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Abstract— A significant amount of the research on automatic
emotion recognition from speech focuses on acted speech that is
produced by professional actors. This approach often leads to
overoptimistic results as the recognition of emotion in real-life
conditions is more challenging due the propensity of mixed and
less intense emotions in natural speech. The paper presents an
empirical study of the most widely used classifiers in the domain
of emotion recognition from speech, across multiple non-acted
emotional speech corpora. The results indicate that Support
Vector Machines have the best performance and that they along
with Multi-Layer Perceptron networks and k-nearest neighbour
classifiers perform significantly better (using the appropriate
statistical tests) than decision trees, Naı̈ve Bayes classifiers and
Radial Basis Function networks.

I. INTRODUCTION

The aim of this paper is to compare a number of super-
vised learning algorithms on the task of emotion recognition
from speech. The training of supervised learning techniques
requires using training data that is representative of the
classification problem in question. The focus in this paper
is on non-acted emotions which is important as emotion
recognition systems for real-life applications require training
on instances where the emotion expressed in the speech is
not acted [7]. In addition, the complexity of the task of
automatic emotion recognition from speech increases with
the naturalness of the assets—the recognition of natural
emotions is much more challenging than that of acted ones
[39].

Numerous classification techniques have been used in the
current research in this area, our focus in this paper is a com-
prehensive evaluation of the more widely used algorithms
across a number of datasets that have been generated from
non-acted speech corpora.

The structure of the paper is as follows. The next section
presents a brief overview of the process involved in using
supervised machine learning for the recognition of emotion
from speech. Section III then describes the datasets that
were generated and used in this work, while section IV
provides details of the classifiers used. Section V outlines
the experimental methodology and section VI discusses the
evaluation results. The paper concludes in section VII with
directions for future work.
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II. CLASSIFYING EMOTION IN SPEECH

Automatic recognition of emotion from speech is a super-
vised machine learning problem that requires a training set—
in this case a collection of emotional speech recordings. Each
recording or sample in the dataset has to be labelled with
the emotion expressed by the speaker, normally manually
by experts, and represented as an n-dimensional vector of
predictive characteristics or features such as pitch values or
spectrum coefficients which are extracted from the sample.
The training set is then presented to a learning algorithm that
produces a classifier. Once trained on a representative set of
recordings a good classifier will be able to predict correct
labels for samples that were not present in the training set.

Speech corpora that are used in emotion recognition
from speech can be separated into three groups: natural
speech (using data from call-centers [10], talk-shows [18]
and similar sources where people exhibit natural emotions),
acted speech (where actors are asked to portray specific
emotions [6]) and elicited speech (subjects are placed in
a controlled environment [3] and emotions are induced by
changing their environment). Acted speech should not be
used in the training of a classifier for spontaneous, real-life
emotions [7] and for this reason this study concentrates only
on natural or elicited corpora.

There are two main approaches to labelling emotional
assets—using discrete categorical labels and using emotional
dimensions. The first uses a limited set of distinct emotions,
for example, one of most widely used sets consists of
joy, sadness, fear, anger, surprise and disgust [13] (often
called “the big six”), and often used with an addition of a
special category for neutral, non-emotional speech. Discrete
labelling has some drawbacks—emotions in everyday speech
are usually weak and mixed rather than pure [8], so a
significant part of the collected assets can be categorised as
neutral. With emotional dimensions the emotion expressed
in the speech is not represented as a discrete label, but as a
point in multi-dimensional space. The three most frequently
used dimensions are activation (how active or passive the
emotion is), evaluation (whether it is negative or positive) and
power (does the speaker feel powerful or weak) [29]. Due to
the subjectivity of emotion many state-of-the-art corpora are
rated by a number of labellers and the label is determined
from the various ratings given by the labellers. In some cases
a measure of agreement or confidence can also be given—for
example, in the case of dimensional annotation an average
of the labeller’s rating values can be used as a consensus
label and the standard deviation of ratings can be used as an



agreement measure [18].
There is no agreed feature set for emotion recognition

from speech, but most of the research uses a combina-
tion of prosodic and spectral features. It has been stated
that prosodic features are especially useful in the case
of acted speech, but spectral features are valuable when
recognising emotion from natural or elicited speech [38].
Some researchers also state the importance of lexical and
contextual features [11], but their extraction usually requires
the additional effort of annotating the speech corpus.

