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ABSTRACT 

 

Heavy metals are ubiquitous contaminants of the marine environment and can 

accumulate and persist in sediments.  The toxicity of metal contaminants in sediments 

to organisms is dependent on the bioavailability of the metals in both the water and 

sediment phases and the sensitivity of the organism to the metal exposure.  This study 

investigated the effects of two metal contaminants of concern (CdCl2 and CuCl2) on a 

battery of marine bioassays employed for sediment assessment.  Cadmium, a known 

carcinogen and widespread marine pollutant, was found to be the least toxic of the two 

assayed metals in all in vivo tests.  However CdCl2 was found to be more toxic to the 

fish cell lines PLHC-1 and RTG-2 than CuCl2.  Tisbe battagliai was the most sensitive 

species to both metals and the Microtox® and cell lines were the least sensitive 

(cadmium was found to be three orders of magnitude less toxic to Vibrio fischeri than to 

T. battagliai).  The sensitivity of Tetraselmis suecica to the two metals varied greatly.  

Marine microalgae are among the organisms that can tolerate higher levels of cadmium.  

This hypothesis is demonstrated in this study where it was not possible to derive an 

EC50 value for CdCl2 and the marine prasinophyte, T. suecica.  Conversely, CuCl2 was 

observed to be highly toxic to the marine alga, EC50 of 1.19 mg l-1.  The genotoxic effect 

of Cu on the marine phytoplankton was evaluated using the Comet assay.  Copper 

concentrations ranging from 0.25 to 2.50 mg l-1 were used to evaluate the effects.  DNA 

damage was measured as percent number of comets and normal cells.  There was no 

significant DNA damage observed at any concentration of CuCl2 tested and no 

correlation with growth inhibition and genetic damage was found.   

 

Keywords: heavy metal toxicity; battery of bioassays; fish cell lines; Comet assay. 



 

1. Introduction 

Metals are among the most intensely studied contaminants in estuarine and marine 

environments.  Heavy metals are elements with atomic weights ranging from 63.456 to 

200.590 and are characterised by having similar electronic distribution in their external 

shell (e.g. copper, cadmium, zinc) (Viarengo, 1989).  Several heavy metals are essential 

to life at very low concentrations, but at higher doses most of them are toxic (Warnau et 

al., 1995). 

Although heavy metals exist in dissolved, colloidal and particulate phases in 

seawater, the concentration of dissolved forms in aquatic systems is low.  As they are 

particle reactive they readily sorb onto suspended particulate matter (SPM) as they enter 

riverine, coastal or estuarine waters.  Ultimately heavy metals are removed to bottom 

sediments in estuarine systems which serve as a repository for these elements 

(Niencheski et al., 1994). 

Metal toxicity in seawater is affected by many factors of which the 

physiochemical state of the metal is one of the most important.  Adsorption to particles 

or complexation with dissolved organics will reduce the toxicity.  Unfortunately the 

form in which a metal exists is hard to characterise and most toxicity studies measure 

the total concentration of a particular metal, which in practice does not correlate well 

with the observed toxicity (Florence et al., 1984).  Other important parameters when 

dealing with metals are pH and redox potential.  At a low pH, metals generally exist as 

free cations but at an alkaline pH, as in seawater, they tend to precipitate out as 

insoluble hydroxides, carbonates, oxides or phosphates (reduced toxicity).  The 

bioavailability of metals may also be affected by the presence of natural organic matter 

e.g. humic acids.  Humic acids are produced by the degradation of organic matter by 



microorganisms and are able to bind a variety of metals at their carboxylic groups, 

altering the bioavailability and consequently affecting the toxicity (Tsiridis et al., 2006).   

Copper is present in oceanic waters at concentrations of about 0.1 µg l-1.  

However, higher levels 2.0 to > 100 µg l-1 are found in estuaries and a large fraction of 

this may sorb to particulates and concentrate in the bottom sediment [ranging from 10 

µg g-1 dry weight in pristine areas to 2000 µg g-1 dry weight at impacted sites] (Bryan 

and Langston, 1992; Kennish, 1997). Estimates of total anthropogenic discharge of 

copper to surface waters range from 35 x 103 to 90 x 103 metric tons per year worldwide 

(Nriagu and Pacyna, 1988). Levels of cadmium are much lower in open ocean waters 

(0.2 – 60 ng l-1) and coastal waters (1 – 100 ng l-1).  While, cadmium concentrations in 

estuarine sediments typically range from 0.2 to 10 µg g-1 dry weight (Kennish, 1997).   

Above a threshold bioavailability all trace metals are potentially toxic (Rainbow, 

1993).  According to Abel (1989) an approximate order of decreasing toxicity of 

common heavy metals in aquatic organisms is as follows: mercury, cadmium, copper, 

zinc, nickel, lead, chromium, aluminium, and cobalt.  However, the toxicity of a given 

metal can vary greatly from one species to another.  Some estuarine and marine 

organisms have the capacity to store, remove or detoxify metal contaminants using 

proteins (e.g. metallothioneins, phytochelatins) or cellular structures (e.g. lysosomes). 

 A battery of marine bioassays has been developed and optimised within the 

Radiation and Environmental Science Centre (RESC) for use in the routine monitoring 

of Irish marine sediments.  It is important to evaluate the sensitivities of the battery 

species to a wide variety of contaminants.  Therefore during the development process 

the sensitivity of the battery to a variety of organic contaminants was evaluated 

(Macken et al., 2007).  Similarly this paper investigates the effects of two inorganic 

contaminants on the battery of species.  The test battery consists of species 



representative of several trophic levels: Vibrio fischeri (decomposer), Tetraselmis 

suecica (primary producer), Tisbe battagliai (primary consumer) and the fish cell lines 

PLHC-1 (Poeciliopsis lucida hepatoma cell line) and RTG-2 (Oncorhynchus mykiss 

gonad cells) representing the secondary consumer trophic level.  Endpoints employed 

include light inhibition (V. fischeri), growth inhibition (T. suecica), mortality (T. 

battalgliai), cell viability as assessed by the alamar blue and neutral red assays (fish 

cells) and the investigation of sublethal DNA damage with the Comet assay (T. 

suecica).  Table 1 presents the summary toxicity data from the literature for the species 

and chemicals employed in this study.   

