2017

Perceived barriers of optometrists to glaucoma case findings in Ireland

James Loughman
*Dublin Institute of Technology, james.loughman@dit.ie*

Catriona Barrett
*Dublin Institute of Technology*

Colm O’Brien
*Mater Misericordiae University Hospital, Dublin*

John Butler
*Dublin Institute of Technology*

Follow this and additional works at: [http://arrow.dit.ie/otpomart](http://arrow.dit.ie/otpomart)

Part of the [Optometry Commons](http://arrow.dit.ie/otpomart)

Recommended Citation
Perceived barriers of optometrists to glaucoma case findings in Ireland

Clin Exp Optom 2017

Catherine Barrett* BSc FAOI
Colm O’Brien† MD FRCOphth
John S Butler‡ PhD
James Loughman§ PhD FAOI
*School of Physics and Clinical and Optometric Sciences, Dublin Institute of Technology, Dublin, Ireland
†Mater Misericordiae University Hospital, Dublin, Ireland
‡School of Mathematical Sciences, Dublin Institute of Technology, Dublin, Ireland
§African Vision Research Institute, University of KwaZulu Natal, Durban, South Africa
Email: catriona.barrett@dit.ie

Submitted: 17 January 2017
Revised: 22 April 2017
Accepted for publication: 1 May 2017

Key words: barriers, case finding, glaucoma, optometrist, survey

Optometrists play a vital role in the detection of glaucoma, the leading cause of irreversible blindness in the world. The most common glaucoma sub-type, primary open-angle glaucoma (POAG), is insidious, progressive and irreversible, presenting a significant public health challenge. In Ireland, approximately eight per cent of blind and partially sighted registrations are attributed to glaucoma. A study conducted in the west of Ireland showed an overall POAG prevalence of 1.88%, with prevalence rising to 3.2% in those older than 70 years. As our population grows and ages, and as life expectancy continues to rise, the burden of glaucoma will increase. Between 2006 and 2014, the Irish population grew by eight per cent and the number of people older than 65 years increased by 14 per cent, a trend which is predicted to continue and which will lead to an inevitable increase in the demand for glaucoma-related care.

As population screening for POAG detection is neither cost-effective nor feasible, detection is typically opportunistic. In countries where the optometry profession is well established, the responsibility for glaucoma detection largely falls to optometrists based in community practice. There are no available data for optometric glaucoma referrals in Ireland, but figures from the United Kingdom, where undergraduate training and practice patterns are relatively similar, show that between 90 per cent and 96 per cent of referrals to ophthalmology for suspect glaucoma originate from optometrists.

The difficulty of the role of the optometrist in the ophthalmic care pathway often goes unrecognised. It has been documented that optometrists are seen differently from other health-care professionals, as patients perceive the profession as having a commercial rather than a health-care role. The responsibilities of an optometric eye examination are broad, as optometrists are tasked with investigating and managing refractive and binocular vision anomalies, while also evaluating ocular health to detect ocular pathology including glaucoma.

Public perception of optometry practices as retail businesses with little to no health-care role affects credibility, which has an impact on patient education in relation to perceived utility of optometrist-recommended supplementary tests and recall visits, potentially affecting health-care outcomes. Additionally, optometric glaucoma referrals have been scrutinised over the past 25 years with a strong, arguably disproportionate, focus placed on false positive referrals.
Optometrists’ responsibilities to detect disease inherently lead to false positive referrals in a population where the relative prevalence of glaucoma is low, and this effect is likely to be compounded by a tendency for optometrists to preference sensitivity over specificity in their diagnostic testing. This practice pattern could be considered pragmatic, given that optometrists are required to detect pathology and are at risk of litigation if they fail in this duty of care.

It is understood that no medical test has perfect sensitivity and perfect specificity, and glaucoma detection is a particularly ambiguous area given the significant overlaps in the clinical features of suspicious but normal individuals and those with early glaucoma. While decreasing false positive referrals for glaucoma would improve efficiency in a hospital eye-care service that is struggling to cope with demand, a myopic focus on false positive referrals could be detrimental. Repeated reports of false positive referrals could create a culture of diminishing sensitivity, where referrals are very specific but glaucoma diagnoses are missed because of reticence to refer or inability to carry out follow-up investigations.

This research aims to provide an in-depth exploration of the perceptions of optometrists of the challenges for glaucoma detection within the Irish health-care system. In case finding for glaucoma, optometrists face the challenge of detecting an insidious disease of relatively low prevalence, using tests with limited diagnostic accuracy. Identifying additional barriers to glaucoma detection in optometric practice can help inform and underpin the future service reform required to cater to the increasing demand for ophthalmic care. Consultation with the profession and investigation of any barriers to clinical practice for glaucoma, represent important precursors to the development of any new glaucoma care schemes.

**METHODS**

A survey to investigate community optometrists’ current practices in the detection of POAG was developed. A review of surveys, conducted for similar purposes in the UK, was carried out to inform the design and content of the survey.

