














[" € U and so every neighbourhood of z meets A which implies that @ € A

C
We can now prove:

Proposition 1.3. Let G be a topological group in a linear topology and H a
subgroup of G. Then H, the closure of H in G is a subgroup of Ci.

Proof: We have to show that if v.y € I then v —y € H.

Suppose that [ is a neighbourhood of 0 in (7. Then there exists a neighbour-
hood ¥ of 0, such that W —W" C {". Then v+ and y+ W have non-empty
intersections with H since z.y € H. We can write v +u =a. y+uv =0
where u.v € W and a,b € H.

Thene —y=a—-bt+tv—u€a—-b+W-WCa—-b4+1CH+L, sincel
was chosen as an arbitrary neighbourhood of 0 we have that @ —y € H by

Lemma 1.2. d
The next Lemma characterises Hausdorfl topologies.

Lemma 1.4. Let G be a topological group and U be any linear base of ncigh-

bourhoods of 0 in G. Then the following are equivalent:
(1) G is a Hausdorff space.

(i1) {0} is a closed subspace of G.

(i) (U : U eU} = {0}

Proof: See [9, II 2.4 Theorem 1]. O

For a subgroup H of a topological group & we can define an induced topology

on the quotient group G/H as follows:
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Let U be a base of neighbourhoods of 0 in G and let # : G — G/H be
the canonical projection. (¢/H can be endowed with a group topology with
a base of neighbourhoods of 0 in G/H being Uw for all clements {7 of If:
[m={u+H:u¢€ ('}, From its definition 7 is a continuous function since
the preimage of any neighbourhood a7 + U'w of ax is a neighbourhood of a
in . The topology thus defined on G/ H is called the quotient topology on
G/H.

Proposition 1.5. Let & be a group. H a subgroup of G and G/ H be en-

dowed with the quotient topology. Then
(i) ('/H is Hausdorff if and only if H is closed in (7,

(i1) G/H is discrete if and only if H is open in (7.

Proof: We denote the image of H under the canonical projection

7 G — G/H by 0, the identity element in G/ H. If H is closed in G then
({07}), is closed in G/H by the continuity of 7. Hence by Lemma 1.4, G/ H
is Hausdorff.

Conversely, if G/H is Hausdorff then, by Lemma 1.4, {0} is closed in GG/ H
so H is closed in G.

If {0} is open in a topological group then {0} € U where U is a base of
neighbourhoods of 0. Now for any element a in the group a + [ is open in
the group topology where U € U. So {a} is open in the group topology for
all @ in the group. Hence the topological group is discrete.

Now, if H is open in G then {0} is open in G/H. So G//H is discrete.
Conversely, if G/H is discrete then {0} is open in G//H and since  is

1

continuous then H = 07! is open in G. O
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Note that the discrete topology may be defined for any group by naming the

zero element of the group as an open set.

Next we define the product topology. Let A, (¢ € J) be a family of groups
each equipped with some topology 5. Let G = [] A be the direct product
of these groups and m; be the tth coordinate proeje(—,{ction. 7m0 G — Ay The
product topologyon (7 is defined such that a subbase of neighbourhoods of zero
is the set of all ;7 '(; where [} is an element in the base of neighbourhoods
of 4, and ¢ € J. Note that this definition of the product topology makes the
projections continuous.

Remark 1.6. Consider the group GG = H A, where A; (1 € w) is a family
of groups each endowed with the disc-rez‘,elet;pology.

Letting U, = {x € Gt x(m) =0 for all m < n}. Then {Uy :n € wj isa
base of neighbourhoods of zero in the product topology on G. Since the Uy

are subgroups of G, the product topology is a linear topology. a

Let (¢ be a topological group and let a family of subgroups U={l;:1€l}.
be a base of neighbourhoods of 0 in G, where [ 1s a directed set.

Bv a netin G we mean a set {gi}ier of elements g; € G, indexed by [.

A net {gi}ier is said to converge to the limit g € G if for every ¢ € [
gr —g € U forall & > 1.

By a Cauchy net we mean a net {g:}ics which has the property that, for

every | € I, g — gi € Ui whenever k>

Definition 1.7. A topological group G is complete in a given topology if it
is Hausdorff and if all Cauchy nets in G converge in G.
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The following propositions concerning complete groups are well known and

the proofs can be found in [3] and [9].

Proposition 1.8. (a) A closed subgroup H of a complete topological group
G is complete.
(b) A complete topological subgroup H of a Hausdorff topological group i is

closed in (4.

Proof: See [9, 11,3.1, Theorem 1 ]. O

Proposition 1.9. Let {G, i € I} be a family of topological groups. [ G,
e/
is complete in the product topology if and only if cach i is complete.

Proof: See [9, I1,3.1 Theorem 2]. G

Proposition 1.10. Let the group G be endowed with a group topology which
is also Hausdorff and complete. A subgroup of G is closed if and only if it is

complete in the induced topology.

Proof: See [3, Proposition 13.1]. O

Proposition 1.11. If B is a closed subgroup of a complete group A which
has a countable base of neighbourhoods of zero, then the quotient group A/ B

is complete in the induced topology.

Proof: See [3, Proposition 13.2 ]. O

Next we consider the completion G of a given Hausdorff topological group.
There are different ways to define the completion. One possibility 1s to

take all Cauchy sequences identifying sequences whose difference form a null
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sequence; another is via inverse limits. (For details of the first and the

equivalence of both see [3. §13].)

Assume that A4; (¢ € [) is a system of groups indexed by the directed set
[. and for each pair ¢,7 € [ with ¢ < j there is a given homomorphism

1

7rf: A; — A, such that 7! is the identity map of A;. for each i € . and for

all 1 < j <k in I, we have ﬁf”rk = 7t

J v

{

Then the system A = {A, (i € [} : 7'} is called an inverse system.

The inverse limit of this inverse system A* = m[ A; is defined to consist

of all vectors y = (....a;....) in the direct product A = J] A, for which
=¥

a;m) = a; whenever ¢ < J.

Now let ¢ be a group endowed with a Hausdorff linear topology given by
a family of subgroups (G)ie; where [ is a directed set so that &; C (& for
1< 7.

For each i < j, let ! : G/G; — GG, be the canonical projection.

Then {G/G:(i € 1) : L,oj} clearly forms an inverse system and its inverse

t

limit A = !i_rBIG/G,- consists of all vectors y = (....y + G,,...) € lg[ G /G,
such that, for (+ < 7), y; is congruent to y; modulo G;.

Consider the product topology on [ G/G; with respect to the discrete topo-
logieson G/ (1 € I). The discretzeeéopology is always complete and it is well

known that the product topology of complete topologies is complete. There-

fore J] G/G; is complete in the product topology. Then A = }E[ G /G,
icl
as a closed subgroup in [[ G/G; (see [3, §12]) is complete in the induced
el
topology by Proposition 1.8.