The most widely used classification techniques for emo-
tion recognition from speech are k-nearest-neighbour meth-
ods (k-NN), C4.5 decision trees, support vector machines
(SVMs), artificial neural networks (ANNs), and Naı̈ve Bayes
(NB) classifiers. These techniques have often been compared
on emotional speech assets [4], [23], [28], [33], [37], [40],
but not on more than two natural/elicited datasets or for
statistically significant differences. Each of these classifiers
was used in 24% of 84 papers we have surveyed in average.

III. DATASETS USED

Table I presents an overview of the datasets used in this
study which were derived from natural emotional speech
corpora that used both categorical and dimensional labels.
Natural and elicited emotional datasets are difficult to obtain
and the ones used in this study are quite diverse—the
recorded subjects speak in different languages, a variety of
target classes was used and the quality of recordings also
differs. The following categorical-rated corpora were used:

1) FAU Aibo Emotion Corpus—this corpus [3], [36]
contains recordings of children speaking to the AIBO
robot controlled by a human invisible to them. All
the 18216 assets were used in the Interspeech 2009
Challenge as a five-class classification problem (angry,
emphatic, neutral, positive, rest) and the datasets ex-
tracted from this corpus used this labelling scheme.
Assets with a high confidence level were selected
where possible (above 0.5 on a 0 to 1 scale1).
Four datasets were extracted from this corpus—300
confident neutral assets and 300 angry assets were
randomly selected and formed the first dataset labelled
as AIBO-NA. The second and third datasets, labelled
AIBO-NE and AIBO-NP, were generated in the same
way but contained 300 emphatic assets and 300 pos-
itive assets respectively, in place of the angry assets.
The fourth dataset, AIBO-AENPR involved selecting
200 random assets from each of the five categories. In
all cases, except Rest where there were few assets with
high confidence, these were confident assets.
An additional dataset was derived from the 4-class
corpus proposed by the HUMAINE Network of Ex-
cellence CEICES initiative that contained 4513 assets

1The AIBO corpus was labelled at the word level, and these labels were
used to get a label for the whole phrase. The confidence level for the
utterance denotes the proportion of words from that utterance that have
the same label as the utterance itself.

from the AIBO corpus. The same procedure of select-
ing assets was applied, creating a dataset containing
200 confident assets from each class.

2) BabyEars—this corpus contains recordings of parents
speaking to their children [34]. All instances belong
to one of three classes—approval (when the action
of a child is approved), attention (when the parent
attracts the attention of the child) and prohibition
(when parents prohibit some actions).

Also two dimensionally-rated corpora were used in this
study. Since the classification task is being considered, there
is a need to discretise the numerical values of the dimen-
sions into categories. Assets were sorted within a particular
dimension and then separated into three classes in such
a way that each discrete class contains approximately the
same number of instances. Table II provides the number of
instances in each class created in this way and the range
of values assigned to each class. The following describes
the datasets generated from the dimensionally-rated corpora
using this approach:

1) Vera am Mittag German Audio-Visual Emotional
Speech Database is a natural corpus of German talk-
show recordings [18] which contains assets rated on
three dimensional scales on a scale of -1 to +1. The
dimensions were activation, valence (a synonym for
evaluation) and dominance (a synonym for power). A
single dataset of three classes was generated from the
ratings across each of these dimensions, VAM-ACT,
VAM-EVAL and VAM-POW.

2) Utsunomiya University Spoken Dialogue Database
For Paralinguistic Information Studies2—a Japanese
elicited corpus that contains 4840 assets labelled
across six dimensions (pleasantness, arousal, domi-
nance, credibility, interest and positivity) on a scale
of 1 to 7. Each asset in this corpus has rating values
supplied by three experts and the mean of these values
is used as the target rating for each asset. For the
purposes of dataset generation for this study a mea-
sure of confidence was assigned to each asset where
confidence was measured as the difference between the
minimal and maximal rating given to each asset.
Only the ratings from the dimensions of arousal
(activation), pleasantness (evaluation) and dominance
(power) were used. For each dimension the assets were
discretized into three classes in the manner described
above. Where classes contained more than 300 confi-
dent assets, a random selection was chosen to generate
the datasets labelled UUDB-ACT, UUDB-EVAL and
UUDB-POW reflecting the arousal, pleasantness and
dominance dimensions.