Alkaline single-cell gel electrophoresis, also known as the Comet assay, 

developed by Singh et al. (1988), allows for the investigation of damage to genomic 

DNA caused by genotoxic agents.  The Comet assay is a valuable method that has 

grown in popularity in recent years.  Although mammalian cells are commonly 

employed in the Comet assay, the test can be applied to many other cell types (Tice et 

al., 2000).  The assay has been successfully adapted for many aquatic species such as 

clams (Hartl et al., 2004), mussels (Nigro et al., 2006), dog-whelks (Hagger et al., 2006) 

among others.  Erbes et al. (1997) detected DNA damage in the green algae 

Chlamydomonas reinhardtii exposed to 4-nitroquinoline-1-oxide, N-

nitorodiumethylamine and H2O2.  As phytoplankton are the primary producers in marine 

ecosystems, sub-lethal effects on these organisms are of great importance.  Cadmium is 

a known carcinogen and its toxic mechanisms have been well documented.  The 

genotoxic effects of Cd on phytoplankton has been investigated (Desai et al., 2006), 

however, there is little known about the genotoxic effects of Cu especially in 

phytoplankton.  Therefore the genotoxic effects of Cu to T. suecica were investigated in 

this study. 



The main aim of this study was to investigate the sensitivity of the battery to two 

recognised metal pollutants of the marine environment and rank species sensitivity 

accordingly.   



2. Materials and Methods 

2.1 Test Substances 

 Copper chloride (CAS Registry No. 7447-39-4) and cadmium chloride (CAS 

Registry No. 10108-64-2) were obtained from Sigma Aldrich (UK).  Analytical grade 

potassium dichromate (CAS Registry No 778-50-9) and phenol (CAS Registry No. 108-

95-2) were obtained from Sigma Aldrich (UK) and BDH (UK) respectively and were 

employed as reference toxicants to validate the test procedures.  All test compounds 

chosen are known/detectable pollutants of the estuarine/marine environment in Ireland 

(Kilemade et al., 2004; Davoren et al., 2005; Cronin et al., 2006).   

 

2.2 Ecotoxicity tests 

For each chemical stock solutions of 1000 mg l-1 were prepared using deionised 

water and suitable dilution series were prepared employing appropriate test media.  For 

all tests, and for each chemical, testing was performed in two stages.  A preliminary 

range finding test was conducted to determine the range of concentrations to be tested in 

the definitive test.  All definitive testing was conducted in at least triplicate on three 

independent occasions.  All tests, blanks and positive controls (reference chemicals) 

with the exception of the Microtox® test were conducted with natural seawater collected 

from the Bull Lagoon, Co. Dublin, Ireland (53o22’N 006o08’W) with a salinity range of 

29 – 32 ‰.  T. suecica and T. battagliai were maintained in the laboratory in 

accordance with standard methods (BS EN ISO 10253, 1998; ISO/DIS 14669, 1997).  

Maintenance temperatures for both species were 20 ºC ± 2 ºC.  Fish cell lines were also 

maintained and cultured in the RESC according to Ní Shúilleabháin et al. (2004).  The 

selection of test species was based on their standardisation and frequent employment in 



toxicity testing, reported sensitivity to a wide range of pollutants and their relevance to 

an Irish environment (algae and invertebrate).  

 

2.2.1 Microtox
®

 assay 

 Lyophilised V. fischeri bacteria (NRRL B-11177) and all Microtox® reagents 

were obtained from SDI Europe, Hampshire, UK.  The Microtox® assay was performed 

in accordance with operational procedures from Azur Environmental Ltd. (Azur 

Environmental Ltd, 1998).  Five, fifteen and thirty-minute EC50 tests were performed 

using the 90 % basic test for aqueous extracts (nine concentrations).  Bioluminescent 

responses were measured using a Microtox® Model 500 analyser and acute toxicity data 

were obtained and analyzed using the MicrotoxOmni® software (SDI Europe, 

Hampshire, UK).  A basic test was conducted with the reference standard phenol for 

each fresh vial of bacteria opened to ensure validity of test method.  

 

2.2.2 Microalgal toxicity test 

T. suecica (Kylin) Butcher (CCAP66/4) was obtained from the Culture 

Collection of Algae and Protozoa (CCAP) (Argyll, Scotland).  Toxicity tests were 

conducted according to the International Organization for Standardization (ISO) 

Guideline 10253 (BS EN ISO 10253, 1998).  All microalgal growth inhibition tests 

were conducted at 20 ± 1 oC with continuous shaking at 100 rpm, illumination of 10,000 

lux and a continuous photoperiod.  The initial algal density of all flasks was 1 x 104 cell 

ml-1 in a final volume of 20 ml.  Negative controls were incorporated for each test 

containing only algal growth media and algal inoculum.  The cell density of each 

replicate was measured after 72 h using a Neubauer Improved (Bright-Line) chamber 



(Brand, Germany).  Average specific growth rate and percentage inhibition of average 

specific growth rate relative to controls were calculated for each concentration.  The 

reference chemical potassium dichromate was employed as a positive control to ensure 

validity of test method.   

 

2.2.3 Copepod toxicity test 

A starting culture of T. battagliai was kindly supplied by Shannon Acute 

Toxicity Laboratory (SATL), Ireland.  T. battagliai toxicity tests were conducted with 

slight modifications according to the ISO method (ISO/DIS 14669, 1997).  Toxicity 

tests with T. battagliai were conducted with copepodids 6 ± 2 days old.  During testing 

copepodids were incubated in a temperature controlled room at 20 ± 2 oC and under a 

16:8 h light:dark photoperiod.  A positive control using potassium dichromate was run 

alongside tests in order to verify the sensitivity of the copepods.  Lethality for each 

chemical at each concentration was recorded and the percentage mortality (LC50) 

compared to the controls was determined after 24 h and 48 h.   