Once developed, the survey was validated. An external reviewer, with expertise in questionnaire design, first evaluated question construction to ensure that it did not contain leading, confusing or double-barrelled questions. A pilot survey was then sent to 20 community optometrists. The pilot group was selected at random from a group of 59 optometrists who had taken part in a Dublin-based glaucoma referral refinement scheme. Feedback from the pilot was incorporated into the final survey design.

The survey comprised three sections. The first section was designed to establish demographic information about the optometrists, such as mode of practice and academic qualifications, and to explore appointment times available for routine eye examination. The second section aimed to establish the range of equipment available within practices and to explore the level of confidence of optometrists in performing a range of pertinent examination techniques.

The final section addressed perceived barriers to glaucoma detection during routine eye examinations by optometrists. It contained 10 five-level Likert items that presented possible barriers that might be perceived by optometrists in relation to glaucoma detection. The Likert items were based on themes identified in a 2010 survey of UK-based community optometrists and which presented seven main barriers to opticometric detection of glaucoma. These barriers were expanded for our survey, to include 10 potential barriers (Table 2). Participants were asked to indicate their level of agreement or disagreement with each. A final free-text box was provided for participants to expand on the themes already suggested, or to express their own opinions on the barriers faced by optometrists.

A multi-mode method of distribution was used to maximise survey responses and minimise sampling bias. To capture responses from those who may be unlikely to volunteer to take part in an online or postal survey, the survey was launched in paper format at the Association of Optometrists Ireland (AOI) Annual General Meeting in November 2014. There was a nine-week running time for the survey, which ended in January 2015. All optometrists on the electronic data bases of the Federation of Ophthalmic and Dispensing Opticians (FOBO) and the AOI were sent a survey information leaflet, a link to the online survey in Google forms, and a printable version for those who preferred to return the survey by post.

The survey was anonymous. Practitioners were assured that all individual results would be kept strictly confidential. Participation in the survey was voluntary and completing the survey constituted informed consent. The study was approved by the Research Ethics Committee at Dublin Institute of Technology.

The data collected were analysed on the Statistical Package for Social Sciences (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY, USA) and RStudio (RStudio Team [2015]. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA). The results were analysed using descriptive statistics and inferential statistics: Chi-square test of independence, multivariate ordinal regression, logistic regression and linear regression.

**RESULTS**

One hundred and ninety-nine optometrists responded to the survey, equating to 27 per cent of optometrists registered in Ireland (n = 754 at 25 July 2014). The study represents a large proportion of the optometrists registered to practise in Ireland, and has a margin of error of six per cent at the 95% confidence level. This falls within
Table 2. Frequency of agreement of optometrists with proposed barriers to glaucoma detection during routine eye examinations

<table>
<thead>
<tr>
<th>Perceived barriers to glaucoma detection</th>
<th>Agree freq (%)</th>
<th>Neutral freq (%)</th>
<th>Disagree freq (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training needed</td>
<td>137 (71%)</td>
<td>33 (17%)</td>
<td>23 (12%)</td>
</tr>
<tr>
<td>I feel I need extra training for some examination techniques and/or interpretation of some tests results, for example, new technologies such as optical coherence tomography.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unwilling to pay</td>
<td>118 (61%)</td>
<td>45 (23%)</td>
<td>30 (16%)</td>
</tr>
<tr>
<td>Some patients are unwilling to pay an extra fee for supplementary tests that may aid detection of glaucoma. These tests cannot feasibly be offered during the routine exam.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity</td>
<td>104 (55%)</td>
<td>43 (23%)</td>
<td>43 (23%)</td>
</tr>
<tr>
<td>Patients shopping around between practices leads to problems with access to previous clinical records and hampers my ability to detect change over time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td>85 (45%)</td>
<td>56 (30%)</td>
<td>49 (26%)</td>
</tr>
<tr>
<td>It’s not financially viable to purchase specialist equipment and/or schedule repeat testing appointments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail to attend</td>
<td>69 (36%)</td>
<td>59 (31%)</td>
<td>61 (32%)</td>
</tr>
<tr>
<td>Patients do not consider the eye exam an important health check and so may fail to attend for recommended follow-up tests.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>54 (29%)</td>
<td>44 (24%)</td>
<td>89 (48%)</td>
</tr>
<tr>
<td>Time constraints limit my ability to carry out some tests and/or repeat tests.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>45 (24%)</td>
<td>34 (18%)</td>
<td>107 (58%)</td>
</tr>
<tr>
<td>The equipment available where I work is inadequate; this limits the accuracy of my glaucoma exam.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice management</td>
<td>36 (19%)</td>
<td>31 (16%)</td>
<td>124 (65%)</td>
</tr>
<tr>
<td>Practice staffing and management issues affect my ability to perform necessary tests and/or schedule repeat testing appointments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training not accessible</td>
<td>28 (15%)</td>
<td>53 (29%)</td>
<td>104 (56%)</td>
</tr>
<tr>
<td>Training on glaucoma detection is not available or accessible to me.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record-keeping</td>
<td>15 (8%)</td>
<td>15 (8%)</td>
<td>161 (84%)</td>
</tr>
<tr>
<td>Record-keeping within the practice is inadequate and hampers my ability to detect change over time.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Frequency of agreement of optometrists with proposed barriers to glaucoma detection during routine eye examinations