This leads to the following definition:
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Definition 1.12. Let G be a group endowed with a linear Hausdorff topology
defined by a family of subgroups (Gi)icr. Then the inverse limit }EIG'/G:»
is defined to be the Hausdorfl completion G of G.

Remark 1.13. If G is a Hausdorff topological group then G may be iden-
tified as a dense topological subgroup of its (unique up to an isomorphism)

Hausdor[f completion G. (See [3. Theorem 13.6 ].) O

We want to finish this section by considering linear Hausdor{l topologies on Z
and their completions. For example the p-adic integers J, are the completion
of the integers Z in the p-adic topology and the Z-adic completion of Z can
be given by [] /.
3

However, in other topologies, the completion Z of Z may contain no copy of
the p-adic integers J,.

In fact, following Mader [8] we can characterise 7, with respect to all possible

linear topologies. First we need

Proposition 1.14. Let A be a topological group with U a linear basts of
neighbourhoods of zero such that AU is a direct sum of finitely many primary
groups for each U € U. Moreover let U, /U be the direct complement of the
p-primary component of A/U and let U, = {L|L" € U}.

Then A = H;X” where AP denotes the completion of A with respect to the
P
topology given by U,. Furthermore, each A? is a p-adic module.

Proof: For U € U let ¢p: A/U — [[ A/U, be given by
P

(a+ U)p=(a+Up)y.
Now, ¢ is obviously well defined since U C U, for all p. By the definition of

the U/, we have that (), U,/U = 0 and hence N, U =U.le olsinjective,
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Also A/U, is isomorphic to the p-primary component of A/’

ie. A/U =[] A/, which is finite. Therefore o is also surjective and thus
@ 1s an isomgrphism. [t is well known that products commute with inverse
limits so Jim 1;[ AU, = I;[ im AT,

In this case we obtain an isomorphism between A= ML'EZ{ A/U and

11 imc’gu AU, =11 A7 by mapping (v + [)rey to ((ar + Up)veu)per-
.Apxlso. A/, s a p—g;‘)oup and hence a p-adic module.

Therefore A” is a p-adic module. O

Now we are ready to describe the various completions of Z.

Corollary 1.15. Let T be a linear non-trivial topology on Z and

let = {nZ | i € w} be a basis of neighbourhoods of zero for T.

Moreover let e(p) = sup{k : p*|n; for some i <w} where p € P.

Then 7, = 11 ip, where 7P = J, fore(p) = w and VAR Z]pt 7 (with the

P
discrete topology) for e(p) # w.

Proof: By Proposition 1.14 it remains to show that the 7” s are of the
required form. 7P = @iEwZ/(niZ)p = ﬁgieﬂ Z)(p“Z) where p*|n;. k;
maximal. (Z/nZ = @ Z/p*Z where p*|n, k maximal.)

P
If e(p) = w (sup{k;} = w), then Z? = @k&} Z](p*Z) = J,
If e(p) = k < w (sup{k;} = k), then Z? = Z/(p*Z). O

Remark 1.16. ]fi is torsion-free then, for any prime p, e(p) is either «

or 0 and hence Z = [[ J, where Il = {p: p|n; for some i}. O
pell



§2  The Characterisation

From the definition of slenderness it is clear that a reduced torsion-free group
is not slender if it contains a copy of the p-adic integers ./, for some prime p
or a copy of the Specker group P.

An approach to a topological characterisation of slender groups is to examine
the possible topologies on P and J, and deduce the nature of the topology
which a slender group may not have.

Towards this end we follow the arguments presented by De Marco and Orsattl

[10).

We shall show that a reduced torsion-free group G is slender if and only if
(¢ does not admit a metrisable, linear. complete and non-discrete Hausdorfl
topology.

Recall that a topology T is said to be metrisable if there exists a metric such
that the topology induced by this metric coincides with T. If a topology has
a countable basis then it is metrisable provided it is regular (or 73) in the
usual topological sense that points and closed sets may be separated (see
Urysohn metrisation theorem). It is well known that a Hausdorfl topological
group is regular and so a Hausdorfl topological group with a countable basis
is metrisable.

Some simplification in the approach used in [10] is possible using a result by
A. Mader [8]. (see Proposition 1.14 and Corollary 1.15) First we define the
class L§);.

Definition 2.1. A group G belongs to the class LQy if it admils a metrisable

linear complete and non-discrete Hausdorff topology.
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Remark 2.2. Let G be a torsion-free group and let H be a subgroup of .
Then if H € LQy. then G € L also, since given a metrisable linear com-
plete and non-discrete Hausdorff topology on H by subgroups H.(1 € w). we
can take H;(1 € w) as a base of neighbourhoods in GG to obtain a metrisable

lincar complete and non-discrete Hausdorff topology on .

Proposition 2.3. The Specker group P is an element of L.

Proof: Let P = [] Ze, be endowed with the product topology T of the
discrete topologies ’éEI?Z. By Remark 1.6 a base of neighbourhoods of zero
can be given by U, = {(gi + Z)ic. € P o = 0for i <n} = [[ Ze; (1 € w).
Clearly T is linear. Also T is Hausdorff since (1} {7, = {0}. 2?Iloreover T is
non-discrete since {0} is not among the open SZ}%Q By Proposition 1.9, T is
complete since Z is complete in its discrete topology. T is then metrisable

since it has a countable base of neighbourhoods of zero. O

Proposition 2.4. The group of p-adic integers J, is an element of L{);.

Proof: The p-adic topology on J, is Hausdorfl and complete. Also the
topology is linear since each p*J, (n = 0,1.2....) in the basic system of
neighbourhoods of zero is a subgroup. It is also non-discrete since {0} is not
an open set in this topology. The topology is then metrisable since the base

of neighbourhoods of zero is countable. O

The key for the characterisation theorem is the following:

Theorem 2.5. A torsion-free group G admits a metrisable. linear, complete,

and non-discrete topology T if and only if G contains as a subgroup a copy
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of the p-adic integers. for some prime p. or else a copy of the Specker group

P.

Proof: Assume (G contains as a subgroup a copy of the p-adic integers. for
some prime p, or else the Specker group P. By Propositions 2.3 and 2.4, we
have P € L, and J, € LQ;. Thus in either case this implies (- € L§2; by
Remark 2.2.

Conversely. assume (& admits a metrisable. linear. complete. non-discrete
topologv 7. The fact that 7 is a metrisable topology implies that it possesses
a countable basis of neighbourhoods of zero. Let V5 D 1y D V3 D.... bea
base of neighbourhoods at 0 consisting of subgroups.

Further assume that (& contains no copy of the p-adic integers. Then. by
Corollary 1.15 and Remark 1.16, the induced topology on (g) = Z. given by
{{g) NV | i € w}, is discrete for any 0 # g € G since (i is torsion-free and T

is complete.

We show that in this case (G contains P.

Now let go be a non-zero element of G

Since the induced topology on (go) is discrete. {0} is open in this topology.
i.e. there exists n; € w such that (go) N Vi, = {0}.