 

2.2.4 Cell culture 

RTG-2 cells (Catalogue number 90102529) derived from rainbow trout gonads, 

were obtained from the European Collection of Cell Cultures (Salisbury, UK).  The 

PLHC-1 cell line (CRL-2406) derived from a hepatocellular carcinoma in the 

topminnow were from the American Type Culture Collection and purchased from 

Promochem (UK).  Both cell types were maintained in Dulbecco’s Modified Medium 

Nutrient Mixture/ F-12 Ham (DMEM) supplemented with either 10 % (RTG-2) or 5 % 

(PLHC-1) foetal calf serum (FCS) and 45 IU ml penicillin, 45 µg ml streptomycin.  



Cultures were maintained in a refrigerated incubator (Leec, Nottingham, U.K.) at either 

20 °C (RTG-2) or 30 °C (PLHC-1) under a normoxic atmosphere.  

 

2.2.4.1 Cytotoxicity testing: Metal exposure 

Individual wells of a 96-well microplate (Nunc, Denmark) were seeded with 100 

µl of cell suspension at a seeding density of 2 x 105 cells per ml for RTG-2 cells and 8 x 

105 cells per ml for PLHC-1 cells for 24 h exposure periods.  For 96 h exposure periods 

cells were seeded at 1.6 x 105 cells per ml for RTG-2 cells and 2 x 105 cells per ml for 

PLHC-1 cells.  Test chemicals were prepared in a reduced serum medium (5 % FCS).  

Range finding tests were first conducted with the metal compounds to select the 

concentrations for definitive testing.  Six replicate wells were used for each control and 

test concentration per microplate.  Following exposure of the cells, the test medium was 

removed; cell monolayers washed with phosphate buffered saline (PBS) and 

cytotoxicity assessed using the Alamar Blue (AB) and Neutral Red (NR) assays 

conducted subsequently on the same set of plates as previously described (Davoren and 

Fogarty, 2006).   

 

2.2.5 Comet Assay 

Three test concentrations of copper were selected based on the previous toxicity 

tests with T. suecica (section 2.2.2) and CuCl2.  These concentrations (0.25, 0.75 and 

2.5 mg l-1) along with a control were set up in duplicate as per the ISO standard method 

(BS EN ISO 10253, 1998).  The initial algal density of all flasks was 1 x 104 cell ml-1 in 

a final volume of 20 ml.  Cell density of each flask was measured after 72 h to ensure 

similar growth to initial toxicity tests.   



 The Comet assay was performed according to modified procedures based on 

Singh et al. (1988) and Hagger et al. (2006).  Five millilitres of culture was harvested 

from each replicate after 72.  All sub-samples were centrifuged at 2000 rpm for 5 min at 

4 °C.  After centrifugation supernatant was discarded and cell pellets were re-suspended 

in 180 µl of low melting point agarose (LMP) and aspirated.  Immediately 80 µl of cell 

suspension/LMP agarose were dropped onto frosted microscopic slides which were 

previously coated with 1 % normal melting point agarose (NMP) dissolved in PBS.  

Coverslips were gently placed over the cell suspension and slides transferred to an 

icepack to allow the agarose to set.  When the gels had set the slides were placed into 

freshly prepared lysing solution at 4 °C for 1 h (2.5 M NaCl, 100 mM Na2-EDTA, 10 

mM Tris [pH 10.0]).  One percent Triton X-100 and 10 % DMSO were added to the 

lysis solution after the pH was adjusted and immediately prior to adding the slides.  The 

lysis and all following steps were conducted in the dark to prevent any further damage 

to cell DNA. 

 Slides were removed from the lysis buffer and placed in a horizontal 

electrophoresis tank (Compact L/XL, Biometra, Germany).  The tank was filled with 

electrophoresis buffer ( 300 mM NaOH, 1 mM Na2-EDTA [pH 13]) until all slides were 

covered, and the DNA was allowed to unwind for 40 min before electrophoresis.  

Electrophoresis was performed at 25 V, 300 amps for 30 min.  After electrophoresis, 

slides were removed from the tank and rinsed three times (for 5 min each time) in 

neutralising buffer (0.4 M Tris, pH 7.5).  Finally, slides were stained with 20 µl of 5 µg 

ml-1 ethidium bromide solution and viewed under ultraviolet fluorescence light (400x).  

Slides were scored using the Komet software (version 5.0; Kinetic imaging Ltd, Wirral, 

UK).  Twenty five cells were scored per slide and 2 slides per treatment were scored (50 



cells per treatment in total).  Finally, cell viability was tested by means of the trypan-

blue exclusion method (Absolom, 1986). 

 

2.2.6 Statistical analysis 

The EC50 (concentration that elicits an estimated 50 % toxic effect e.g. growth 

inhibition, mortality) values for all chemicals were calculated using REGTOX-EV6.xls 

(Èric Vindimian http://eric.vindimian.9online.fr/), a curve fitting macro for 

Microsoft® Excel.  For each definitive test, each concentration was tested in triplicate 

(microtox, microalgae, fish cells) or quadruplicate (copepod tests) and three 

independent experiments were performed.  The acute toxicity data for the Microtox® 

assays was analysed using the MicrotoxOmni® software (SDI Europe, Hampshire, UK).  

Toxicity data for the algal and copepod tests were fitted to a sigmoidal curve and the 

Weibull (algal assays) and Hill (copepods and bacterial assays) models were used to 

calculate Effective Concentration (EC) and Lethal Concentration (LC) values 

respectively.   

