








 

Simulated data –Spectral Cross Correlation Analysis 

The observations in Figure 6 that supervised CLSA contained a high level of error in the Raman 

images prompted a search for an alternate supervised approach to screening Raman data sets 

which could be used to unambiguously identify regions of the cell which correspond to the pure 

component spectrum of interest chosen, be that polystyrene, RNA, lipid or any other spectral 

signature which may be of interest. A novel technique was thus investigated for the analysis of 

Raman maps, which uses cross correlation as a method to investigate the presence or absence of 

a component in a complex Raman data set in a supervised manner. Thus, SCCA was used to 

screen the same simulated and real data sets for the presence of polystyrene, RNA and lipid for 

comparison which both methods of CLSA.       

Spectral cross correlation analysis (SCCA) was initially investigated using the same simulated 

data sets that were used to investigate both CLSA approaches. Similar to the supervised CLSA 

approach, pure component spectra were used to screen each data set for the presence of each in 

their respective simulated data set. Figure 7 compares the results of the simulated SCCA for each 

of the different components polystyrene, lipid and RNA. In all cases, a correlation of the SCCA 

co-efficient and the true concentration ratios is observed, but to varying degrees of accuracy. 

For polystyrene, a minimum correlation coefficient value of ~ 0.3 is reached at a 

concentration ratio of cellular: polystyrene spectrum of ~ 1:0.1. This indicates that at this 

concentration ratio, the presence of the polystyrene spectral fingerprint cannot be distinguished 

from the cellular spectrum. Thus, for the practical implications of screening a cell for polystyrene 

nanoparticles, correlation coefficient values at or below 0.3 represent the cellular peaks which 



overlap with characteristic polystyrene peaks and thus values below this are deemed not to be 

nanoparticles. This hypothesis was tested using a blank Raman map which contained no 

polystyrene data in (data not shown) and a value of correlation of 0.3125 was determined, which 

is close to the predicted value in the simulated data sets. This indicates the need to threshold 

cellular data in order to identify polystyrene nanoparticles in the cell. 

 A similar performance was observed for both RNA and lipid simulated data sets, where 

an initial decrease in the correlation coefficient was observed in relation to concentration ratio of 

pure component: cell spectrum. Again a minimum baseline correlation coefficient was observed 

for both RNA and lipid simulated SCCA data. Notably, however, this value was different, in 

both cases higher, than that observed for polystyrene, possibly due to an increased overlap of 

Raman bands present in the lipid and RNA spectra with cellular Raman bands in comparison to 

the polystyrene spectrum. In the case of the lipid contribution, the correlation with the predicted 

response is quantitatively poor even at ratios above 1:0.1. However, this can possibly be 

explained by lipid contributions already present in the cellular spectrum and/or the relatively 

broad lipid bands present in the lipid spectrum used. 

 The next step was to investigate the performance of SCCA in a real Raman data set of the 

cell. Thus the previous map was screened in a supervised manner to investigate if nano-

polystyrene could be identified in the Raman map.  Additionally, the lipid spectrum was used to 

see if the local cell environment could be investigated. Also, as used in the above supervised 

CLSA, RNA was used to see if a differentiation could be made between the nucleus and 

nucleolus.   
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Single Cell Data –SCCA 

SCCA was used to screen the Raman data set for the presence of polystyrene, RNA and lipid 

distributions. The spectra and correlation maps are shown in Figure 8. In figure 8A

of polystyrene is shown in red and the corresponding correlation map is shown adjacent

thresholded (right) and non-thresholded 

polystyrene nanoparticles in the Raman map. Importantly

from the simulated data, or more simply from a cross

with the raw average cellular spectrum,

carried out on simulated data sets containing added polystyrene, RN

stance, a pure component spectrum of polystyrene, RNA and lip

was cross correlated against each data set to investigate the performance of the technique. The 

solid line shows the idealised response.  

Raman data set for the presence of polystyrene, RNA and lipid 

distributions. The spectra and correlation maps are shown in Figure 8. In figure 8A

of polystyrene is shown in red and the corresponding correlation map is shown adjacent

thresholded (left) datasets. This map shows the distribution of 

polystyrene nanoparticles in the Raman map. Importantly, the threshold which was predicted 

, or more simply from a cross-correlation of the component spectrum 

with the raw average cellular spectrum, was applied to the data set and returned a map which 
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corresponded to the previously observed Raman image from the unsupervised CLSA (Fig 4A). 

Notably, however, the spectrum is the pure spectrum of polystyrene, rather than a 

cellular/polystyrene mixture. This result shows the capability for a supervised approach for the 

unambiguous identification of polystyrene nanoparticles in complex Raman spectroscopic data 

sets. 

 Furthermore, to investigate how SCCA can be used to probe the local cellular 

environment, the lipid spectrum was used to screen the data set (Fig 8B). Again applying a 

threshold to the data set it is possible to identify regions of the cell which contain a high density 

of lipids using a supervised approach to Raman analysis. Thus it is possible to investigate the 

local cell environment to which the nanoparticles are trafficked after 24hrs. This is consistent 

with the previous K-means cluster analysis 39 which suggests that indeed the nanoparticles are 

located in a highly lipid rich environment.  