Table 2. Frequency of agreement of optometrists with proposed barriers to glaucoma detection during routine eye examinations

Perceived barriers to glaucoma detection

Ninety-seven percent of participants responded to the Likert items proposing barriers to glaucoma detection in optometric practice and 94 per cent agreed with one or more of the suggested barriers. The most frequently cited barriers included the need for extra training (71 per cent agreement), patient unwillingness to pay for supplementary tests, defined as any diagnostic investigations that cannot feasibly be offered during a routine eye examination (examples might include repeat intraocular pressure measurements or full threshold automated perimetry) (61 per cent agreement), and poor continuity, caused by patients moving between practices (55 per cent agreement). The Likert items presented in the survey and the frequency of agreement with the proposed barriers are represented in Table 2.
To examine the relationship between the group demographics and agreement with the proposed barriers, a Chi-square test for association was conducted. Agreement with the need for extra training was significantly associated with postgraduate education. Optometrists without postgraduate qualifications were more likely to agree with the need for extra training in glaucoma detection (OR 4.3, 95% CI 1.7–11.6, \( \chi^2 p = 0.003 \)).

Agreement with a lack of continuity of care as a barrier to glaucoma detection was associated with both employment status and time allowance per appointment. Employees were statistically significantly more likely to agree with a lack of continuity (OR 2.2, 95% CI 1.1–4.6, \( \chi^2 p = 0.029 \)), than self-employed persons or those in managerial roles, as were optometrists with shorter appointment times (<30 minutes), who were more likely to agree with lack of continuity (OR 3.0, 95% CI 1.2–7.4, \( \chi^2 p = 0.015 \)) than those with more time.

Time allowance per appointment emerged as the variable that was significantly associated with the most barriers (n = 6). Those optometrists with an appointment slot shorter than 30 minutes (26 per cent) were statistically significantly more likely to agree that time constraints, equipment levels, staffing and management issues, inadequate record keeping, financial constraints and lack of continuity of care all limit their ability to detect glaucoma in routine practice (OR 2.9 to 6.6, \( \chi^2 \)), \( p < 0.025 \) for all).

The results of the full Chi-square analysis are shown in Table 3.

Regression analysis
Logistic and linear regression analyses were conducted to allow continuous variables to be incorporated into the analysis, to maintain the Likert scale ratings of the proposed barriers and to incorporate the effects of confounding factors.

Perceived need for extra training
To explore the impact of potential confounders on the perceived need for extra training, a cumulative odds ordinal logistic regression with proportional odds was run to establish the adjusted ORs for completed postgraduate education, subjective competence on binocular indirect ophthalmoscopy (BIO), tonometry equipment available, years since qualification, number of optometrists working within one practice, and access to financial support for continuing professional development (CPD) on the dependent variable, the perceived need for extra training.

The final model statistically significantly predicted the dependent variable over and above the intercept-only model (\( \chi^2 (7) = 14.656, p = 0.041 \)). The adjusted odds of optometrists without postgraduate education agreeing with the statement that they needed extra training for glaucoma detection was 3.2 (95% CI 1.3–8.1) times that for optometrists with postgraduate education (\( \chi^2 (1) = 6.204, p = 0.013 \)). Therefore, postgraduate education remained as a significant predictor of agreement with the need for extra training, even when potential confounding factors were included in the analysis.

The remaining predictor variables used in the regression model were not significant. The model is shown in Table 4.

Short appointment times
A logistic regression was conducted, incorporating the full time range of appointment slots (removing outliers) to further analyse the effects of appointment duration as a barrier. The analysis was conducted for 179 optometrists, and found that the test of the full model against a constant only model was statistically significant. Time slot allotted per appointment reliably distinguished between agree and disagree (or neutral) responses relating to whether optometrists have enough time to conduct a complete examination. R2 for the overall model was 42.2 per cent with an adjusted R2 of 41.1 per cent, a large size effect. The multiple regression model statistically significantly predicted the time per appointment slot (\( F [3, 158] = 38.412, p < 0.0001 \)). All three variables added statistically significantly to the prediction, \( p < 0.05 \). Regression coefficients, standard errors and exact p-values are shown in Table 6.

The model shows that optometrists with less experience, charging lower fees, and working in large multiples or franchised practices have the shortest appointment times. Using the regression model to predict appointment times illustrates the effects of each independent variable, showing that years of experience had a small although statistically significant effect on the appointment time, while mode of practice had a large effect: optometrists working in independent practice, charging $30 for a sight test with 10, 20 and 30 years of experience are predicted to have an appointment slot of 30.80 (95% CI 29.30–36.30), 31.97 (95% CI 30.75–33.19) and 33.1 (95% CI 31.63–34.65) minutes, respectively. For optometrists working in a franchise or multiple, charging $30 for a sight test with 10, 20 and 30 years of experience, the predicted test time is substantially shorter, at 22.92 (95% CI 20.73–25.11), 24.09 (95% CI 21.84–26.33) and 25.26 (95% CI 22.64–27.87) minutes, respectively.