For all cell assays fluorescence as fluorescent units (AB and NR assays) was 

measured using a microplate reader (TECAN GENios, Grödig, Austria).  Cytotoxicity 

was expressed as mean percentage inhibition relative to the unexposed control ± 

standard error of the mean (SEM), which was calculated using the formula [100-((Mean 

Experimental data/Mean Control data) x 100)].  Control values were set at 0 % 

cytotoxicity.  Cytotoxicity data (where appropriate) was fitted and the Hill model 

(REGTOX-EV6.xls) used to calculate the 50 % Effective Concentration (EC50), which 

was the concentration of test compound which caused a 50% inhibition in comparison 

to untreated controls.  The EC50 values are reported ± 95 % Confidence Intervals (± 

95% CI).   



Statistical analyses were carried out using a one-way analyses of variance 

(ANOVA) followed by Dunnett’s multiple comparison test.  These data analyses were 

performed using MINITAB® release 14 (MINITAB Inc. PA, USA).  Statistical 

significance was accepted at p ≤ 0.05.  Percentage inhibition data generated by the 

MicrotoxOmni® software were Arcsin transformed prior to statistical analysis to 

improve normality and homogeneity of variances and reduce the influence of outliers.  

To confirm the precision of tests, the coefficient of variation (CV) was calculated for all 

controls.   

 



3. Results 

 After initial range finding tests final concentration ranges of 0.065 – 16.670 mg 

l-1 and 1.758 – 450 mg l-1 for CuCl2 and CdCl2 respectively were employed in the 

definitive testing with the Microtox® system.  Bioluminescence of V. fischeri 

(Microtox®) decreased after exposure to both CdCl2 and CuCl2 indicating that both 

chemicals are toxic to the marine bacterium.  Figure 1 shows the experimental values of 

the relative light intensity (normalized with respect to the initial light intensity) at 

various concentrations of (a) CuCl2 and (b) CdCl2 (only five concentrations graphed for 

clarity purposes).  Toxicity of both metals to V. fischeri was observed to increase with 

time and copper was an order of magnitude more toxic than cadmium for all time 

intervals (Table 2). 

 Initial range finding tests with CdCl2 and T. suecica (0.001 – 100 mg l-1) failed 

to identify a suitable concentration range for definitive testing.  Significant toxicity was 

observed at 100 mg l-1 but the level of growth inhibition was well below 50 %.  Further 

testing with CdCl2 and T. suecica were therefore not performed as higher concentrations 

were not deemed relevant to known environmental levels (Kilemade et al., 2004; 

Davoren et al., 2005; Cronin et al., 2006).  Copper chloride was considerably more toxic 

to the marine prasinophyte and showed significant inhibition of growth at 

concentrations as low as 0.25 mg l-1 (Figure 2) and yielded an EC50 of 1.19 mg l-1 (Table 

2).  

Results of toxicity testing with T. battagliai and the two metals are shown in 

Table 2.  Copper chloride was more toxic than CdCl2 with 24 and 48 h LC50 values of 

0.19 mg l-1 and 0.08 mg l-1 respectively.  However, T. battalgiai was more sensitive to 

both metals than either the bacterial or algal tests.  There was significant toxicity at all 



concentrations of CuCl2 after 48 h exposure (0.05 – 1.00 mg l-1).  Significant effects 

were only seen with CdCl2 at 0.2 – 1.0 mg l-1 after 48 h exposure (Figure 3).   

 The degree of DNA structural integrity was evaluated in T. suecica cells by 

single cell gel electrophoresis (Comet assay) after 72 hours of exposure to CuCl2.  Fifty 

comets per concentration were measured, 25 per replicate.  Results showed that there 

was no significant DNA damage at the concentrations tested (Figure 4) compared to the 

control.  In the control percentage tail DNA in the algal cells was 9.93 ± 1.59 % (SEM) 

and at the top concentration (2.5 mg l-1) percentage tail DNA was 8.45 ± 1.89 % (SEM).  

These concentrations were selected based on acute toxicity results so that a comparison 

could be made between growth inhibition and genotoxicity.  The cell viability for the 

Comet assay was recorded for each concentration employed (Control, 0.25 mg l-1, 0.75 

mg l-1, 2.5 mg l-1) resulting in cell viabilities of over 90 % at all concentrations apart 

from 2.5 mg l-1 (> 80 % viability).   

 In the cell assays a toxic effect was observed with both CdCl2 and CuCl2 on both 

cell lines tested with both the NR and AB assays.  All calculated cytotoxicity values are 

presented in Table 3.  Cadmium was observed to be the most toxic compound to both 

cell lines.  There was significant toxicity (p ≤ 0.05) with cadmium at all concentrations 

with the PLHC-1 cell line (24 and 96 h) for both the NR and AB assays.  For the RTG-2 

cells there was significant toxicity at all concentrations after 96 h with cadmium as 

determined by NR and AB.  The 24 h EC50 with AB and the PLHC-1 cell line and 

CdCl2 was 11.31 (11.04 – 11.48) mg l-1, while for the RTG-2 cell line it was 20.90 

(18.33 – 23.14) therefore indicating that the RTG-2 cells were less sensitive than the 

PLHC-1.   

 For copper significant toxicity was observed (p ≤ 0.05) at between 40 – 100 mg 

l-1 depending on the assay and duration of exposure for PLHC-1 cells.  RTG-2 cells 



were only significantly affected by copper at the top two concentrations with both 

assays.  The same difference in sensitivity between cell lines was observed for copper as 

were for cadmium.  The 96 h EC50 with PLHC-1 cells and CuCl2 as determined by AB 

was 56.28 (51.82 – 62.38) mg l-1 while for RTG-2 cells it was 92.04 (86.98 – 100.47) 

mg l-1.  In the case of copper the AB assay was more sensitive for both cell types after 

96 h e.g. 96 h NR EC50 was 65.43 (62.30 – 68.24) mg l-1 and the 96 h AB EC50 was 

56.28 (51.82 – 62.38) mg l-1 for PLHC-1 cells.   