For the experiments a feature set of 384 acoustical and
spectral features was extracted using openEAR software3.
This was the feature set used in the Interspeech 2009
challenge which consists of different features based on pitch,

2http://uudb.speech-lab.org/
3http://openart.sourceforge.net/



TABLE I
DATASETS USED

Name Language Description of classes Number of instances Number of classes Data distribution, %
AIBO-AENPR German Anger, empathy, neutral, positive, rest 1000 5 20/20/20/20/20
AIBO-AMEN German Anger, motherese, empathy, neutral 800 4 25/25/25/25
AIBO-NA German Neutral, anger 600 2 50/50
AIBO-NE German Neutral, empathic 600 2 50/50
AIBO-NP German Neutral, positive 600 2 50/50
BabyEars English Attention, approval, prohibition 509 3 42/29/29
UUDB-ACT Japanese Three levels of activation 900 3 33/33/33
UUDB-EVAL Japanese Three levels of valence 900 3 33/33/33
UUDB-POW Japanese Three levels of dominance 900 3 33/33/33
VAM-ACT German Three levels of activation 947 3 33/33/33
VAM-EVAL German Three levels of valence 947 3 33/33/33
VAM-POW German Three levels of dominance 947 3 33/33/33

TABLE II
DISCRETISATION OF THE DIMENSIONAL DATASETS

Dataset Lower class Middle class Higher class
Number of instances Range Number of instances Range Number of instances Range

UUDB-ACT 1496 [1; 3.6667] 1619 [4; 4.6667] 1725 [5; 7]
UUDB-EVAL 1847 [1; 3.6667] 1753 [4; 4.3333] 1240 [4.6667; 7]
UUDB-POW 1484 [1; 3] 1564 [3.3333; 4.6667] 1792 [5; 7]
VAM-ACT 317 [-1; -0.1625] 315 [-0.1586; 0.1169] 315 [0.1172; 1]
VAM-EVAL 317 [-1; -0.293] 315 [-0.2892; -0.163] 315 [-0.1623; 1]
VAM-POW 317 [-1; -0.0562] 315 [-0.0546; 0.1852] 315 [0.1853; 1]

energy, zero-crossing rate, harmonics to noise ratio as well as
of 12 mel-frequency cepstral coefficients. All features were
normalised to the interval [0; 1] with the only exception in
the case of ANNs where the interval [-1; 1] was used as it
is best-practice for the back-propagation algorithm allowing
it to converge faster [22].

IV. CLASSIFIERS

The most widely used classifiers for emotion recognition
from speech are k-NN, NB, decision trees, SVMs and ANNs.
This section will give a brief description of each of these
supervised learning techniques.

A. k-NN

The k-NN classifier compares a given target instance with
the k training instances that are the most similar or closest
to it [20]. There are a variety of metrics used to measure
similarity and the Euclidian distance metric is frequently
used. The target instance is assigned to the class to which
the majority of these nearest neighbours belongs.

There is no consensus on which value of k should be used
in the case of emotion recognition from speech. Different
researchers proposes values from k = 1 [23], [30] to k = 20
[14]. Usually the value of k is found by trial and error,
different values are taken and the performance of these
classifiers is compared [16], [17].

B. NB

The NB classifier is a technique that uses Bayes theorem
to predict class membership probabilities [20]. It finds the

class E∗
j (j = 1, 2, ..., l) to which the target instance x =

(x1, x2, . . . , xn) is assigned in the following way:

E∗
j = argmax

j
= P (Ej)P (x|Ej) (1)

where the prior probabilities P (Ej) are estimated from the
occurrences of instances belonging to category Ej in the
training set, and the likelihoods P (x|Ej) in the case of
a so-called flexible Naı̈ve Bayes classifier [24] which is
used in this research are calculated as a sum of Gaussians
g (xi, µj , σj) as follows:

P (x|Ej) =
1

n

n∑
i=1

g (xi, µj , σj) .

C. Decision trees

A decision tree is a hierarchical data structure which is
the result of a recursive binary partitioning of the training
set [1]. The classification process involves traversal of the
tree following a path to a specific leaf node according to the
decision criteria at each node. The leaf nodes represent the
classifications. The most commonly used algorithm for con-
structing decision trees in emotion recognition from speech
is C4.5 [11], [23], [28], [30], [37].

D. SVMs

An SVM is a binary classifier which uses a nonlinear
mapping to transform the original training data into a higher
dimension and within this new dimension it searches for
the linear optimal separating hyperplane [20]. The function
that performs this mapping is the kernel function. The most



Fig. 1. The structure of an MLP [5]

frequently used SVM kernel function in the domain of emo-
tion recognition in speech is the radial basis function (RBF)
kernel [11], [28], [35], [42], although some researchers also
use the polynomial kernel [23], [28], [31] or the linear kernel
[2], [26], [41]. In this study we use the linear and RBF
kernels, excluding the polynomial kernel because of its slow
training speed.

