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they are killed by proapoptotic cytokines upon death receptor activation. Importantly, our data 

indicate that circulating levels of HMGB1 could have potential application as biomarker of 

therapeutic efficacy in vivo. The fact that human GBM cells also responded to the cell-killing effect of 

Ad-TK+GCV by releasing HMGB1 supports the notion that this molecule could be used as a 

pharmacodynamic predictor of tumor regression in GBM patients. 

We previously showed in a mouse GBM model that HMGB1 released from dying tumor cells 

activates TLR2 signaling in bone marrow–derived dendritic cells that infiltrate the tumor in response 

to the immunotherapy with Ad-TK+GCV+Ad-Flt3L (7). In this article, we show that circulating levels 

of HMGB1 increase in parallel with the efficacy of the treatment in the rat GBM model. We found 

that of all the treatments tested, the highest circulating levels of HMGB1 are reached when tumor-

bearing rats are treated with Ad-TK+GCV+Ad-Flt3L. These levels were indeed higher than those 

observed in the rats treated with Ad-TK+GCV alone. This could be due to the release of HMGB1 by 

immune cells (28) recruited by Ad-Flt3L (6, 7, 10) or by the induction of additional tumor cell death 

by cytotoxic T cells, macrophages, or NK cells, which infiltrate the tumor and we have shown to be 

crucial for the therapeutic efficacy of this immunotherapy (5, 7). Release of HMGB1 from dying 

tumor cells has been postulated to direct the immunologic response to dying cells, which determines 

the clinical outcome of anticancer therapies (7, 57, 58). In fact, we show here that HMGB1 release 

from dying tumor cells is crucial for the efficacy of Ad-TK+GCV+Ad-Flt3L in GBM-bearing rats and its 

blockade completely abolishes the efficacy of the therapy. These results are in accordance with 

those obtained in the mouse GBM model (7). The data reported strongly support the use of 

cytotoxic therapies to enhance the efficacy of immunotherapeutic approaches in GBM patients (59). 

Considering that the majority of GBM patients succumb due to recurrence of tumors that have 

become completely resistant to any form of chemotherapy and radiation therapy (36), it is crucial to 

develop immunotherapeutic approaches that induce immunologic memory against the tumor. 

Tallying with our previous results (7, 8), ∼50% of Ad-TK+GCV+Ad-Flt3L–treated long-term survivors 

survived the rechallenge without further treatment. HMGB1 did not seem to play a critical role in 

the induction of anti-GBM immunologic memory induced by the combined therapy. 

Translation of a novel therapeutic approach into clinical trial requires assessing therapeutic efficacy 

in other tumor models. We recently showed that this approach is also effective in eradicating B16-

F10 melanomas implanted in the brain of syngeneic mice (7). These results are very encouraging 

because metastatic brain tumors are very frequent and its incidence is predicted to increase with the 

increasing survival of patients with extracranial cancers that metastasize to the central nervous 

system (60). 

In summary, our study provides the first systematic, comparative assessment of the neurotoxicity 

and efficacy of several proapoptotic molecules, some of which have already progressed to phase I 

clinical trials for GBM. Further, we show that HSV1-TK in combination with GCV exerted the most 

potent antitumor activity and also displayed the most satisfactory safety profile when used as single 

therapy. Our data also show that the combination of Ad-TK+GCV and Ad-Flt3L exerts a strong 

antitumoral effect in several intracranial rodent models of GBM and has the safest neurotoxic profile 

of all the approaches tested. Thus, Ad-TK+GCV+Ad-Flt3L displays the highest therapeutic efficacy of 

all the therapies tested thus far in preclinical experimental GBM models. Further, the efficacy of the 

combined treatment is mediated by the release of the endogenous ligand HMGB1, which we have 
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previously shown signals via TLR2 receptors on tumor-infiltrating dendritic cells (7). These results 

strongly support the translation of this immunotherapy in a phase I clinical trial for GBM. 
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FIGURE LEGENDS 

Fig. 1. Efficacy of adenoviral vectors expressing proapoptotic transgenes in vitro and in vivo. A, CNS-1 

cells were infected with Ads expressing proapoptotic transgenes; that is, HSV1-thymidine kinase (Ad-

TK), TNF-α (Ad-TNF-α), FasL (Ad-FasL), or TRAIL (Ad-TRAIL). Twenty-four hours after infection, cells 

infected with Ad-TK were incubated with GCV. Untreated cells and cells infected with an Ad 

containing no transgene (Ad0) were used as controls. Cell death was determined 72 h after infection 

or addition of GCV by flow cytometric analysis of Annexin V-PI–stained cells. B, release of HMGB1 

was assessed in the cell culture supernatant by ELISA. *, P < 0.05 versus mock (one-way ANOVA 

followed by Tukey's test). Inset, Pearson correlation analysis was used to determine the correlation 

coefficient (R2) between the concentration of HMGB1 in the cell supernatant and the percentage of 

cell death in vitro in CNS-1 cells infected with the proapoptotic Ads. *, P < 0.05. C, Kaplan Meier 

survival curves of rats implanted with CNS-1 cells in the brain and treated 4 d later with intratumoral 

injection of saline (n = 9), Ad-TK (n = 7), Ad-TNF-α (n = 5), Ad-FasL (n = 9), or Ad-TRAIL (n = 8). Ad-TK–

treated rats received GCV. *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-FasL (Mantel log-rank test). 