 With the exception of the EC values for CuCl2 and the PLHC-1 cell line as 

determined by NR, toxicity of both metals was observed to increase with lengthened 

exposure time for all endpoints.  Based on these values the toxicity ranking was 

identical for both NR and AB (EC10 and EC50) in the order CdCl2 > CuCl2 for PLHC-1 

and RTG-2 cells.  However, there was a significant difference in the sensitivities of the 

two cell lines employed.  In general the PLHC-1 cells were more sensitive than the 

RTG-2 cells and AB was the most sensitive end point employed.    

 Tables 2 and 3 summarise the ecotoxicity and cytotoxicity data respectively for 

all species and both metals.  Copper chloride was the most toxic of the two to V. 

fischeri, T. suecica and T. battagliai.  In contrast to this CdCl2 was the most toxic 

chemical to the fish cell lines.  Of all the assays employed the acute lethality test with T. 

battalgiai was the most sensitive.   



 

4. Discussion 

The investigation into the toxicity of cadmium and copper to a battery of 

bioassays showed varying toxicity between test species.  In the Microtox® assay the 

light production in V. fischeri is directly proportional to the metabolic activity of the 

bacterial population and inhibition of enzymatic activity correspondingly decreases 

bioluminescence.  The use of this assay provides a measure of sub-lethal response.  In 

this study both metals elicited a toxic effect in the Microtox® assay, however, the assay 

was one of the least sensitive of the battery tests employed.  Copper chloride was an 

order of magnitude more toxic than CdCl2 to the bacteria and the toxicity of both metals 

was observed to increase with lengthened exposure time (Table 2).  This increase in 

toxicity with time is indicative of metal contamination and is a well documented effect 

in V. fischeri (Azur Environment Ltd., 1998).  Codina et al. (2000) obtained EC50 values 

of 150 µm l-1 (34.25 mg l-1) and 7.2 µmol l-1 (1.23 mg l-1) for CdCl2·2.5H2O and 

CuCl2·2H2O respectively.  These results concur with the values obtained in this study 

employing the anhydrous metal salts of cadmium and copper.  Newman and McCloskey 

(1996) investigated total EC50 values for nine metals (added as chloride salts) and the 

values for both agreed with our study and other studies within the literature.  Their EC50 

value for CuCl2 was 2.78 µmol l-1 (4.8 mg l-1) and their value for CdCl2 was 195 µmol l-

1 (35.75 mg l-1).  In all studies cadmium toxicity to V. fischeri was found to be low 

compared to copper.  A lack of sensitivity of Gram negative bacteria towards cadmium 

has previously been reported (Bitton and Freihoffer, 1978; Morozzi et al., 1986; Bauda 

and Block, 1990).  These authors attributed the low toxicity of cadmium to the presence 

of exopolysaccharides on the outer layer of the bacterial membrane, which have been 



found to adsorb and trap cadmium.  Fulladosa et al. (2005) also found low toxicity of 

Cd (II) to V. fischeri.  

The order of metal toxicity to algae varies with species and experimental 

conditions, but generally the order can be considered to be Hg > Cu > Cd > Ag> Pb > 

Zn (Rice et al. 1973; and Rai et al. 1981).  In this study CuCl2 was far more toxic than 

CdCl2 to the prasinophyte T. suecica.  Ismail et al. (2002) reported IC50 values for Cd(II) 

(0.05 – 7.5 mg l-1) and Cu(II) (0.03 – 0.41 mg l -1) for the marine microaglal species T. 

tetrahele and Tetraselmis sp. after 96 h based on Optical Density (OD) measurements 

and cell counting.  Satoh et al. (2005) reported similar IC50 values for both Cu and Cd of 

7.4 mg l-1 and 9.8 mg l-1, respectively.  This is in stark contrast to our study where 

cadmium was only observed to have a significant effect at 100 mg l-1 and no EC50 value 

was derived (as testing at higher concentrations was deemed to be unrealistic to 

environmentally relevant levels).  The EC50 value for CuCl2 was determined at 1.19 mg 

l-1 which was similar to the values generated by other authors (Ismail et al., 2002; Satoh 

et al., 2005), however, de Kuhn et al. (2006) found Cu2+ ions to be an order of 

magnitude less toxic than was observed in the present study (EC50 value of 40 mg l-1).  

Differing physio-chemical parameters (e.g. pH) during experimental procedures may 

explain some of the differences observed between studies employing the same algae and 

metal.   

The mechanism of metal toxicity (specifically copper) in microalgae has been 

described by Stauber and Florence (1987).  They stated that the initial form of Cu that 

binds to the cell may bind to the carboxylic and amino residues in the membrane 

protein, rather than the thiol group.  At the cell membrane Cu may interfere with cell 

permeability or the binding of essential metals (in low concentrations).  Copper is then 

transported into the cystol and may react with –SH enzyme groups and free thiols, 



disrupting enzyme active sites and cell division.  Copper may also exert toxicity on 

subcellular organelles interfering with mitochondrial electron transport, respiration, 

ATP production and photosynthesis.  Nassiri et al., (1996) noted the presence of copper 

in the walls of a multilayered cell in T. suecica suggesting that these structures 

constitute an adsorbing area for this element.  They also reported drastic damaging 

effects of copper contamination such as the depletion of starch which would perturb 

photosynthesis and the loss of flagella leading to a lack of motility in T. suecica after 

ultrastructure examination.  Conversely there was no ultrastructural damage evident in 

the algae exposed to cadmium.  In this study surviving T. suecica exposed to higher 

levels of CuCl2 (< 1.0 mg l-1) were observed to have reduced motility compared to the 

controls but there was no obvious reduction in motility in the higher concentrations of 

CdCl2.  Copper reduces growth as well as photosynthetic and respiratory activities 

(Nalewajko and Olaveson, 1995).  The photosynthetic machinery is particularly 

susceptible to copper and may result in a decrease in the activity of photosystem II and 

electron transfer rates within the algae (Fernades and Henriques, 1991; Mallick and 

Mohn, 2003).  Cid et al. (1995) also observed copper to interfere with algal 

photosynthesis and ATP production, with 0.5 mg l-1 causing a 50 % decrease in 

photosynthesis.   

