period from 4/4/2012
to 15/5/2012. Although, on a theoretical basis the Fractal
Dimension of any signal is scale invariant so that the sample
rate should not matter, in practice, because the computation
of the Fractal Dimension uses a Power Spectral Density
Function (as discussed in Section V), high data rates in a
given sample subset are required to obtain reasonable accuracy.
Since turbulence models in general are based on a 10 minute
sampling period bench mark, this period is used to compute the
Fractal Dimension on a moving window basis, each window
consisting of 6000 samples (10 minutes at 10Hz).

The field used to compute the Fractal Dimension from the
three-dimensional data available is given by the following
model:

u(t) =
√
vx(t) + vy(t)

This provides a measure of the ‘polar wind speed’ in the
horizontal plane which is taken to be the mid (x, y)-plane
of the three dimensional data field. Application of a com-
bined wind speed model of this type is significant in the
sense that, from a physical view point, a turbulence effect
is not compounded in a single wind speed direction, any
measure of turbulence ultimately having to rely on some multi-
dimensional mapping of a fully three-dimensional physical
effect. Computation of the longitudinal TI at low wind speeds
can have excessive values. This is due to the asymptotic nature
of the formula which makes the TI measurement in urban areas
particularly problematic with the standard turbulence model.
Firstly it is generally accepted that the standard deviation of
wind speeds in an urban area is large due to a increased
turbulence. Secondly the average wind speed is considerably
lower than that of laminar air flows due to the increased surface
roughness. The net result is that the TI becomes asymptotically
large as the mean wind speed approaches zero. To compensate
for this effect is is possible to filter the data by truncating all
values of the TI that exceed 1. Using this approach to filter
the TI and the data processing method discussed in Section V
to compute the Fractal Dimension (and as detailed further in
[10]), Figure 9 compares the TI with the Fractal Dimension,
normalisation of the data with respect to null entries resulting
in the use of 4502 samples.

These results clearly shows that there is correlation between
the TI the Fractal Dimension of the horizontal polar wind
speed, although it is noted that the Fractal Dimension which,
for a Random Scaling Fractal Signal, is a value D ∈ [1, 2],
exceeds the upper bound in an analogues way to when TI >
1. Figure 10 shows a scatter-plot of the filtered TI denoted
by TIf and the Fractal Dimension and application of linear
regression clearly shows that these metrics are correlated, a
correlation that, for this the data considered, is compounded
in the equation

TIf = 0.1928D + 0.1385

Fig. 9. The (filtered) Longitudinal Turbulence Intensity (Red) calculated in
accordance with IEC 61400-2 and the Fractal Dimension of the horizontal
polar wind speed (Blue).

Fig. 10. Scatter-plot (Blue) of the (filtered) Turbulence Intensity (vertical
axis) and the Fractal Dimension (horizontal axis) together with a best fit linear
regressed estimate (Red) showing a linear correlation between the two metrics.

VIII. CONCLUSION

It is well known that the differences in wind resource
in rural and urban environments are curtailed due to the
influencing factors such a surface roughness. The aim of
this paper has been twofold: (i) to quantify the differences
through determination of the Lévy index; (ii) to investigate
use of the Fractal Dimension as a measure of the Turbulence
Intensity. In the first case, a direct comparison is considered
between the urban and rural wind resources at selected location
across Ireland and the UK using similar reference heights and
fully calibrated equipment so that there is data consistency
within the bounds of the practical constraints associated with
the technology used to measure the wind velocities. The
results confirm that a rural resource is generally of a higher
energy yield when compared to the urban resource at least
in terms of the Lévy index as computed from the Power
Spectrum. This is compounded in lower values of the Lévy
index and, as a first study, paves the way for using this non-
Gaussian statistical index to evaluate wind resource in general.
With regard to the second principal contribution, the fact
that conventional turbulence models cannot cater for erratic
low mean wind speeds associated with an urban environment
requires quantification of alternatives to be considered as given
in Section VI.

The approach reported in Section VI is an alternative way
of computing a Turbulence Intensity that has two advan-
tages. First, it is based on a more fundamental concept of
turbulence in terms of the model provided in Section IV
and a fractal geometric interpretation thereby providing a



greater conceptual understanding of turbulence compared the
heuristic conventional definition of the TI; second, the problem
associated with asymptotic behaviour, which is characteristic
of the conventional definition of the TI, and occurs at relatively
low wind speeds, is eradicated. Moreover, it is noted that the
Fractal Dimension of the polar wind speed and the filtered
TI are correlated thereby providing evidence that the conven-
tional qualitative and quantitative measure of wind turbulence
proposed have an underlying connectivity.

The model, methodology and results reported in this paper
now require a quantification procedure to be developed in
order to assess and predict the power performance of wind
turbines in rural environments and the degradation of this
performance in urban environments. This is predicated on
the basis, that, with respect to turbulence assessment, the
significant reduction in processing overheads associated with
computing the Fractal Dimension implies a more efficient
means of quantification as well as a conceptual qualification
of the model used (at least in terms of the Fractal Geometry
of Nature [35] and methods of processing two- and three-
dimensional data under a fractal based model [21]). For ex-
ample, in [10] and [13], the following scaling law is proposed
for the mean turbine power output 〈logP 〉τ (over a period of
time τ ):

〈logP 〉τ ∝
1

γ

where γ is computed from the wind velocity over the same
time period. Quantification of this scaling relationship is now
required based on known turbine output power and wind veloc-
ity measurements. Finally with regard to urban environments
in particular, it may be possible to find a correlation between
the Fractal Dimension of the polar wind velocity and the
roughness of the local area from a high resolution satellite
image of the type given in Figure 8. By computing fractal
parameters such as the Image Dimension (Fractal Dimension
of a surface), the Information Dimension, Lacunarity and other
Multi-Fractal parameters [21], for example, it may be possible
to generate a single or combined image roughness measure.
A correlation of this measure with the Fractal Turbulence
Intensity reported could provide a way of estimating the wind
turbulence and hence, subject to quantifying the inverse scaling
relationship given above, predict the power performance of
wind turbines in a rural environment from an satellite image
alone! Such a solution would provide a simple and effective
way of prospecting for wind resources in urban environments
using on-line facilities such as Google Earth, for example.
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