 As an additional demonstration of the potential of SCCA, a pure RNA spectrum was 

cross correlated against the data set to see if it was possible to differentiate spectra which 

corresponded to the nucleolus of the cell and thus differentiate between DNA and RNA rich 

regions of the cell. Figure 8C shows that it is possible to identify the nucleolus of the cell using 

cross correlation analysis. It was also observed that a high correlation coefficient was present in 

regions outside the nucleus. This could possibly correspond to cytoplasmic ribosomal RNA 

(rRNA) or cytoplasmic messenger RNA (mRNA). Thus a novel approach for extracting complex 

spectral information from Raman data sets is demonstrated in SCCA.    

 



Figure 8: SCCA analysis using component spectra of polystyrene (A)

ethanolamine (B) and RNA (C). The spectrum of each pure component is shown on the left of 

the figure and the correlation map

the right.   

 

Discussion  

Raman spectroscopy is a powerful tool for the investigation of biological samples. Previous 

studies have shown the capability of the technique to investigate sub cellular structures and 

processes which provide Raman images comparable to images observed usi
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confocal fluorescent microscopy45,46,35,39,47. Notably, however, Raman spectroscopy is a label 

free method which provides a visualization of the biochemical make up of a cell without costly 

and time consuming processing with reagents, and when combined with appropriate analysis 

methods can provide a wealth of information pertaining to biological processes in the cell. The 

aim of this paper was thus to investigate two analytical approaches both in an unsupervised and 

supervised approach and assess their ability to identify polystyrene nanoparticles and 

biochemical distributions in a single cell Raman map.  

Unsupervised CLS analysis is demonstrated to be capable of identifying the presence of 

nanoparticles in regions of the cell. However, while this method is valuable for identifying 

distributions in the cell, the model spectra generated in this manner must be further analysed to 

extract any real biochemical information. Therefore, while the analysis of the simulated dataset 

in figure 2 indicates that the unsupervised model has a higher accuracy, the model spectra 

yielded by the unsupervised CLS analysis do not directly compare to the pure component spectra 

shown in Figure 1 and therefore cannot be used to unambiguously identify the contributing 

components.  

 In contrast, employing supervised approaches to the analysis of Raman data sets allows 

for the spectral array to be screened directly with the nanoparticle or pure biochemical 

component spectrum of interest. Analysis in this way enables a direct screening of the cellular 

distribution of a particular component while simultaneously probing the chemical or biochemical 

environment of the particular location in the cell. CLSA and SCCA are both used in a supervised 

approach for analysing Raman cellular data sets (Figure 6 and Figure 8). However, 

unthresholded, both show a degree of error for all three components tested (nano-polystyrene, 

RNA and Lipids).  To correct for this, a threshold can be applied to both CLSA and SCCA. 



Importantly, this threshold should not be applied in an arbitrary manner, as this facilitates a loss 

of information from the dataset. While thresholding for supervised CLSA is arbitrary and 

subjective, the simulated datasets generated for SCCA provided a good estimation of where this 

thresholding should take place and in combination with cellular data containing no nanoparticles 

it was possible to accurately reveal where the nanoparticles were located in the cell. It should be 

noted that the thresholding level appears to be dependent on the spectral profile of the individual 

component, as it is dependent on the degree of similarity of the spectrum of the target component 

with that of the environment. Incorrect correction of spectral background may also add to the 

threshold. On the other hand the simulated data for supervised CLSA did not provide a threshold 

value to apply to the dataset and thus was arbitrarily thresholded, which is far from ideal to gain 

any reliable information about the dataset. Therefore, SCCA provides a more reliable supervised 

approach for identification of nanoparticles and other biological components when used in 

combination with a threshold generated by simulated datasets.  In addition, quantitative 

information can be extracted from the simulated data sets, with each of the three approaches 

showing some level of quantification based on how well the matched the predicted response, 

with SCCA showing the highest level of sensitivity of the three techniques. SCCA is specifically 

a supervised approach, as it is necessary to provide the pure component spectrum. However, it is 

conceivable the technique could be extended to a library of reference spectra which could in turn 

be screened against the data set in an unsupervised manner. 

 

Conclusions 

CLSA and SCCA are shown to be two methods capable of identifying intracellular polystyrene 

nanoparticles and also to probe the local biochemical environment the nanoparticles are 



trafficked to within the cell. CLSA is a relatively straight forward method for analysing 

spectroscopy data sets. However, SCCA is demonstrated in the simulated data sets to be a more 

sensitive approach for nanoparticle identification. It is envisaged that both these and other 

supervised methods will provide analytical approaches which can be used not only as 

identification methods for other nanoparticles inside cells and detection of resultant biochemical 

changes, but also to provide alternate analytical approaches to the study of other processes such 

as chemotherapeutic response of cells to drugs. Additionally the full quantitative nature of these 

analytical approaches will need to be explored if Raman spectroscopy is to become a routine 

application in the study of nano-bio interactions and beyond.   
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