Take g, € V,, where g, # 0 ; again the induced topology on (g1) is discrete,
hence there exists ny > n; such that (g;) NV}, = {0}.

Then (go,g1) = {g0) D (g1), since (go) N {g1) = (go) N V2, = {0}.

Also, ({go) @ (g1)) N Vi, = {g1), since V,, DV, and (g1) N Vo, = {0}.

By induction we construct a sequence go, gi.... of non-zero elements of &
and a strictly increasing sequence of positive integers ny.ng,... such that

g €V, (0<i<w)and ({(go) ... D (o)) N Vayy, = {0}.

NS
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Thus the subgroup S of G generated by the ¢; (i € &) is a direct sum:

S = (g)
tEw
Now the topology on 5 induced from the topology {},, | n € «} on G is the

same as the topology on S induced by the product topology on P given by

Co = 11 (g0)-

1>n
since S ﬁ[o—{LZ( iiew €5 |2 € (g) and g =0} = 5N Ty,
In general S = {x tilie. € S lwi € (g and vy =0y ==y =
0} =5nN \«”’n}“.

Note that {V},, | ¢ € w} also forms a base of neighbourhoods of zero for 7.

(i contains the closure S of S in this topology. but by Lemma 1.2

S=n{S+V,i€w}={S+0:]|i€w}=P Sod contains P. O

Theorem 2.6. Let (¢ be a reduced torsion-free group.
Then G is slender if and only if G € L§,.

Proof: If G € LQ,, then G contains P or else a copy of J, for some prime
p by Theorem 2.5. Hence (7 is not slender.

Assume (7 is not slender and let 7 be a homomorphism of P into G such
that n(e;) # 0 for all 1 € w. Let A be the kernel of n and consider on P the
product topology of the discrete topologies on Z. A cannot be open since
every open subgroup of P contains almost all ¢;’s.

Suppose A is closed in the product topology on P. Recall that by Propos-
ition 1.9, the product topology on P is complete since Z is complete in its
discrete topology. Consider P/A" endowed with the quotient topology Tq. T4
is Hausdorff by Proposition 1.5. Now since the product topology on P has
a countable base of neighbourhoods of zero, then by Proposition 1.11 74 is

complete.
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Since A" is not open in G then 7q is not discrete by Proposition 1.5,

Now by Theorem 2.5. P admits a linear metrisable topologyv and so the
quotient topology on P/L" inherits linearity and metrisability. This is so
since the subgroups (H,);cv in the countable base of neighbourhoods of zero
in the linear metrisable topology on P may be used to define a countable base
of neighbourhoods of zero H; + A" for P/K" and so endow the quotient with
a linear metrisable topology. Hence P/A € LQ;. Now P/A is topologically
isomorphic to the image P in (. Now defining the basis of neighbourhoods
of zero in (G as the images of the subgroups in the basis of neighbourhoods

of P/K under n, yields G € L.

Finally consider the case where A" is not closed in the product topology on
P then K < P. Hence (h/L) < (P/L). Now L'/I is a cotorsion group
bv I, Theorem 2.8 and since it is a reduced torsion-free non-zero cotorsion
group it contains a copy of the p-adic integers J, for some prime p

by I, Proposition 1.23. Hence, by Theorem 2.5, P/K € LQ,

and as above we can conclude that G € LQ,. O



IV  Los-Eda Characterisation

§1 Preliminaries

The Los-Eda Theorem characterises slender groups via ultrafilters. Hence in
this section we recall all necessary definitions and results concerning filters
and ultrafilters. Since the author was unfamiliar with this topic we include
all the proofs which can also be found in [2].

A (proper) filter on an infinite set / 1s a subset D of the power set P([) of [
such that 1) @ & D, i) if X.Y € D then X NY € D and

i)if X € Dand X CY C [ then Y € D.

For a non-empty set ¥ C [ define Dy by Dy ={N C/[: Y C X}

Dy is called the principal filter on T generated by Y.

A filter D on [, not generated by any subset Y of [, issaid to be non-principal.

le. D # Dy forall ¥ C [

Remark 1.1. If any filter D contains a singleton {i} where i € I then the

singleton must generate the filter, i.e. D = Dy;. a

Lemma 1.2. Gliven a filter D on a set I and any two elements X and Y in
D then X\ Y ¢ D.

Proof: Let D be a filter on [ and X,¥ € D. Then I\ (¥ \Y) =
(XNY)U(I\X) € Dsince (XNY) e Dand (XNY)C(XAY)U(I\X)
Now if X\ Y € D also then (/\ (X \Y))N(X\Y)=0¢€ D which cannot
be since D is a filter. Hence (X \Y) ¢ D. a

A filter is said to be free if it contains the cofinite filter, where the cofinite

filter on T 'is defined by ¢, = {X C [: I\ X is finite }.
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More generally if x is any infinite cardinal then the co-x filter on Iis given

by Co={X CI:|I\X

< K}

Definition 1.3. 4 filter D is k-complete if the intersection of any family of

less than w elements of D is again an element of D.

Note that for x = Ny = w; we also call D countably complete or o-complete.

that is if it is closed under countable intersections.
Lemma 1.4. A principal filter is k-complete for every s,

Proof: Let Dy be a principal filter and consider ¥, € Dy (a < A. A € Ord)
then, by definition. X C Y, for all a. Therefore X C () ¥, and thus
a<\

() Y. € Dy, ie. principal filters are x-complete. O
a<\

Lemma 1.5. Let D be a filter on a countable set [ such that C', C D.

Then () X =10.
XeD

Proof: Without loss of generality we may consider [ = w. We can define
elements of the cofinite filter by Xo = w \ {0}. X; =« \ {0, 1},

X, =w\{0,1,...,n},... (n €w).

Then () Xp)=0and thus@ = ( [} X)C (] X, O

negw XeD nEw
Lemma 1.6. Suppose D is a filter on an infinite set [ containing the cofinite

filter C,. Then the cardinality of all members of D is infinite.

Proof: Suppose there exists X € D and X is finite. Then (/\X) e C, € D
and hence X N (I'\ X) = @ € D contradicting the definition of a filter.

Therefore all elements of D are infinite. a

The converse, that if all elements of a filter D are infinite then C',, C D, holds

if D is an ultrafilter as will be shown in Lemma 1.12.

[
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Definition 1.7. A filter D on [ is an ultrafilter if D is a maximal filter on
[ode if DCF and F is a filter then D = F.

Proposition 1.8. Every filter is included in an ultrafilter.

Proof: Let /£ be a proper filter on a set x. We show that there exists an

ultrafilter G on & such that G > F using Zorn's Lemma.

Let ¥ = {(: Gisafilter on x. I' C G}. F is non empty since F & F.
Partially order F' by set inclusion.

Now consider an ascending chain G; (i € I) of elements of F. Then (7 — UG,
is an upper bound of this chain with ' C (/. Also (7 is a filter since § ¢ G
for X\ Y € G there is i € [ such that X, ¥ € G; and hence Y N Y e G, CG.
and if X € G, X CY C & then XY € G, C G for some i € [.