The final element in the survey was a free-text box, in which respondents could elaborate on their responses or suggest other barriers to glaucoma detection. Ninety-six per cent of respondents completed the free-text box. The most commonly cited barrier was a lack of finance or time for diagnostic tests (41 per cent). Specific mentions included shortfalls of state funding and unwillingness of patients to pay supplementary fees as a restriction to buying equipment and giving extra chair time for enhanced or repeated diagnostic tests. Thirty-one percent of respondents cited poor care pathways, including lack of structured referral pathways and absence of multidisciplinary cooperation as a barrier.

**DISCUSSION**

The key findings to emerge from our study include:

- the perceived need for extra training in glaucoma detection and the clear link between a perceived need for training and a lack of postgraduate education
<table>
<thead>
<tr>
<th>Time since qualification</th>
<th>Time</th>
<th>Equipment</th>
<th>Practice management</th>
<th>Fail to pay</th>
<th>Continuity</th>
<th>Fail to attend</th>
<th>Finance issues</th>
<th>Record-keeping</th>
<th>Training needed</th>
<th>Training not accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq ≤ 10 years</td>
<td>21 (54%)</td>
<td>50 (57%)</td>
<td>23 (53%)</td>
<td>33 (85%)</td>
<td>37 (84%)</td>
<td>20 (50%)</td>
<td>28 (80%)</td>
<td>7 (16%)</td>
<td>38 (88%)</td>
<td>9 (28%)</td>
</tr>
<tr>
<td>Freq &gt; 10 years</td>
<td>33 (32%)</td>
<td>27 (25%)</td>
<td>22 (19%)</td>
<td>89 (80%)</td>
<td>68 (66%)</td>
<td>48 (51%)</td>
<td>62 (61%)</td>
<td>6 (5%)</td>
<td>106 (88%)</td>
<td>19 (20%)</td>
</tr>
<tr>
<td>χ² p</td>
<td>0.017</td>
<td>0.038</td>
<td>0.050</td>
<td>0.813</td>
<td>0.054</td>
<td>0.457</td>
<td>0.389</td>
<td>&lt;0.001</td>
<td>0.165</td>
<td>0.464</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>2.5</td>
<td>2.2</td>
<td>2.1</td>
<td>0.9</td>
<td>2.3</td>
<td>1.3</td>
<td>1.4</td>
<td>5.2</td>
<td>0.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fee for private eye exam</th>
<th>Time</th>
<th>Equipment</th>
<th>Practice management</th>
<th>Fail to pay</th>
<th>Continuity</th>
<th>Fail to attend</th>
<th>Finance issues</th>
<th>Record-keeping</th>
<th>Training needed</th>
<th>Training not accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq &lt; €30 (%)</td>
<td>7 (43%)</td>
<td>10 (52%)</td>
<td>8 (36%)</td>
<td>13 (76%)</td>
<td>16 (70%)</td>
<td>11 (58%)</td>
<td>14 (67%)</td>
<td>2 (10%)</td>
<td>17 (85%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>Freq ≥ €30 (%)</td>
<td>43 (36%)</td>
<td>31 (25%)</td>
<td>23 (18%)</td>
<td>82 (70%)</td>
<td>54 (51%)</td>
<td>68 (64%)</td>
<td>10 (6%)</td>
<td>114 (87%)</td>
<td>20 (19%)</td>
<td></td>
</tr>
<tr>
<td>χ² p</td>
<td>0.554</td>
<td>0.012</td>
<td>0.044</td>
<td>0.796</td>
<td>0.994</td>
<td>0.551</td>
<td>0.052</td>
<td>0.651</td>
<td>0.804</td>
<td>0.269</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>1.4</td>
<td>3.4</td>
<td>2.6</td>
<td>1.0</td>
<td>1.4</td>
<td>1.2</td>
<td>1.442</td>
<td>0.9</td>
<td>1.8</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tonometers available</th>
<th>Time</th>
<th>Equipment</th>
<th>Practice management</th>
<th>Fail to pay</th>
<th>Continuity</th>
<th>Fail to attend</th>
<th>Finance issues</th>
<th>Record-keeping</th>
<th>Training needed</th>
<th>Training not accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq NCT only</td>
<td>30 (37%)</td>
<td>37 (48%)</td>
<td>21 (25%)</td>
<td>55 (75%)</td>
<td>59 (74%)</td>
<td>39 (55%)</td>
<td>52 (71%)</td>
<td>13 (14%)</td>
<td>77 (89%)</td>
<td>15 (24%)</td>
</tr>
<tr>
<td>Freq GAT or combination</td>
<td>22 (37%)</td>
<td>7 (10%)</td>
<td>14 (19%)</td>
<td>59 (84%)</td>
<td>44 (68%)</td>
<td>29 (51%)</td>
<td>33 (56%)</td>
<td>1 (1%)</td>
<td>57 (82%)</td>
<td>13 (19%)</td>
</tr>
<tr>
<td>χ² p</td>
<td>0.934</td>
<td>&lt;0.001</td>
<td>0.360</td>
<td>0.153</td>
<td>0.424</td>
<td>0.648</td>
<td>0.068</td>
<td>0.002</td>
<td>0.210</td>
<td>0.510</td>
</tr>
<tr>
<td>OR (95% CI)</td>
<td>1.0</td>
<td>8.1</td>
<td>1.4</td>
<td>0.6</td>
<td>1.3</td>
<td>1.2</td>
<td>2.0</td>
<td>13.0</td>
<td>1.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>