Representative microphotographs show the appearance of the tumor at the time of treatment (day 

4), as assessed by vimentin staining. Tumor volume is indicated; scale bar, 1 mm. D, serum levels of 

HMGB1 were determined by ELISA 5 d after the treatment. *, P < 0.05 versus saline (one-way 

ANOVA followed by Tukey's test). 

Fig. 2. Distribution of therapeutic targets of proapoptotic molecules within intracranial CNS-1 tumors 

and peritumoral brain tissue. Rats were implanted in the striatum with CNS-1 tumors and 9 d later 

brains were processed for immunocytochemistry. Confocal microphotographs show detection of 

therapeutic targets (green) using specific antibodies against the death receptors TNFR1, TRAILR2, 

and Fas, whereas proliferating cells, the target for TK+GCV, were stained with an anti-Ki67 antibody. 

Tumor cells were labeled with anti-vimentin antibodies (red); neurons were stained with anti-NeuN 

(red); and astrocytes were labeled with anti-GFAP antibodies (red). Nuclei were stained with 4′,6-

diamidino-2-phenylindole (blue). T, tumor area; N, necrotic patch. Arrows, cells expressing the 

therapeutic target indicated. Dashed line, tumor border. Scale bars, 10 μm. 

Fig. 3. Acute toxicity of proapoptotic Ads after injection into normal brain. Lewis rats (n = 

4/treatment) were injected in the striatum with saline, Ad-TNF-α, Ad-TRAIL, Ad-FasL, or Ad-TK. Rats 

treated with Ad-TK received GCV. After 7 d (A) post vector delivery, neuropathologic analysis of the 

brain was assessed by Nissl staining and immunocytochemistry using antibodies against TH, MBP, 

MHCII, CD68 (macrophages), and CD8 (cytotoxic T cells). Scale bar, 2 mm. B, the body weight of the 

rats was assessed daily. *, P < 0.05 versus saline (randomization test). 

Fig. 4. Role of HMGB1 in mediating the efficacy of immunotherapy using proapoptotic Ads combined 

with Ad-Flt3L. A, Kaplan-Meier survival curve of Lewis rats that were implanted in the brain with 

CNS-1 tumors and treated 9 d later with an intratumoral injection of saline (n = 9), Ad-TK (n = 11), or 

Ad-FasL (n = 8) alone or in combination with Ad-Flt3L (n = 10/group). Rats treated with Ad-TK 

received GCV. *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-TK; o, P < 0.05 versus Ad-FasL+Ad-Flt3L 

(Mantel log-rank test). Representative microphotographs show the appearance of the tumor at the 

time of treatment, as assessed by vimentin staining. Tumor volume is indicated. Scale bar, 1 mm. B, 

serum levels of HMGB1 were determined by ELISA 5 d after the treatment. *, P < 0.05 versus saline 

(one-way ANOVA followed by Tukey's test). C, tumor-bearing rats received intratumoral injection of 
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saline (n = 10) or Ad-TK+Ad-Flt3L (n = 12), followed by GCV and glycyrrhizin (Gly), an antagonist of 

HMGB1 (n = 5-6/group). *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-TK+Ad-Flt3L+Gly (Mantel log-

rank test). D, Ad-TK+GCV+Ad-Flt3L–treated rats that survived over 90 d after primary tumor 

implantation were rechallenged in the contralateral striatum (left) with a second CNS-1 implant. 

Rechallenged long-term survivors received glycyrrhizin (SURVIVOR+GLY, n = 6) or vehicle (SURVIVOR, 

n = 6) for 15 d. Naïve rats were implanted with CNS-1 tumor as controls for tumor growth (NAÏVE, n 

= 6). *, P < 0.05 versus naïve (Mantel log-rank test). 

Fig. 5. Acute neurotoxicity of combined proapoptotic/immune-stimulatory gene therapy after 

injection into normal brain tissue. Lewis rats were injected in the striatum with saline, Ad-FasL+Ad-

Flt3L, Ad-TK+Ad-Flt3L, or an Ad without transgene (Ad0). Rats treated with Ad-TK+Ad-Flt3L received 

GCV. Seven days post vector delivery, neuropathologic analysis of the brain was assessed by Nissl 

staining and immunocytochemistry using antibodies against TH, MBP, MHCII, CD68 (macrophages), 

and CD8 (cytotoxic T cells). Scale bar, 2 mm. 

Fig. 6. Induction of cell death and release of HMGB1 from human GBM cells in vitro. A, human GBM 

cell lines (U251 and U87) and primary GBM cell cultures (IN2045 and IN859) were infected with Ad-

TK. Untreated cells and cells infected with an Ad containing no transgene (Ad0) were used as 

controls. Twenty-four hours after infection, cells infected with Ad-TK were incubated with 25 μmol/L 

GCV. Cell death was determined 72 h after addition of GCV by flow cytometric analysis of Annexin V-

PI–stained cells. *, P < 0.05 versus mock (one-way ANOVA followed by Tukey's test). B, release of 

HMB1 was assessed in the cell culture supernatant by ELISA. *, P < 0.05 versus mock (one-way 

ANOVA followed by Tukey's test). 
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FIGURE 6 

 

 