Therefore we may apply Zorn’s Lemma and conclude the existence of a max-

imal filter, hence ultrafilter, D € F containing the given filter F. G

A sufficient and necessary condition on a family A of subsets of a set [ to be
contained in a filter on [ is the finite intersection property: A has the finite
intersection property (FIP) if for any finite number of sets A4, € AL

the intersection A, N...N A, is non-empty.

Proposition 1.9. A family A of subsets of a set [ is included in q filter on
[ if and only if A has the finite intersection property.

Proof: Take elements 4;, ... 4, € A. Now if we assume that A is included
in a filter D then A;N...N 4, € Dandso 4,N...N An # 0 since @ g D.
Hence A has FIP.

Conversely, assume that A has FIP and let
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D = {X C [: there exists 4,....,. 1, € A such that 4, n...N 4, C X}

Then D is a filter containing the collection A. C

Using the above proposition we are now able to characterise ultrafilters.

Proposition 1.10. 4 filter D on [ is an ultrafilter if and only if
forany X € [, either X € D or [\ X € D.

Proof: Suppose D is an ultrafilter on [ and suppose X & D.

Let A =DU([\X).

The subsets in D possess the finite intersection property by Proposition 1.9.
Now suppose X; € D and X; N[\ X ={. This implies that X; C X which
in turn implies that X' € D contradicting our assumption that X ¢ D,

So A has the finite intersection property.

By Proposition 1.9 there exists a filter F such that D C A C F. But D is
an ultrafilter and so by maximality D = FFbut I\ X € Fso [\ X € D.

Conversely suppose that D is a filter and that either X € D or I\ X € D for
any X C I. By Proposition 1.8 there is an ultrafilter F containing the filter
D. Suppose F' # D, then thereis X € F\D. So X ¢ D implies I\ X € D by
assumption. But then § = (/\ X)N X € F' since the intersection of any two
elements of a filter is also in the filter. This is a contradiction since §) ¢ F.

Hence there is no X € F'\ D and thus D = F and D is an ultrafilter. a

In the next proposition we characterise ultrafilters which are x-complete for

some cardinal x.
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Proposition 1.11. Suppose D is an ultrafilter on an infinite set [ and let
rk be an infinite cardinal. Then the following are equivalent:

(1) D is k-complete.

(ii) f X € Dand X = |J X, (A < k). where the X, are pairwise disjoint.

a<
then there erists a unique o < X with X, € D.

(iii) If B is a family of subsets of [. where |B | < x and U B € D. then
DB £,

Proof: (i) = (ii):

Given X = (J Xo € D where X, are pairwise disjoint. Let ¥, = X \ Y
(a0 < A). Thg;'\ﬂ Yom= (NMX\N) =X\ U X, =X\ X =0

Since D is ﬁ—co?;f)\lete b;Z;Sleption, there zili\sts a < A such that Y, ¢ D:
otherwise [} Y, would need to be non-empty. Hence [\ Y, € D since D
Is an ultra(,]f;lter (Proposition 1.10). Now, by hypothesis, X € D and so
XN{I\Yy)=X\Y,=X,€D.

Obviously « is unique since X, N X3 = @ for any 3 # «.

(i) = (iii):

Let B be a family of less than x subsets of I such that | JB € D: say B
= {B. | a < A} for some A < k. We define a collection of pairwise disjoint

sets in the following manner: Xo = By and X, = B,\(|J X3) for 0 < a < .

B<a
Now apply (i) to X = |J X, =) B € D.
a<
Thus there exists o < A such that X, € D' and hence B, € D since X, C B,
Therefore DNB  # 0.
(ii1) = (i):

Suppose X, € D, (o < A) for some A < x. We have to show that
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X= X,€D.

Deﬁnz%\f} =1\ X, (a < A). Clearly Y, ¢ D for all a. Hence |J Y, & D by
assumption (iil). e

Therefore I\ |J Yo = N (/\Y,)= () X, =X € D by Proposition 1.10.
Thus D is x-complete. < -

Lemma 1.12. Suppose D is an ultrafilter on an infinite set I. Then the
cofinite filter C', C D if and only if the cardinality of all members of D s
infinite.

Proof: Suppose that the cardinality of all members of D is infinite. Then.
forve [, {u} ¢ D. But D is an ultrafilter and so [\ {i{} € D for all i € [.
Hence ', C D.

Conversely let C, C D. Then, by Lemma 1.6, the cardinality of all members

of D is infinite. n|

Proposition 1.13. Suppose D is an ultrafilter on an infinite set I. Then
the following are equivalent:

(i) D is non-principal,

(ii) The cofinite filter, C,,, is contained in D,

(iii) D contains no singletons.

Proof: (i) = (ii): Suppose that C, is not contained in D. Then, by
Lemma 1.12, we may choose X € D such that X is finite.
Let B = {{i} :¢ € X}. So B is a finite collection with U B € D. Thus. by

Proposition 1.11 (i1), there exists one element {i} of the collection B which
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is in the ultrafilter D. So. using Remark 1.1. D = Dy, is a principal filter

generated by this element ..
(11) = (iii) follows directly from Lemma 1.12.

(i) = (1): Let ¥ € D and pick € Y. Then {i} ¢ D by assumption and
so [\ {i} € D. Hence Y\ {i{} =Y n(I\ {i}) € D. Therefore D can not be

generated by any subset ¥ of /. O

As an immediate consequence of the above proposition we have:

Corollary 1.14. A principal ultrafilter D on a set [ is generated by a singleton.

Another consequence from the above proposition is:
Corollary 1.15. There exists a non-principal ultrafilter.

Proof: The cofinite filter ', exists for any infinite set . Hence by Propos-
ition 1.8, there exists an ultrafilter D on [ which extends C,, 1.e. C, C D.

By Proposition 1.13 D) is non-principal. O

Proposition 1.16. Let s be an infinite cardinal and [ a set of cardinality

K, then a non-principal ultrafilter on I is never k™ -complete.

Proof: Let D be a non-principal ultrafilter on /. By Proposition 1.13.
{t}¢DsoI\{t}eDforalliel.

Now the collection A = {[\{i}: €[} CDand |[A]|=|I[|=xr<k™.
But (Y A = 0 and so D is not x*-complete. a

-1
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Lemma 1.17. A x-complete non-principal ultrafilter D contains no set of

size less than k.

Proof: Suppose X' € D.|X| = X < x and X = {&;]i < A}. Then. by
Proposition 1.11, I\ {x;} € D since D is a non-principal ultrafilter, and thus
V(I \ {x:i}) € D since D is s-complete and A < x. But this intersection is
lee(i\ual to I\ (U{x:}) = I\ X and so is an element of D which contradicts

i€
the assumption that X' € D and D is an ultrafilter. O

[n the remainder of this section we consider measurable cardinals.