| χ² p                     | 0.934 | <0.001 | 0.360 | 0.153 | 0.424 | 0.648 | 0.068 | 0.002 | 0.210 | 0.510 |
| OR (95% CI)              | 1.0 | 8.1 | 1.4 | 0.6 | 1.3 | 1.2 | 2.0 | 13.0 | 1.8 | 1.7 |

Table 3. Chi square test for association.
Perceived barriers to glaucoma detection

Barrett, O’Brien, Butler and Loughman

Training needs

The high frequency of agreement (71 per cent) with the need for extra training in examination techniques relating to glaucoma detection contrasts with UK data in which level of training of optometrists was an infrequently cited barrier.26 This difference might be partly explained by the difference in survey methodologies used in the two studies: Myint and colleagues assessed barriers to glaucoma detection through qualitative analysis of a free-text question and found that time and financial constraints were the most commonly stated barriers.26

The use of Likert items in our survey may have influenced responses, where conscientious practitioners were inclined to agree that further training would improve their ability to detect glaucoma. It is possible they would have been less likely to raise this issue independently. The response to our free-text question regarding barriers to glaucoma detection was low (nine per cent), although it is notable that lack of finance and time were the key barriers raised, showing very close alignment with the barriers identified by optometrists in the UK.

While this methodological influence should be acknowledged, the high level of agreement with the need for extra training, and differences identified between the perceived need of optometrists for training in the UK and Ireland, cannot be completely ignored. Higher uptake of postgraduate education among optometrists practising in the UK could have generated higher levels of confidence. Fifteen per cent of respondents to our survey indicated that they have already obtained postgraduate qualifications, whereas uptake of postgraduate education among optometrists working the UK is higher at 24 per cent.29 Only 15 per cent of our participants agreed that access to training was a barrier (Table 2), implying that training is perceived as available but is

Table 3. Continued

<table>
<thead>
<tr>
<th>Time</th>
<th>Equipment</th>
<th>Practice management</th>
<th>Finance issues</th>
<th>Fail to attend</th>
<th>Continually Fail to</th>
<th>Training needed</th>
<th>Record-keeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter available</td>
<td>48 (40%)</td>
<td>114 (74%)</td>
<td>4 (2.7%)</td>
<td>71 (62%)</td>
<td>11 (7.4%)</td>
<td>26 (22%)</td>
<td>25 (19%)</td>
</tr>
<tr>
<td>First</td>
<td>Yes</td>
<td>0.317</td>
<td>1.8</td>
<td>4.3</td>
<td>0.198</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.005</td>
<td>0.2</td>
<td>0.001</td>
<td>0.001</td>
<td>0.95% (C.I.)</td>
<td>0.2 – 1.4</td>
<td>0.5 – 3.4</td>
</tr>
<tr>
<td>CDP support from employer</td>
<td>29 (43%)</td>
<td>44 (70%)</td>
<td>17 (35%)</td>
<td>40 (76%)</td>
<td>45 (73%)</td>
<td>31 (57%)</td>
<td>31 (56%)</td>
</tr>
<tr>
<td>First</td>
<td>Yes</td>
<td>0.335</td>
<td>1.4</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>No</td>
<td>0.001</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.95% (C.I.)</td>
<td>0.2 – 1.4</td>
<td>0.5 – 3.4</td>
</tr>
<tr>
<td>Postgraduate qualification</td>
<td>43 (36%)</td>
<td>21 (15%)</td>
<td>11 (50%)</td>
<td>7 (25%)</td>
<td>5 (21%)</td>
<td>17 (85%)</td>
<td>13 (59%)</td>
</tr>
<tr>
<td>First</td>
<td>Yes</td>
<td>0.431</td>
<td>1.7</td>
<td>1.1</td>
<td>0.578</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>No</td>
<td>0.001</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.95% (C.I.)</td>
<td>0.2 – 1.4</td>
<td>0.5 – 3.4</td>
</tr>
</tbody>
</table>

*Expected cell count below 5, bold face indicates statistically significant differences (p < 0.05) which have been highlighted in bold.*
not being availed of, so the difference in uptake of postgraduate education is unlikely to be accounted for by lack of access alone.

In the UK, optometrists can participate in a variety of enhanced service schemes, examples of which include glaucoma repeat measures, referral refinement and comanagement, many of which require postgraduate training. It is possible that the lack of extended scope roles in Ireland has resulted in a relatively lower level of uptake of postgraduate training. Within our free-text response spaces, two optometrists noted that they would consider structured postgraduate training only if shared care or enhanced scope schemes became a reality in Ireland.