 Nassiri et al (1996) also found that the toxic effects of copper to T. suecica were 

more pronounced than those of cadmium.  They only observed toxicity with cadmium 

in the latency phase of growth, which suggests an adaptation phenomenon of T. suecica 

to this metal.  However, the sensitivity of T. suecica to Cd in our study was far less (< 

40 % effect at 100 mg l-1) than that of Nassiri et al. (1996) who observed an IC50 value 

of 9.38 mg l-1.  Marine microalgae are among the organisms that can tolerate higher 

levels of cadmium and T. suecica is a good example (Pérez-Rama et al., 2006).  The 



biosynthesis of phytochelatins (small, thiol containing peptides) seems to be one of the 

main tolerance mechanisms to metals, with cadmium being one of the main inductors 

(Scarano and Morelli, 2002; Hu et al., 2001).  Cadmium although considered to be 

highly toxic to algae was found to be several orders of magnitude less toxic to T. 

suecica than copper.  As mentioned copper has the ability to free thiols in the cystol of 

the cell.  Pérez-Rama et al. (2001) showed that approximately 87 % of bioaccumulated 

cadmium in T. suecica was bound by phytochelatins after exposure to 6 mg l-1 for 8 

days.  Phytochelatins and cysteine in T. suecica are important cellular components 

involved in mechanisms of tolerance to cadmium, with the intracellular level of these 

molecules being regulated by the concentration of this metal in its medium (Pérez-Rama 

et al., 2006).  The ability of an organism to synthesise phytochelatins with a greater 

number of subunits allows it to tolerate a higher level of cadmium and therefore reduces 

the toxicity of the cadmium to the organism.  In their study Pérez-Rama et al. (2006) 

detected phytochelatins with up to seven subunits in T. suecica.   

 The toxicities of CdCl2 and CuCl2 to T. battagliai were very similar (Table 2).  

Very little data exist in the literature for T. battalgiai and the heavy metals Cd and Cu.  

However, comparable 96 h EC50 values were generated by Hutchinson et al. (1994) 

when assaying CdCl2 and Cu[NO3]2 with T. battagliai (Tables 1 and  2).  Bechmann 

(1999) observed that the sensitivity to copper varies between copepod species.  LC50 

values for copepods (including eight different species, differing life stages and different 

test conditions) ranged from 19 to 762 µg Cu l-1 (O’Brian et al., 1988).   

 This study employed two cell lines and two endpoints as an additional 

test system to evaluate their ability to assess potential cytotoxicity of the two metal 

contaminants.  Segner and Braunbeck (1998) advocated the use of in vitro cell culture 

techniques for the ecotoxicological assessment of the early and sensitive detection of 



chemical exposure.  Although they were not as sensitive as other assays employed (T. 

suecica and T. battagliai) they are still valuable tools for the screening of environmental 

samples (Ní Shúilleabháin et al., 2004).  In this study the sensitivity of the cell lines 

differed and the PLHC-1 cells were observed to be the most sensitive to the two metals 

assayed.   

It is well established that in vitro studies on fish cell lines are less sensitive than 

in vivo fish cell studies (Babich et al., 1986; Babich et al., 1990; Babich and 

Borenfreund, 1987; Saito et al., 1991; Fent and Hunn, 1996).  Castaño et al. (1996) 

found that the RTG-2 cell line was between 20 to 200 times less sensitive than in vivo 

trout bioassays.  In this study corresponding in vivo toxicity assays with fish were not 

conducted to validate the toxicity of these chemicals however comparative values exist 

within the literature.  Besser et al. (2007) reported 96 h LC50 values of 5.2 (4.7 – 5.9) 

and 42 (39 – 46) µg l-1 for Cd and Cu respectively.  In this study 96 h EC50 values for 

RTG-2 cells with Cd and Cu were three orders of magnitude less sensitive than the 

reported in vivo results with a 96 h EC50 for CdCl2  of 7.12 (4.96 – 9.47) mg l-1 (7120 

[4960 – 9470] µg l-1) and 96 h EC50 for CuCl2 of 46.74 (38.58 – 54.83) mg l-1 (46740 

[38580 - 54830] µg l-1 with the AB assay.  However, there is increasing pressure to 

reduce the numbers of fish employed in regulatory testing.  Therefore there is a need to 

find alternative ways in which to accurately assess the potential hazard of a chemical or 

environmental sample (e.g. relocation of dredged sediment).  The reduced sensitivity of 

in vitro cell line methods would make it unfeasible to employ these assays in a 

regulatory capacity to assess the pollution status of environmental samples.  However 

there is a possibility of employing in vitro cells lines as screening tools for the ranking 

of environmental samples.  Although in vitro assays do not reflect the true in vivo 

situation and absolute toxicities have been observed to differ, good correlation in terms 



of the ranking order of chemicals has been observed (Castaño et al., 1996; Ní 

Shúilleabháin. et al., 2004).   

 The genotoxic effect of copper on T. suecica was investigated using single cell 

gel electrophoresis (or Comet assay).  Although cadmium has been observed to cause 

DNA damage in phytoplankton (Desai et al., 2006) it was not assayed with T. suecica as 

it was not possible in this study to obtain significant effects on the growth of the alga at 

the concentrations assayed (i.e. environmentally relevant concentrations).  Unlike 

cadmium, the possible genotoxic effects of copper have not been fully investigated.  

From this study it is apparent that CdCl2 has no significant genotoxic effect on T. 

suecica at the concentrations tested.  The concentrations tested (0.25, 0.75 and 2.5 mg l-

1) were selected because at concentrations greater than 2.5 mg l-1 inhibition of growth 

was too great to guarantee sufficient cell survival and viability.  Although there was no 

genotoxic effect observed in this study, the genotoxic potential of copper has been 

observed in the literature.  Guecheva et al. (2001) observed significant DNA damage 

post exposure to copper in planarians (24 h or 7 d).  In this study the algae were only 

exposed for 72 h therefore it may be that a longer period of incubation may be required 

before an effect is observed.  Other studies have exposed the algae for longer durations.  