Definition 1.18. Let [ be an infinite set. Then a measure on [ is a real
valued function o on P(I) such that

(1) n(0) =0 and u(I) =1, and

(ii) If X C Y then pu(X) < u(Y).

Note that p(.X), the measure of X, is nonnegative for every X C I.

Definition 1.19. Let I be an infinite set. Then a measure u on [ is
non-trivial if p({¢}) =0 forallie I.

Definition 1.20. We say that a measure u is finitely additive

(X UY) =p(X)+p(Y) whenever X NY = 0.

A measure p on an infinite set I is o-additive if, for any countable family

{X, :n € w} of pairwise disjoint elements of P(I),

(U X = u(Xa).

nEw new

s}
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Definition 1.21. Let [ be an infinite set. Then a measure ;1 on [ is

two-valued if u(X') s either 0 or 1 for all X C [.

Proposition 1.22. Suppose that p is a two-valued finitely additive measure
on P(I). Then D ={X C[:u(X) =1} is an ultrafilter on . Morcover
(a) D is non-principal if ;o 1s non-trivial. and

(b) D is og-complete if 1 is o-additive.

Proof: Let u, D be as above. Then clearly @ € D since u(@) = 0.
Consider X, Y € D. We have to show that X NY € D.

By definition u(X) = u(¥) = 1. Now suppose (X 1Y) = 0.

Then p(Y) = u(¥ \ X) = 1 and p(X) = (X \ ¥) = 1. since 4 is additive
and X = (X \ Y)U (X AY) and similarly ¥ = (¥ \ X)U (X QY.

Now (X \ ¥) and (¥ \ X) are disjoint sets and by the additivity of s,

WX UY) = u(X\ YUY\ X) = 2 which is impossible for a two-valued

measure. This implies that X NY € D,

Next suppose X CY C Jand X € D. Then I = p(X) < p(Y) € {0,1} and
hence (YY) =1, i.e. Y € D. Therefore D is a filter.

Now we show that D as defined above is an ultrafilter.

Consider Y such that p(Y) = 0 which implies that Y ¢ D.

Now [ = (I\Y)UY and so, since y is additive

L=p(D)=p(I\Y)+ u(Y)=pn(l\Y) which implies that (I \Y) € D.

Therefore D is an ultrafilter by Proposition 1.10.

(a) Let u be a non-trivial measure on /. i.e. p({i})=0foralli € [.
So, by definition, D does not contain any singletons and hence

by Proposition 1.13 D is non-principal.
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(b) Now let u be a o-additive measure on /. i.e. for any countable family
{X, :n € w} of pairwise disjoint elements of P(/)
we have p( | X,) = > u(Xa).

new new
Let X = |J X, € D where the X, are pairwise disjoint.
nEw

Then 1 = p(X) = > u(X,) and hence u(X,) = 1 for one particular : €
new

and p(X,) =0forall n € w\ {i}.
Therefore X; € D where 1 is unique and this implies that D is o-complete

(= Ni-complete) by Proposition 1.11. O

Proposition 1.23. Suppose D is an ultrafilter on a set [. 4 function up
can be defined from the power set of I into the reals by

pwp: P(I) — [0.1]

where

0, if X ¢&D;
pp(X) = ,
I, ifXeD.

Then pp is a 2 valued additive measure on P(I).

Proof: pup is obviously 2-valued. Also up(®) = 0 and up(l) =1 are true
since D is a filter.

Now consider X C Y. If X ¢ D then 0 = up(X) < pup(Y) is clearly true.
[f X € DthenY € D also and so up(X) = up(¥') = 1.

To show that up is additive, consider X.Y € P([) with X nY = 0.

If both X and Y are not elements of D then X UY ¢ D since
(I\NX)N(\Y))€eD. Soup(XUY)=pup(X)+ pp(Y)=0Iin this case.

The only other possibility is that one of X or Y is in D in which case
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X UY isalsoin D and thus up(X UY) = up(X) + pup(Y) = 1.

(1

Therefore the measure up is additive.

Proposition 1.24. Suppose D s an ultrafilter on [. Then:
(1) D is non-principal if and only if up is non trivial.
(i1) D is k-complete if and only if pup is k-additive,

Le if {N, © a <A} isa family of pairwise disjoint sets then

uD(U Xa) = Zu(f\’a)

a <\ a<\

Proof: (i) Suppose pup({i}) = 0 for each ¢ € [ then {i} & D for all ¢ and
thus, by Proposition 1.13. D is non-principal.
Suppose pup({i}) # 0 for somez € [. Then {i} € D and hence. by definition.

D is principal.

(11) Suppose D is k-complete and let X = [J Xy (A < k)€ D (A < k) bea
a<

union of pairwise disjoint sets.

By Proposition 1.11 (ii) there is a unique X3 € D and hence up(X3) = 1

and pp(Xs) =0 for all « # §. Therefore
1tp(X) = pp( U X)) = Z#D(Xa) =pup(X3) =L
a<\ o<\

Hence the measure pup is k-additive.

Conversely assume pp is k-additive and let X € D suchthat X = | X,
a<\
is a union of pairwise disjoint sets (A < ). Then

po(X)=1=>Y up(X,).
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Since pp is two-valued there exists a unique X3 with up(.\;) = I and so. by

Proposition 1.11, D is a x-complete ultrafilter. G

Definition 1.25. & is ¢ measurable cardinal if x is uncountable and there

is a k-complete non-principal ultrafilter on s (or on any set I of power x).

Definition 1.26. A cardinal & s w-measurable if there exists an o-complete

non-principal ultrafilter on r.

Note that an uncountable set [ is of measurable cardinality & if there exists a
r-complete non-principal ultrafilter on /. This is equivalent to the existence
of a non-trivial, n-additive two-valued measure on P([) by Proposition 1.24.
Moreover, if & is w-measurable, then & > Ny since countably complete ultra-
filters on Ng are always principal by Proposition 1.16. and if x is measurable

then it is clearly also w-measurable since w; < &.

Theorem 1.27. Suppose that there exists an w-measurable cardinal and let
K be the first one. Then:

(1) Every cardinal A > k is w-measurable.

(i) For every set I of cardinality x, every w-complete ultrafilter on I is

r-complete, i.e. Kk is measurable.

Proof: (i) For A > k we define a w;-complete non-principal ultrafilter £

on A. Let D be an wi-complete non-principal ultrafilter on x.

We define . C P(A) by Y € Eifand only if Y Nk € D (Y C )).

First we check that F is a filter.
Obviously @ ¢ E since 0 Nu =0¢ D.
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[fYi. Y2 € E then (Y1Nk) € Dand (Yonk) e D.

Hence Y1 NY¥; N~ € D and thus Y] NY, € £,

Nowlet Y1 C Y, CAand ¥ € E. Then YN~ € D and so YoM s € D since
YiINk CY,Nk Hence Y, € E and so D is a filter.