At the time of the survey, optometrists in Ireland were constrained in their scope of practice by a restrictive and arguably archaic legislation, which obliged optometrists to refer patients to a medical practitioner once the minimum index of suspicion for pathology was met and stated: ‘[A] registered optician who is not a registered medical practitioner shall not suggest by any written or oral statement or by any action that the registered optician has made or is capable of making a medical diagnosis of a disease of the eye or that, in relation to the treatment of the eyes, the registered optician has done or is capable of doing anything other than:

A. in the case of a registered optometrist, the prescribing or provision of spectacles,
or
B. in the case of a registered dispensing optician, the provision of spectacles.’

Optometrists practising within this context may have felt discouraged from expanding their clinical skill and expertise, and may have considered themselves ‘over-trained’ for the role defined by the 1956 legislation.

This legislation was repealed on 31 October 2015, being replaced by the Health (Miscellaneous Provisions) Act 2015, and regulation of optometry was transferred to a new multi-profession health regulator called CORU. Under the new legislation, scope of practice has been defined loosely, stating that professionals must ‘act within the limits of (their) knowledge, skills, competence and experience’ and ‘practise only in areas in which (they) have relevant competence, education, training and experience.’ Within this framework, there is clear scope for optometrists, with the appropriate skills, to become more involved in the diagnosis, monitoring and management of ocular pathology. In this new environment, Irish optometrists might feel more motivated to engage in further education and training, as any new skills can now be put to use in areas of personal interest. A UK survey found that 42.7 per cent of optometrists identified a special interest in a particular area of optometry, and 69 per cent of these respondents wished to undertake further training in the field of interest. The top area of special interest was glaucoma.

Even those optometrists who may not feel inclined to partake in structured postgraduate education will need to meet a new statutory requirement for CPD. The new optometric regulatory body, CORU, requires 30 hours of CPD in a 12-month period, with the first cycle beginning on 1 April 2017. Educators should consider this potential extra demand for postgraduate education in Ireland, and further analysis into the types of training that can develop real improvements in clinical competence should be prioritised. Any new educational opportunities should be developed in consultation with the profession, to ensure that the identified need for extra training is appropriately addressed. Consideration should also be given to the design and content of the undergraduate degree program, to ensure that newly qualified optometrists are appropriately trained in glaucoma detection and also equipped with the skills to engage in and take responsibility for their own continuing professional development.

Very few of the optometrists surveyed had glaucoma-specific qualifications; just six of the 30 respondents with completed postgraduate education had completed a glaucoma module or certificate, although only 14 of the 30 gave enough detail in their answer so that the exact type of postgraduate qualification could be discerned. Respondents were considered to have completed postgraduate education if they had completed a Level 9 or 10 postgraduate course in any area relating to optometric practice, including modules, certificates, diplomas, clinical masters or PhDs.

Interestingly, any form of postgraduate education (as defined above) appeared to increase optometrists’ confidence in their ability to detect glaucoma. They were less likely to agree with the Likert item ‘I need extra training’. Perhaps this indicates that those optometrists who have sought postgraduate education are more independent, life-long learners, and even if they have not

<table>
<thead>
<tr>
<th>Variable</th>
<th>Training needed OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonometry equipment available: NCT only</td>
<td>2.2 (1.0–4.9)</td>
<td>0.062</td>
</tr>
<tr>
<td>GAT only</td>
<td>3.5 (0.6–20.0)</td>
<td></td>
</tr>
<tr>
<td>Competence on BIO</td>
<td>1.0 (0.7–1.3)</td>
<td>0.88</td>
</tr>
<tr>
<td>Support for CPD</td>
<td>0.7 (0.3–1.4)</td>
<td>0.30</td>
</tr>
<tr>
<td>Years since qualification</td>
<td>1.0 (1.0–1.0)</td>
<td>1.0</td>
</tr>
<tr>
<td><strong>Postgraduate education</strong></td>
<td><strong>3.2 (1.3–8.1)</strong></td>
<td><strong>0.013</strong></td>
</tr>
<tr>
<td>Number of optometrists working within the practice</td>
<td>1.0 (0.9–1.2)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>SE</th>
<th>z-value</th>
<th>Odds ratio</th>
<th>Confidence interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.29</td>
<td>0.67</td>
<td>-3.43</td>
<td>0.10 (0.026–0.35)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Time slot</td>
<td>0.072</td>
<td>0.022</td>
<td>3.35</td>
<td>1.08 (1.033–1.13)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

Table 4. Ordinal regression

Table 5. Time slot logistic regression analysis
completed a course specifically relating to glaucoma detection, they are confident in their own abilities to keep their training up to date.

Financial constraints
Patient unwillingness to self-fund supplementary diagnostic tests within optometry practices was the second most frequently perceived limitation to case findings of optometrists for glaucoma. A similar theme emerged in free-text responses, where shortfalls of state funding as well as the unwillingness of patients to pay supplementary fees, were identified as barriers to buying equipment and giving extra ‘chair time’ for enhanced diagnostic tests. Optometrists could potentially improve patient uptake of supplementary testing by improving patient education, putting emphasis on the importance of detecting sight-threatening disease and emphasising the clinical rather than the commercial aspects of their service.