Desai et al. (2006) exposed Chaetoceros tenuissimus to CdCl2.H2O for 20 days in total.   

Recent studies have shown that metals, including iron, copper, chromium, and 

vanadium undergo redox cycling resulting in the production of reactive oxygen species 

(ROS) (Stohs and Bagchi, 1995).  Over the last decade, evidence is emerging for 

copper-induced mutagenesis via ROS production (Reid et al., 1994; Anderson et al., 

1994).  However, little is known about the genotoxic effects of copper on marine 

organisms and there are no data in the literature about the effects of copper in the Comet 

assay.  Therefore it is recommended that the method described in this chapter can be 



employed in future studies with single compounds and environmental samples (e.g. 

porewaters, effluents) to assess the genotoxic potential of these compounds/mixtures on 

phytoplankton, one of the most vital components of aquatic food webs.  

Toxicity tests used for water quality criteria only examine exposure to metals via 

the dissolved phase, express results relative to ambient concentrations only, and do not 

consider the mechanism of toxicity.  These tests may not mimic environmental 

conditions closely enough to accurately predict the impact of anthroprogenic 

contamination.  Therefore it is suggested that further studies comparing the response of 

copepods to sublethal levels of metals accumulated from food and from water be 

assessed through radiotracer and feeding (on metal exposed algae) experiments and 

toxic impact and metal body burdens be compared.  This may allow for the 

characterisation of the mechanisms by which any toxic effects occur. 

The results of this study contribute to the understanding of the problems 

associated with assessing metal contamination and the associated complexities involved 

in metal toxicity.  It is obvious from this study that all species do not react in a similar 

manner to potentially hazardous pollutants such as the heavy metals.  Therefore no 

single screening tool is sufficient to safely monitor the environmental effects of heavy 

metal pollution.  Instead several biological assays incorporating multiple endpoints 

should be used in tandem in order to get a more complete picture of possible 

environmental or health effects.   
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Figure 4  DNA integrity, evaluated as electrophoretic DNA migration (% Tail DNA), in 
Tetraselmis suecica exposed to concentrations of CdCl2. 



Table 1 

 
Trophic 

level 

Test Species Exposure 

Time 

End point Chemical Toxicity value Reference 

       
Bacteria Vibrio fischeri 15 min EC50 Cu (II) 0.5 ± 0.1 mg l-1 Utgikar et al.,2004  
  15 min EC50 Cd2+ 27 ± 5 µmol l-1 Newman, 1995  
  15 min EC50 Cu2+ 1.62 ± 0.13 µmol l-1 Newman, 1995 
  15 min EC50 CdCl2 195 ± 18.8 µmol l-1 Newman & McCloskey, 1996 
  15 min EC50 CuCl2 2.78 ± 0.52 µmol l-1 Newman & McCloskey, 1996 
   EC50 CdCl2 9.4 mg l-1 Peinado et al., 2002 
   IC50 Cd in HNO3 50.4 ± 7.61 µg l-1 Hsieh et al., 2004  
   IC50 Cu[NO3]2 7.08 ± 0.352 µ g l-1 Hsieh et al., 2004 
  5 min EC50 Cu 1.3 mg l-1 Toussaint et al., 1995  
  15 min EC50 CdCl2·2.5H2O 150 µmol l-1 Codina et al. 2000 
  15 min EC50 CuCl2·2H2O 7.2 µmol l-1 Codina et al. 2000 
       
Algae Tetraselmis suecica 96 h EC50 CdCl2 5.8 mg l-1 Pérez-Rama et al., 2001  
 Tetraselmis suecica 6 d EC50 CdCl2 7.9 ± 1 mg l-1 Pérez-Rama et al., 2002  
 Tetraselmis suecica  IC50 CdCl2 9.38 mg l-1 Nassiri et al., 1996 
 Tetraselmis suecica  IC50 CuCl2 0.172 mg l-1 Nassiri et al., 1996 
 Tetraselmis suecica  EC50 CuSO4.5H2O

 40 mg l-1* De Kuhn et al., 2006*  

       
Copepods Tisbe battagliai 96 h LC50 CdCl2 0.34 mg l-1 Hutchinson et al., 1994  
 Tisbe battagliai 96 h LC50 Cu[NO3]2 0.088 mg l-1 Hutchinson et al., 1994 
       
Fish Cells RTG-2 48 h NR50 Cd in HNO3 0.055 mmol l-1 Castaño et al. 1996 
  48 h NR50 Cu in HNO3 0.150 mmol l-1 Castaño et al. 1996 
 PLHC-1 24 h NR50 CuSO4.5H2O 32.4 µg ml-1 Ryan & Hightower, 1994 
  24 h NR50 CdCl2.2.5H2O µg ml-1 Ryan & Hightower, 1994 
       

EC50 = Effective Concentration of 50 % of sample population, LC50 = Lethal concentration of 50 % of sample population, NOEC = No Observed Effects 
Concentration, NR50 = NR50 endpoint is the concentration of test agent that reduces Neutral Red uptake by 50 %. It is equivalent to 50 % viability.  * Inhibition of the 
motility of Tetraselmis suecica 



Table 2   
 
Test 
chemical 

Test Species/ 
cell line 

Exposure 
time  
 

Endpoint Concentration 
range  
(mg l-1) 

EC10
a
  

(mg l-1) 
EC50

a
  

(mg l-1) 
NOECb  
(mg l-1) 

LOECc  
(mg l-1) 

 
CdCl2 

 

Vibrio fischeri 

 
5 min 

 
Reduction in bioluminescence  

 
1.758 – 450.0 

 
25.97 (17.07 – 48.65) 

 
105.82 (95.01 – 148.56) 