To show that £ is an ultrafilter consider S C A and suppose S € F.
Then SNk & D and thus &\ (SN &) = (k\ S) € D since D is an ultrafilter
on . Therefore (A\ S)Nx =+x\ S € D and this implies \SeFk.

l.e. £ is an ultrafilter.

[t remains to show that £ is o-complete.
Let Y, € E (n <w). Then Y, N« € D for all n < « and hence
A (Yans)=((Y)N& € Dsince D is o-complete.
%<hderefore N (}?;)we E,ie £ is an o-complete.

n<w

So all cardinals A > x are w-measurable, where & is the first w-measurable

cardinal.

Suppose, for contradiction, that (ii) does not hold and let D be an o-complete
ultrafilter on [ which is not x-complete, i.e. % is not measurable.

By Proposition 1.11 (ii) there is a family of pairwise disjoint subsets

{Xo 1 a < B}, (B < &) of I such that X, €D forall o <3

and X = (J X, € D.

We show Zﬁgt B is w-measurable to contradict the assumption that « is the

least w-measurable cardinal.

Define £ C P(8) by A € E if and only if (|J X,) € D, for any 4 C 3.
a€ A
First we check that £ is a filter.

0 ¢ E since (JX.)=0¢D.
9
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For 4, B € E we have (|J X,) € Dand (|J X.,)€ D and
o€ a€B
hence (|J Xa) N (U Xa) € D since D is a filter.
a€A a€B
But the X, are pairwise disjoint. Therefore the above intersection is equal

to |J X, which can only belong to D if AN B # 0. Hence (ANB) € E.
Now Lot A CBand A€ E ie [JX,€D Since J X, C | X we
have {J Xo € D and hence B e £ e e
Thus F is a filter.

To see that £ is an ultrafilter consider any S ¢ £. Then |J X, € D and

€S
hence I'\ (|J X,) € D. Therefore
€S
XUA(U X)) = U Xan I\ (U X)) = (U X\ (U Xa) € D.
a€S ad 3 aES aEN Q€S
Now, since the X, are disjoint, the latter expression is equal to U X..

a€EMNS
which is an element of D. Therefore A\ S € E and thus E is an ultrafilter,

To check that £ is o-complete. consider a countable family {4, : ne«}

of elements of IJ. Since A, € E then ( |J X,) € D, and hence
a€Ad,
(U X.) € D, since D is o-complete. Now, since the X, are pairwise
n<w a€An
disjoint, we have that the above intersection is equal to |} X,

ag n An
n<w

Hence () A4, € E and so E is o-complete.

n<w

[t remains to show that £ is non-principal.

Suppose, for contradiction, that £ is principal. Then, by Corollary 1.14. £
is generated by a singleton and this implies that a X, € D for some o < 3
contradicting the assumption that X, ¢ D for all o < 3.

Hence £ is non-principal.

Therefore a non-principal g-complete ultrafilter £ can be constructed for

64



3 < w showing that .7 is an w-measurable cardinal less than ~. This contra-
dicts the assumption that s is the least w-measurable cardinal.
Hence every o-complete ultrafilter on [ is x-complete.

So the least w-measurable cardinal £ must also be measurable. O

Definition 1.28. The cofinality of a limit ordinal X, denoted by cf(\). is the
smallest cardinal k such that X is the supremum of x smaller ordinals. The

cofinality of nonlimit ordinals s defined by cf(0) = 0 and cf(a™) = 1.
Definition 1.29. A cardinal & is said to be regular if k = cf(x).

Definition 1.30. A cardinal x is strongly inaccessible if 20 < « for all

A< K.

Theorem 1.31. A measurable cardinal & is regular and strongly inaccessible.

Proof: Let D be a k-complete non-principal ultrafilter on &.

First we show that « is regular. Let k = |J X, € D and |X,| < k. Then

a<cf(x)

Xo € D (a < cf(r)) by Lemma 1.17. But, by Proposition 1.11, one of the

Xy must be in D unless & = cf(x). Hence & is regular.

Now suppose for contradiction that x is not strongly inaccessible,

i.e. there is A < & such that & < 2*.

Let I be a set of functions f: A —» {0,1} such that |I] = &.

Let D be a x-complete non-principal ultrafilter over /. For each a < A let
X, be the one of the two disjoint sets {f € [ : f(a) =0}, {f € [: f(a) =1}
which is an element of D. This assignment can be made since

I={fel:fla)=0}U{f€eT: fla)=1}and D is an ultrafilter.
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Let z, = 0 or 1 accordingly.

Now the ultrafilter D is x-complete and A < x and hence X = N X, €D.

Now. if f € X. then f(a) = ¢, since f € X, and thus | X| = 1. "

But from the above X € D, a non-principal ultrafilter. so |.X| = & bv
Lemma 1.17. This gives a contradiction.

So we conclude that every measurable cardinal is strongly inaccessible. O

Corollary 1.32. If there is a least w-measurable cardinal x then there are

w-measurable cardinals which are not measurable.

Proof: Consider A = £%. Now &% > x and k¥ < 2%, By Theorem 1.27. x*
1s w-measurable. But, by Theorem 1.31. & is not measurable since it is not

strongly inaccessible. a

§2  The Characterisation

Recall first that from chapter I that if 4 is a slender group then for every
homomorphism ¢: [ Z, — A there is an m € w such that ¢ | I[ Z. = 0.
and also if ¢ [ S ZROEH(JS' = (P Ze,) then ¢ = 0 (I Proposition 371%7)71

We shall now show that chEZbove two assertions hold if w is replaced by a
larger cardinal x provided that s is not w-measurable. First we consider the

case of a measurable cardinal in the following lemma.
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Lemma 2.1. Let x be a measurable cardinal and A a slender group. Then

both of the following assertions are false:

(1) For every homomorphism v: [[ Zeo, —> A there is an 3 € s such that

aex
vl [[ Ze,=0.
a>d
(ii) If v: J] Zeo — A is a homomorphism and if v | @ Ze, = 0 then
aER aeEn
p=0)

Proof: Since x is measurable there exists a x-complete non-principal ul-
trafilter D on x. We define a mapping o: [[ Ze,, — 7Z as follows:
For an element « € [] Ze, let Y, (z) = {c;y<<hh cx(a) =n} (n€Z).
Then v = [J Yu(2) szfgere the ¥, (n € w) are pairwise disjoint.
aEw

Now n € D and hence, by Proposition 1.11 (ii) there exists a unique m € Z

such that Y,,(x) € D. This allows us to define ¢ by ro = m.

To sce that ¢ is a homomorphism let z,y € [] Ze, with 29 = m and
yé = n. Then Y,,(z) and Y, (y) are elements of Begence Yi(z)NY,(y) € D.
But ¥, (2)NY,(y) is clearly contained in Y5, 1, (¢ +y) and so Y, (2 +y) € D.
Since there is a unique k € Z with Yi(x +y) € D we conclude

(x4 y)b=m+n=16+ye

Thus ¢ i1s a homomorphism which is obviously non-zero. Note that the

existence of ¢ depends entirely on the measurability of x.