Shah and colleagues found that only a minority of optometrists discussed glaucoma risk factors with a patient of African racial descent, even when the standardised patient asked the optometrist if she was at greater risk of any eye conditions, showing that patient education by optometrists is likely to be underutilised and inconsistent. However, even if patient education was significantly improved, the funding structures within the health-care system may incenti2ve patients to seek referral to secondary care, where appointments are free, rather than self-fund diagnostic testing within an optometry practice.

In Ireland, the state is the largest single purchaser of optometry services, subsidising eye examinations and optical appliances through a variety of schemes. When the survey was conducted, the contracts did not allow or pay for repeat appointments to refine clinical decision-making, so patients found suspect for glaucoma had to pay for follow-up appointments—for example, repeated visual fields or tonometry measurements—or the practice provided these services with no additional remuneration. Public hospital services including ophthalmology outpatient departments are free to all, subject to small co-payments. This financial incentive, coupled with the considerable pressure optometrists are under to detect every case of sight-threatening disease, naturally leads to false positive referrals to secondary care.

Low-risk patients, who might suitably undergo further investigations and monitoring within community optometry, may be added to the long waiting list for public ophthalmology outpatient appointments. This circumstance has been studied by Tuck, who found that 74 per cent of the patients referred by an optometrist with ‘almost definite’ glaucoma were confirmed as having the condition, compared with only 21 per cent of those with ‘possible’ glaucoma.

Recent contract negotiations have led to significant modernisation of the contractual agreements between the Department of Social Protection and those optometrists agreeing to provide state-funded eye examinations. On 4 April 2017, a notification was issued declaring that the primary eye examination fee was to be increased from €22.42 to €30.00, and a further €20 (€30 if dilation is required) would be paid for a follow-up or repeat appointment. This represents an important change in the current funding of optometry practices, which could have a significant impact on optometric glaucoma case findings procedures, potentially facilitating more accurate diagnostic testing within community-based optometry practices. The significant increases in funding may affect both the time and equipment available to optometrists in community practice. Our Chi-square analysis (Table 3) shows that optometrists charging less than €30 for a private eye examination were significantly more likely to agree with the Likert item ‘the equipment available where I work is inadequate; this limits the accuracy of my glaucoma exam’. The new fee structures demonstrate recognition of the primary eye-care services provided by optometrists, and they may represent a watershed moment in clinical practice patterns.

Future work should look to map the changes in practice norms that emerge from the increased funding of optometry services in Ireland.

It stands to reason that optometrists with shorter appointment times would feel that time constraints limit their abilities to detect glaucoma and the logistic regression (Table 5, Figure 2) confirmed that time per appointment was a significant predictor of agreement with this barrier. It is also important to note that this same group identified many more barriers, which highlights the importance of time as a facilitator of comprehensive and effective clinical practice.

Time since registration was found to be a significant predictor of sight test time, where optometrists with less experience are more likely to have shorter appointment times. It is possible that younger or more junior optometrists are more susceptible to pressure from management to deliver faster eye examinations. Senior or more experienced clinicians may have more confidence in dictating
suitable appointment times, or may be in the position of setting their own appointment diaries. Although there was a much higher proportion of less experienced optometrists working in large retail groups or franchises, which tended to have shorter appointment times compared to independent private practices, the regression shows that time since registration is a significant predictor of test time even when this confounding factor is adjusted for (Table 6).

Davey and colleagues\(^{15}\) examined the factors influencing false positive referrals from optometrists and found that clinician experience had the greatest effect on referral accuracy, where inexperienced optometrists were more likely to generate false positive referrals to ophthalmology. Shorter appointment times for inexperienced optometrists might contribute to this effect, where less experienced optometrists, who might be more uncertain of a diagnosis, also have less time to refine their clinical decision-making, making them more likely to make unnecessary referrals.

The factor which had most effect on the time per appointment was mode of practice, where optometrists working in large multiples or franchises were predicted to have significantly shorter test times than those in independent private practice. The assumption one could draw from this is that franchised practices and large retail groups have a higher volume of patients, and optometrists are under pressure to produce faster eye examinations, but other factors might also be at play. Multiples often have more ancillary staff members who can carry out preliminary testing prior to the eye examination. This can shorten examination times significantly and is arguably a better use of time spent by the optometrists.