 
56.250 

 
112.500 

 Vibrio fischeri 15 min Reduction in bioluminescence  1.758 – 450.0 8.25 (6.13 – 13.35) 47.28 (43.14 – 61.81) 14.063 28.125 
 Vibrio fischeri 30 min Reduction in bioluminescence  1.758 – 450.0 4.56 (3.47 – 7.90) 23.22 (22.61 – 33.54) 7.031 14.063 
CuCl2 Vibrio fischeri 5 min Reduction in bioluminescence  0.065 – 16.67 1.87 (1.86 – 4.85) 10.65 (10.43 – 17.47) 2.084 4.168 
 Vibrio fischeri 15 min Reduction in bioluminescence  0.065 – 16.67 0.61 (0.49 – 1.28) 3.12 (3.03 – 5.05) 0.521 1.042 
 Vibrio fischeri 30 min Reduction in bioluminescence  0.065 – 16.67 0.25 (0.15 – 0.47) 1.32 (1.10 – 1.88) 0.521 1.042 
CuCl2 Tetraselmis suecica 72 h Growth inhibition 0.100 – 5.0 0.26 (0.20 – 0.30) 1.19 (1.04 – 1.26) 0.100 0.250 
CdCl2 Tisbe battagliai 24 h lethality 0.050 – 1.0 0.13 (0.06 – 0.21) 0.84 (0.66 – 1.07) 0.400 0.800 
 Tisbe battagliai 48 h lethality 0.050 – 1.0 0.02 (0.01 – 0.06) 0.19 (0.14 – 0.24) 0.100 0.200 
CuCl2 Tisbe battagliai 24 h lethality 0.050 – 1.0 0.07 (0.05 – 0.09) 0.19 (0.16 – 0.21) 0.100 0.200 
 Tisbe battagliai 48 h lethality 0.050 – 1.0 0.02 (0.01 – 0.04) 0.08 (0.07 – 0.11) < 0.050 0.050 
         
aEC50 values and corresponding 95 % confidence intervals in parentheses 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant effect (p ≤ 0.05) was detected 
cLOEC, lowest observed effect concentration, the lowest concentration of the tested concentration at which a significant (p ≤ 0.05) effect was detected.  



Table 3   
 
Test 
chemical 

Test Species/ 
cell line 

Exposure 
time  
 

Endpoint Concentration 
range  
(mg l-1) 

EC10
a
  

(mg l-1) 
EC50

a
  

(mg l-1) 
NOECb  
(mg l-1) 

LOECc  
(mg l-1) 

 
CdCl2 

 
PLHC - 1 

 
24 h 

 
NR 

 
10 – 40  

 
10.29 (9.78 – 10.98) 

 
14.09 (14.12 – 14.73) 

 
< 10 

 
10 

 PLHC - 1 96 h NR 10 – 40  5.15 (0.46 – 7.08) 6.67 (1.56 – 8.13) < 10 10 
 PLHC – 1 24 h AB 10 – 40  7.86 (7.50 – 8.18) 11.31 (11.04 – 11.48) < 10 10 
 PLHC – 1 96 h AB 10 – 40  < 10 < 10 < 10 10 
 RTG – 2  24 h NR 10 – 40  14.40 (10.98 – 17.55) 25.88 (23.96 – 28.39) 20 25 
 RTG – 2  96 h NR 10 – 40  4.61 (2.31 – 6.54) 11.47 (9.32 -13.46) < 10 10 
 RTG – 2  24 h AB 10 – 40  12.47 (8.86 – 16.03) 20.90 (18.33 – 23.14) 15 20 
 RTG – 2  96 h AB 10 – 40  7.12 (4.93 – 9.47) 10.26 (9.10 – 11.70) < 10 10 

 
CuCl2 PLHC - 1 24 h NR 10 – 100  41.82 (33.54 – 57.36) 56.28 (51.97 -62.23) 20 40 
 PLHC - 1 96 h NR 10 – 100 50.25 (44.04 – 54.48) 65.43 (62.30 – 68.24) 40 60 
 PLHC – 1 24 h AB 10 – 100 69.10 (63.70 – 78.86) --- 60 80 
 PLHC – 1 96 h AB 10 – 100 41.82 (34.59 – 57.19) 56.28 (51.82 – 62.38) 40 60 
 RTG – 2  24 h NR 10 – 100  98.90 (93.50 – 130.78) --- > 100 > 100 
 RTG – 2  96 h NR 10 – 100 67.17 (56.98 – 88.93) --- 80 100 
 RTG – 2  24 h AB 10 – 100 74.85 (69.57 – 86.58) --- 80 100 
 RTG – 2  96 h AB 10 – 100 46.74 (38.58 – 54.83) 92.04 (86.98 – 100.47) 60 80 
         
aEC50 values and corresponding 95 % confidence intervals in parentheses 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant effect (p ≤ 0.05) was detected 
cLOEC, lowest observed effect concentration, the lowest concentration of the tested concentration at which a significant (p ≤ 0.05) effect was detected.  
NR = Neutral Red,  
AB = Alamar Blue 
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Figure 1  Light attenuation of Vibrio fischeri following exposure to (a) various copper 
chloride concentrations, and (b) various cadmium chloride concentrations.  
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Figure 2  Percentage growth inhibition of T. suecica after 72 h exposure to CuCl2.  Data 
are expressed as a percentage of unexposed controls ± SEM of three independent 
experiments.  * denotes significance from the control (p ≤ 0.05).  C.V. for the controls 
ranged from 1.18 – 8.89 %. 
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Figure 3.  Effects of CuCl2 (a), and CdCl2 (b) on T. battagliai after 24 h (□) and 48 h 
( ) exposure.  Data is expressed as a percentage of unexposed controls ± SEM of three 
replicates for each exposure concentration. * denoted significant difference from the 
control (p ≤ 0.05).  
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Figure 4  DNA integrity, evaluated as electrophoretic DNA migration (% Tail DNA), in 
Tetraselmis suecica exposed to concentrations of CdCl2. 
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