To use SVMs for a multi-class problem an ensemble of
SVM classifiers is needed. A common implementation of
SVMs for multi-class problems is the round-robin ensemble
which uses l× (l−1)/2 base SVM classifiers, where l is the
number of target classes and each base classifier is trained on
the training instances from a different pair of target classes.

E. ANNs

An ANN is a model consisting of interconnected process-
ing units known as artificial neurons, grouped into layers,
that takes its inspiration from the brain [1]. The classification
process involves a spreading activation through each layer
of the network using an activation function to calculate the
output from each node.

When authors refer to ANNs they usually mean multi-
layered perceptrons (MLPs), though the same term can refer
to radial basis function (RBF) networks, self-organizing
maps and many other related technologies. A typical MLP
is shown on Figure 1. The neurons are grouped into three
layers: input, hidden and output.

An RBF network has the same structure, but there are
restrictions on the activation functions that can be used.
MLPs can use a broad selection of activation functions, in
this study a hyperbolic tangent is used as the hidden and
output layer activation functions.

V. METHODOLOGY

Each classifier was evaluated on each dataset using 5-fold
cross validation where the training set was split into five
folds and each fold in turn was held out as a test set with the
remaining folds being used for training. At each fold iteration
the parameters of each classifier (except NB which does not
have any parameters) were tuned on the training set using an
additional 5-fold cross validation. The ranges used to tune
the parameters are detailed in Table III. The performance
measure used was average class accuracy as a number of the
datasets are imbalanced. This overall process was repeated

three times and averaged classification accuracies for each
classifier on each dataset are calculated.

The appropriate tests—Friedman [15] and Bonferonni-
Dunn [12]—proposed by Demsar [9] for comparing multiple
classifiers across multiple datasets were used to test for
statistically significant differences in performance. Let rji be
the rank of the j-th algorithm (j = 1, 2, ..., k) on i-th dataset
(i = 1, 2, ..., N ), thus Rj = 1

N

∑
i r

j
i is the average rank of

the j-th algorithm. The Friedman statistic

χ2
F =

12N

k (k + 1)

∑
j

R2
j −

k (k + 1)
2

4

 (2)

is distributed according to χ2
F with k−1 degrees of freedom

when N > 10 and k > 5 [9]. The null-hypothesis for this
test is that all ranks are equal and thus the performance
of the classifiers is the same. The test determines whether
there are any statistically significant differences between
the performance of the classifiers. If the null-hypothesis
is rejected, special post-hoc tests are required to discover
the classifiers with a statistically different performance; the
Bonferonni-Dunn test is used for this purpose.

The MATLAB software package4 was used to implement
MLPs, the LibSVM library5 was used for SVMs and for all
other classifiers WEKA [19] was used.

VI. RESULTS & DISCUSSION

Table IV presents the average classification accuracies for
each classifier on each dataset and includes the average rank
of classifiers which according to Demsar [9] provides ‘a
fair comparison of algorithms’. Friedman’s test rejects the
null hypothesis which indicates that there is a statistically
significant difference across the classifiers. The application
of the post-hoc Bonferroni-Dunn test shows that the perfor-
mance of SVM-Linear, k-NN and MLP is not significantly
different from SVM-RBF which is the best classifier. The
performance of RBF and NB is also found to be comparable
to the performance of the worst classifier, the C4.5 decision
tree, thus, there are two distinct groups of classifiers. It can
therefore be concluded that SVMs, k-NN and MLP are the
best classifiers for the given features and datasets, with NB,
RBF and decision trees performing significantly worse.

From the results it can be seen that classifying evaluation
is more difficult than classifying activation or power—the
results of classification on datasets UUDB-EVAL and VAM-
EVAL are considerably worse than the results on the other
UUDB or VAM based datasets. This may be explained by
the fact that acoustical and spectral features have been used
but no correlation between these types of features and the
evaluation dimension has been found [27]. In contrast, pitch
has been shown to highly correlate with activation [27],
which may explain why the classifiers in general have a
relatively high accuracy on activation datasets.

4http://www.mathworks.com/products/matlab/
5http://www.csie.ntu.edu.tw/ cjlin/libsvm/, implementation details are

available in the manual (http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf)



TABLE III
THE RANGES OF VALUES USED IN PARAMETER TUNING.