We show that ¢ contradicts both the above assertions.

(i) Thereisno 3 < & for which ¢ | [] Ze, = 0. To see thislet z € [] Ze, be
a>3 a>3

given by z(a) = 0 for o < fand z(a) =1 for a > 3. Then x = Yy(z)UY ().

But Y5(z) cannot be an element of D by Lemma 1.17 since [Yy(2)] = 3 < &
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and thus Y(z) € D.ie. zo = 1. But z can obviously be considered as an

element of [[ Ze, and thus ¢ [ [] Ze, # 0.

a>3 a>3
(11) For any a < & we have e,é = 0 since k = Yy(e,) U Yi(es) where
Yi(ea) = {a} and D contains no singletons by Proposition 1.13 (iii).

Therefore ¢ | @ Ze, = 0 and ¢ # 0. O

a<ln

By Theorem 1.27 and Corollary 1.32 the class of measurable cardinals is
properly contained in the class of w-measurable cardinals. Next we consider

the more general case - the w-measurable cardinals.

Lemma 2.2. Let 4 be a slender group and [ an infinite set. Moreover let

o [[Ze; — A be a homomorphism and let 5" = {Y C [ : o | [[Ze; # 0}.
le[ );'
Then, for any countable family of subsets {Y, :n € w} of S’

neither of the following can be true:
(1) The {Y, :n €w} are pairwise disjoint.

(1) Y. =0 where Y5 2Y, D...2¥, D....
new
Proof: In both cases we shall obtain elements a, € [[ Ze; (n € w) such
€Yy
that ¢, # 0 and with the property that, for all k € I, a,(k) = 0 for almost

all n. This allows us to define a homomorphism v: P — [] Ze; by
I

(r(n))new)y = (O r(n)an).

new

Then letting P = Ze' we have /v = a, (n € w) and hence the compos-
g 7 n I
new

ition yp: P — A satisfies e}, yp = a,p # 0 for all n € w contradicting the

slenderness of A.
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Now in case (i) we simply choose a, € [] Ze, such that (a,)g # 0 (n € ).
ie)/’rl
Since the Y, are pairwise disjoint and supp(a,) C Y, we have that the a,'s

chosen in this manner have the required properties.

In case (ii) we also choose a, € [] Ze, such that (a,)e # 0 (n € »). Then
1EYn
supp(an) C Y,. Now ()Y, = 0 where Y, D ¥, D ...
new
thus, for any & € Yo, there exists n € w such that k € ¥, \ Y,4;. Therefore

2 Y, D ... and

am(k) =0 for all m > n. Also a,(k) =0 for all n € w whenever k & Yy and

hence, also in this case. the a, (n € w) have the required properties. a
Now we are ready to prove:

Theorem 2.3 (Los-Eda). 4 group A is slender if and only if. for any in-

finite set I and every homomorphism o [[Ze; — A, there are finitely
el

many o-complete ultrafilters Dy. Dy, ... D, on I, such that ay = 0 for any

a € [[ Ze; with supp(a) & Dy, for all k < n.
el
Proof: First assume that for every homomorphism ¢: [] Ze; — A
el
(/ arbitrary infinite set) there exist finitely many o-complete ultrafilters
Dy, Dy, ... D, on I such that ap = 0 for any a € [] Ze; if supp(a) € Dy
iel
for all £ < n.

Consider a homomorphism ¢: P — A (P = [] Ze,).

Then by assumption, there exist o-complete Lrllletiaﬁlters Dy, Dy....D, on w
with the above property.

By Proposition 1.16 any o-complete (= X;-complete) ultrafilter on w must

be principal and hence, by Corollary 1.14, D, = D,,, for some m; € w and

for all £k <n.
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Now let m = max{m,,.... mn}. Then for r > m. supp(e,) = {r} € Dy for

all £ <n, and thus (¢,) = 0 for all r > m. Therefore A4 is slender.

Conversely assume that A is slender and consider a non-zero homomorphism

w: [1Ze; — A (I an infinite set). Let S"={Y C [: o[ ] Ze; # 0}
el ey
5" is clearly non-empty since [] Ze;p # 0 implies [ € S
el

Moreover we have, by Lemma 2.2, that any set of pairwise disjoint elements
in S is finite. (F)
Now let S be the subset of S’ consisting of all the elements Y € S’ such that.
for any B C Y, either o [ (][] Zei) #O0or o [ [[ Ze; # O

1€B 1€Y\B
S={YeS forall BCY either B€ S or ¥\ Bec s}
Suppose, for contradiction, that S is empty. Then for all ¥ € S’ there exists
B C Y such that both B € 5" and ¥\ B € 5. The same argument can
be repeated for B and Y \ B and so on. Hence we can inductively obtain
an infinite set of pairwise disjoint elements in S’ contradicting the above
established property (F) of S’ that any set of pairwise disjoint elements of
5" has to be finite. Therefore S is non-empty. Also since S C S’ any set of
pairwise disjoint elements in .S has to be finite.
Now let {Y1,Y3,...,Y,} be a maximal set of pairwise disjoint elements of .S.
We define sets Dy, C P(I) by
Dy={XCl:pl [] Ze#0}={XCI[:XNY,eS}k=1.....n.
We shall show thatz%\kﬁ?; an o-complete ultrafilter on I for each k.

First we show that Dy is a filter.

0 & Dy, since [] Ze; = 0.
€9
IfX€Drand X CY thenp [ [[ Ze #0 clearly implies

eX ﬂyk
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21 Il Ze #0andsoY € Dy.

i€y vy
Nowlet X.Y € Dg, e, XNYL. Y NY. € S’ Therefore. V(YO Y) = Y\ X
and Yy \ (Y NYy) =Yy \ Y are not elements of S’ since ¥, € S.
Thus o [ [ Zei=0.p[ I Ze =0 andso

(ieY\X) (1EYE\Y)

Pl [1 Ze; = 0.

(e(Y AN JU(YR\Y))
Hence (Y \ X)U (Y \Y) = (Vi \ (X NY) = (Vi\(XNYNY) €5 But
YpeSand (Y NY NYe) CYeoand so (NNY NYL) €5 by the definition
of S. Therefore X NY € Dy and so Dy is a filter.
Next we show that Dy is an ultrafilter using Proposition 1.10. Let X" C [ with
X g Dy. Then XNYy € S"and hence Y \(NNYy) = Y\ X = YN\ X € &
since Y, € 5. Hence [\ X € Dy.
To show that Dy is o-complete consider X,, € Dy (n € w). Without loss of
generality we may assume that X D X; D ... DX, D ...
Then X = X, NY, € 5 (n €w) where Xy D X{ D ... D X! D ... and thus
by Lemma 2.2 [} X, # 0. Therefore () X, # 0 and hence Dy is o-complete
ultrafilter. " "
[t remains to show that Dy, D,,..., D, have the required property.