There may also be a significant difference in the patient populations of the different types of practices, representing a type of causality dilemma. It is possible that more ‘straightforward’ patients tend to present to multiples or franchises, whereas patients who perceive their issues as more complex, tend to present to independent optometry practices that may be perceived as more competent or clinically experienced, given that there is a much higher proportion of more experienced optometrists working in independently owned businesses. Therefore, the shorter appointment times reported by those in multiples or franchised practices may result from their less complex patient base, or vice versa. However, the fact remains that shorter appointment slots appear to influence the perceptions of optometrists of the barriers that exist to glaucoma detection. Although the Association of Optometrists Ireland advises that eye examinations should not take less than 20 minutes,\(^{40}\) our findings suggest that a sight test time of 30 minutes or longer is more appropriate, which falls in line with recommendations from the Scottish General Ophthalmic Services.\(^{41}\)

State financing of extra time for diagnostic testing within community optometry could facilitate more accuracy in referrals to secondary care, which would be likely to result in a net saving for the state\(^{32}\) while also relieving the significant psychological burden\(^{42}\) created by unnecessary referrals. The recent renegotiation of eye examination fees may serve to address the time and finance issues identified; similar repeat measures schemes have proved to be a cost-effective\(^{43}\) intervention in the glaucoma care pathway. It will be interesting to observe how the increased funds are implemented across various practice settings, and whether increased fees will result in improved equipment levels and increased appointment times, or perhaps just become assimilated into the business without any discernible change to service provision.

**Limitations**

Surveys are vulnerable to both sampling and response bias, and a healthy degree of scepticism toward survey data is often appropriate. The methodology used within our survey aimed to minimise bias, and the demographics of the respondents do appear representative in terms of geographic location and time since qualification. Being aware of the potential for bias, particularly voluntary response bias where the survey can over-represent individuals with strong opinions, we have conducted a conscientious and judicious analysis of the survey responses.

**CONCLUSIONS**

This paper is the first in-depth exploration of perceptions of optometrists of the barriers to glaucoma detection in community practice in Ireland. The research took place at a critical time for Irish optometry, taking stock of practice norms prior to the enactment of landmark legislation, which may usher in significant developments in the scope of practice over the coming years.

Any change in scope of practice will need to be underpinned by appropriate training, education and experience, and responses of optometrists to the survey show a clear acknowledgement of the link between further education and improving clinical practice. To deliver real improvements in clinical competence, the type of training made available should be carefully considered by educators and legislators in Ireland.

The responses also identified financial constraints on clinical practice that may be addressed by the recent renegotiation of eye examination fees in Ireland. Increased fees and repeat measures allowances may serve to provide more equitable access to refined clinical decision-making. Increases in the standard eye examination fee might be best used to facilitate longer appointment times, so that optometrists, including younger graduates and those working in multiples, are not burdened with examination times that limit their perceived ability to detect glaucoma. Future research should build on the findings presented in this

### Table 6. Multiple linear regression analysis summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE(_b)</th>
<th>(\beta)</th>
<th>t</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>30.26</td>
<td>2.88</td>
<td></td>
<td>10.49</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Fee per eye exam</td>
<td>0.24</td>
<td>0.055</td>
<td>0.29</td>
<td>4.39</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Years since qualification</td>
<td>0.12</td>
<td>0.045</td>
<td>0.17</td>
<td>2.63</td>
<td>0.010</td>
</tr>
<tr>
<td>Mode of practice</td>
<td>−7.88</td>
<td>1.33</td>
<td>−0.39</td>
<td>−5.92</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

B: unstandardised regression coefficient, SE\(_b\): standard error of coefficient, \(\beta\): standardised coefficient, t: t-value.
Perceived barriers to glaucoma detection Barrett, O'Brien, Butler and Loughman

paper, to analyse the impact of funding increases and legislative changes on optometric clinical practice patterns in Ireland.

DISCLOSURE

The authors report no conflicts of interest and have no proprietary interest in any of the materials mentioned in this article.

ACKNOWLEDGEMENTS

This work was supported by research funding from the Association of Optometrists Ireland. Special thanks to Claire Mc Donnell for lending her expertise on survey design.

REFERENCES

d2/05/17.
24. National Treatment Purchase Fund. Ophthalmol-
31. QIPP. Avoiding unnecessary referral for glau-
33. Marks JR, Harding AK, Harper RA, et al. Agreement between specially trained and accredited optometrists and glaucoma specialist consultant ophthalmologists in their management of glau-
34. CORU. Guide to the Code of Professional Con-
35. Myint J, Edgar DF, Murdoch IE, Lawrence JG. The impact of postgraduate training on UK opto-
36. Patel UDM, Murdoch IE, Theodosiades J. Glau-
coma detection in the community: does ongoing training of optometrists have a lasting effect? Eye (Lond) 2006; 20: 591–594.
39. Tuck MW. Referrals for suspected glaucoma: an International Glaucoma Association survey. Ophthal-
41. Primary and Community Care Directorate, The Scottish Government. The NHS (General Ophthal-
42. Davey CJ, Harley C, Elliott DB. Levels of State and Trait Anxiety in Patients Referred to Ophthal-
doi.org/10.1371/journal.pone.005708.
43. Parkinsons DJ, Edgar DF. Comparison of the effec-

Copyright © 2017 Optometry Australia
QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. DO NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1. Please confirm that given names (red) and surnames/family names (green) have been identified correctly.
AQ2. Please define NCT and GAT
AQ3. Please define NCT and GAT
AQ4. Please provide equivalent cost in US$