Classifier Parameter Ranges Tested

C4.5 Confidence threshold for pruning [0.05, 0.1, ..., 0.5]

Minimum number of instances per leaf [1, 2, 3, 4]

k-NN Number of nearest neighbours [1, 3, ..., 41]

MLP Number of hidden neurons [100, 200, 300]

RBF Number of hidden neurons [2, 3, ..., 10]

SVM-LIN Cost parameter, C [2−5, 2−4, ..., 215]

SVM-RBF Cost parameter, C [2−5, 2−4, ..., 215]

Kernel parameter, γ [2−15, 2−14, ..., 23]

TABLE IV
RESULTS OF THE COMPARISON OF CLASSIFIERS—ACCURACIES (A) AND RANKS (R), PERCENTAGES

Dataset SVM-Linear SVM-RBF C4.5 k-NN RBF NB MLP
A R A R A R A R A R A R A R

AIBO-AENPR 49.00 2 50.20 1 34.40 7 45.50 4 41.10 6 42.30 5 45.89 3
AIBO-AMEN 63.98 2 66.46 1 46.67 7 61.00 3 54.67 5 54.00 6 60.50 4
AIBO-NA 81.00 1 80.50 2 71.44 6 73.83 4 72.61 5 60.67 7 78.60 3
AIBO-NE 79.33 3 80.11 1 73.17 5 77.17 4 71.28 6 64.50 7 79.51 2
AIBO-NP 76.53 2 77.54 1 68.46 7 74.61 3 72.93 6 73.38 5 74.36 4
BabyEars 70.55 2 77.56 1 55.56 7 64.27 4 56.84 5 56.80 6 68.91 3
UUDB-ACT 75.00 2 75.37 1 69.59 5 69.67 4 68.48 6 66.89 7 73.36 3
UUDB-EVAL 60.74 1 59.37 2 51.15 6 53.30 4 52.44 5 47.89 7 55.87 3
UUDB-POW 75.11 1 74.19 2 66.04 7 71.18 3 69.63 6 71.00 4 70.56 5
VAM-ACT 62.80 1 61.96 2 52.62 7 55.77 5 53.02 6 56.69 4 57.78 3
VAM-EVAL 45.64 4 49.40 1 40.98 7 46.59 2 43.14 6 46.13 3 45.07 5
VAM-POW 56.81 4 70.08 1 54.10 5 65.21 3 50.57 6 46.92 7 65.33 2
Averaged rank 2.08 1.33 6.33 3.58 5.67 5.67 3.33

The VAM corpus is the only natural corpus used in this
study and the quality of the recordings is lower than that
of other corpora, which may account for the notably lower
classification accuracy on the VAM-ACT, VAM-DOM and
VAM-VAL datasets compared with the UUDB datasets.

The performance on the datasets based on AIBO corpus
shows that the difficulty of the classification task grows
appreciably with the number of target classes. The best result
for binary problems typically is around 80%, dropping to
60% and 50% in the case of four and five-class problems re-
spectively. This is to be expected as multi-class classification
is a more complex problem that binary classification.

The discretisation of the continuous dimensions in the
UUDB and VAM datasets results in the middle class being
narrower in range than the lower or higher one (see Table II).
It aligns well with the fact that elicited corpora have mostly
neutral or assets that can be considered not emotive enough
[25], [36], [38], but at the same time this suggests a need for
more sophisticated ways of performing the discretisation.

VII. CONCLUSIONS

In this paper an empirical study of the classifiers that are
most widely used in the field of emotion recognition has
been carried out. The performance of SVMs, MLPs, RBFs,
NB, k-NN, C4.5 decision trees (with appropriate tuning of
parameters) was compared across twelve datasets extracted

from four corpora containing natural or elicited speech.
Using Friedman and Bonferroni-Dunn statistical tests, the
performance of SVMs with both linear and RBF kernels,
MLPs and k-NN classifiers was found to be superior to the
other techniques with SVMs performing the best overall.

Future work will consider extending the study to include
some of the state-of-the-art classification algorithms includ-
ing Random Forests [32], Gaussian Mixture Models [5]
and Kernel methods [21] and to include speech assets now
available from the SEMAINE project. Ensemble techniques
have also been widely used in the field of emotion recog-
nition and are often compared to single classifiers [4], [23],
[28], [33], [37], [40]. Our future work will consider their
comparison with single classifiers and determining the most
suited architecture for an ensemble that performs emotional
speech recognition. Finally due to the difficulty in getting
highly emotive speech assets from natural and elicited speech
we will investigate alternative ways of discretising continu-
ous emotional dimensions and investigate feature selection
techniques to determine a better representation for the data.
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