We show that W =T\ (Y U...UY},) is not an element of S,
le. [ [] Zei = 0.

iew
Suppose, for contradiction, that 1 € . Then W & S since W is disjoint to
YiuYaU. . UY, and {Y1, Y5, ..., Y, } is a maximal subset of pairwise disjoint
elements of S.
Therefore there exists Xo € W such that both Xy and W™\ Xj are elements

of S’ Now by the same arguments as above, W'\ Xy € S and hence there is
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Xy C W\ Xy such that Xy € S"and (W\ Xo)\ X, = W\ (XoU X)) e s

Continuing this process we inductively obtain X, € W\ (NoUX,U...UX,)
such that both X, 4, and (XoU X; U...UX,) are elements of S’. Thus we
obtain infinitely many elements X, (n € w) of S” which are pairwise disjoint
contradicting property (F). Therefore 1¥" = [\ (Y]U...UY,) is not an element

of S.

Now let a € [[Ze; = [] Zei™ [] Ze; = ... = [] Ze,

el el €Y, 1EY Y,
(where =W UY U...UY,) and
suppose that supp(a) & Dy for k= 1,.... n.
Write @ = aw + a1 + ... 4+ a, corresponding to the above decomposition.
Since W ¢ 5" we have that ajy> = 0. Also, by assumption supp(a) € Dy
and hence supp(a)NY, € 5. Thus app =0 fork =1..... n.

Therefore ap = aywe + ayp+ ...+ ayp = 0, L.e. the o-complete ultrafilters

Dy, Dy, ... D, (n € w) have the required property.

We finish this section with two corollaries concerning slender groups.

Corollary 2.4. Let A be a slender group and let [ be an infinite set of non-
w-measurable cardinality.
Then, for any v: H Zie; — A, there exists a finite subset J of [ such that
o1 T Ze=0."

ie(1\J)

Proof: Let [, be as above. Since A is slender there exist o-complete

ultrafilters Dy, Dy, ... D, (n € w) on [, such that ap = 0 for any a € I] Ze;
el
with supp(a) ¢ Dy for all & < n by Theorem 2.3. Since [ is of non-w-

measurable cardinality, every o-complete ultrafilter on [ is principal.

=1
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By Corollary 1.14 a principal ultrafilter is generated by a singleton.
Hence Dy = D;, for some j, € [ (k=1..... n). Let J = {J;..... Jnt-

Then for any a € [ Ze; with supp(a) C I\ J. we have
1€l
supp(a) ¢ Dy (k=1,....n) and thus a> = 0. Therefore o [ [] Ze, = 0.
TELIN)
il

Corollary 2.5. Let 4 be a slender group and let [ be any infinite set of
non-w-measurable cardinality.

Then. for a homomorphism ¢ [[ Ze; — A with p | @ Ze; = 0 we have
= 0 el el

Proof: Let / and ¢ be as above. By Corollary 2.4 there exists a finite

subset J of [ such that ¢ | [] Ze; = 0.
te(I\J)
But by assumption, ¢ [ [] Ze; = ¢ [ @ Ze; = 0 and hence » = 0. 0
eJ eJ



V  Equivalence of the three Characterisations

In this final chapter we present the three characterisations of slender groups

and demonstrate their equivalence directly.

Theorem 1. [f & is a reduced torsion-free group
then the following are equivalent:
(1) G is slender.

(ii) J, £ G, P LG,

(1i1) G & LGQ,.

(iv) For every ¢ : P — G there exist a finite number of N\~ complele
ultrafilters Dy, Dy...., Dy on w, such that ap = 0 for any @ € P with
supp(@) € Dy for all k <n.

Proof: (i) = (ii): By I, Remark 3.2 subgroups of slender groups are
also slender. J, is not slender by I, Proposition 3.5, P is not slender, hence

neither J, nor P can be contained in a slender group G.

(i) == (iii):

By III, Theorem 2.5, a group (¢ € L{); must contain as a subgroup a copy
of the p-adic integers, for some prime p, or else P.

Since J, £ G and P £ G then G ¢ L.

(i) = (iv):

Whenever D is an N;-complete ultrafilter on w then D is principal (IV, Pro-
position 1.16) and so D is generated by a singleton (IV, Corollary 1.14).

Now assume that (iv) does not hold; we shall show that G' € LQ;.
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Then there exists » : P — ( such that for all R -complete ultrafilters
Dy.Dy.. ... D, there exists @ € P with supp(@) € Dy for all & < n. such that
@p # 0. Let » be such a homomorphism.

Recall that for the product topology on P. the basis of neighbourhoods of
zero are subgroups of the form [V, = H Ze, for all n € w.

First we show that ker(y) is not operizi; this topology.

Suppose, for contradiction, that ker() is open. Then [, C ker(z) for some
m < w and thus e;p = 0 for all i > m. Choose D, = Dy the principal
ultrafilter generated by {k} (A < m). By assumption there exists @ € P with
supp(@) € Dy for all & < m and @p # 0. Hence a(k) = 0 for all & < m.
and @ ¢ ker(yp). but @ € U, contradicting [, C ker(y).

Suppose ker() is closed in the product topology on P and consider

P/ (ker(p)) endowed with the quotient topology 7Tq. Then Ty is Hausdorff
by III, Proposition 1.5 and 7q is complete by III, Proposition 1.11. Since
ker(¢) is not open in P then 74 is not discrete by III, Proposition 1.5.

Now by III, Proposition 2.3, P admits a linear metrisable topology and so the
quotient topology on P/ (ker(y)) inherits linearity and metrisability. This
is so since the subgroups (U;)ic. in the countable base of neighbourhoods of
zero in the linear metrisable topology on P may be used to define a countable
base of neighbourhoods of zero U;+(ker(p)) for P/ (ker()) and so endow
the quotient with a linear metrisable topology. Hence P/ (ker(o)) € L.
Now P/ (ker(y)) is topologically isomorphic to the image Py in G and so
G e LQy.

Now consider the case where ker(,) is not closed in the product topology

on P. Note that this implies that ker(,) is of infinite rank since otherwise

-1
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ker(p) is of finite rank and free and so the induced topology is discrete.

Then ker(p) < P and so (ker(z)/ker(2)) < (Plker(2)) = Im(z) < (.

Now (ker(y)/ker(p)) is a cotorsion group by [. Theorem 2.8 and since it
bl bl s} I 2

is a reduced torsion-{ree non-zero cotorsion group it contains a copy of the

p-adic integers J, for some prime p by I, Proposition 1.23. Hence by I11.

Theorem 2.5, P/ker(,) € LQ; and as above we can conclude that G € LQ),.
(1v) == (i):
Assume (iv), that is for every o1 P — ( there exist ®,-complete ultrafilters

Di.Dy.... D, on w, such that for any @ € P if supp(a) € D, for all

k'=1.....n then @p = 0. As before, each ultrafilter Dy is principal and is
generated by a singleton {ix}. Hence.if {i;.....i,} € supp(a)

then @ = 0. Therefore o = 0 for all & > m where m = max{i,..... In}.
So (i is slender. a
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