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Convergence of parameter and delay estimates using open loop
time domain gradient methods

Aidan O’ Dwyer™, John Ringwood **

* School of Control Systems and Electrica Engineering, Dublin Ingtitute of Technology,
Kevin ., Dublin 8.
** School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9.

Abstract

This paper discusses the estimation of the parameters of a single input, single output (SISO)
process, modelled in first order lag plus delay (FOLPD) form, using gradient nmethods in the
open loop time domain. The paper considers the convergence of the process parameters to the
model parameters. The convergence of the model delay is discussed first, when the non-delay
model and process parameters are identical. The convergence of al of the modd parametersis
then considered, when al of the process parameters are unknown.

Keywords:- Egtimation, time delay, time domain, gradient methods.
1 Introduction

Gradient methods of parameter estimation are based on updating the parameter vector
(which includes the delay) by a vector that depends on information about the cost function to be
minimised. The gradient agorithms normally involve expanding the cost function as a second
order Taylor's expansion around the estimated parameter vector. Typica gradient algorithms are
the Newton-Raphson, the Gauss Newton and the steepest descent dgorithms, which differ in
their updating vectors. The choice of gradient algorithm for an application depends on the desired
speed of tracking and the computational resources available. It isimportant that the error surface
in the direction of the delay (and indeed the other parameters) should be unimodal if a gradient
agorithm is to be used successfully. However, the error surface is often multimodal. In these
circumstances, strategies for locating globa minima may involve multiple optimisation runs, each
initiated at a different starting point, with the starting points selected by sampling from a uniform
digtribution [1]. The globa minimum is then the loca minimum with the lowest cost function
value among al the locd minimaidentified.

The use of gradient agorithms to estimate the parameters of a delayed process has been
discussed in full elsewhere [2]. This paper will consider further the strategy proposed by Durbin
[3], in which the process is assumed to be modelled by a first order lag plus delay (FOLPD)
model. The process delay variation from the model delay is approximated by a rationd

* Author to whom correspondence should be sent.



polynomial, and a Gauss-Newton gradient descent algarithm is used to estimate the delayed
model parameters. A previous paper [4] has shown that the first order Taylor's series
polynomia is the most appropriate choice of rationa polynomial; this paper has also provided a
proof of the convergence of the non-dday mode parameters to the non-delay process
parameters, when the process and model delays are equal, in the presence of uncorrelated
measurement  noise  (this proof is labelled Theorem O and is avalable at
http://www.docsee kst.ie/aodweb) [5]. Outline proofs of the convergence of the delay estimate,
and of al of the parameter estimates simultaneoudly, will be provided in this paper; full proofs of
the relevant theorems, and associated simulation work, areavailable [6]-[8].

2 Convergence of the Model Delay

2.1 The delay as an integer multiple of the sample period

Theorem 1 For afirst order discrete stable system of known gain and time constant, the mean

of the product of the errors (MPE) performance surface versus model delay index is unimodal,

with a minimum value of the MPE occurring when the mode delay index equas the process
ddlay index, under the conditions indicated below. The delay index is the delay divided by the
sample time.

(@) Thedelay variation is gpproximated by afirst order Taylor's series gpproximation.

(b) The measurement noise is uncorrelated with the process input.

(c) Theresolution on the process delay is assumed to be equa to one sample period.

(d) The error is caculated based on using a FOLPD process modd; the partial derivative of the
error with respect to the delay variation is calculated based on using the first order Taylor's
series approximation for the delay variation.

(e) The process delay index is greater than the model delay index, as the modd delay index
converges.

(f) The input signal to the process and the mode dlows the fulfilment of the necessary
conditions for unimodality provided in the theorem.

Proof: The process difference equation, y,(n), based on using a FOLPD process modd, is[6]

v =€y (n- D+ K- e ™ Mun - g, - 1) + w(n) @
with T, (process time constant) =T, (model time congtant) = T, K, (process gain) = K, (model

gain) = K and process time delay, t,=g,T., T, = sample period, g, = process delay index, u(n)

= input, w(n) = measurement noise. The model difference equation, assuming that the previous

process output is used in itscalculation and g,, = model delay index, is

Yra() =€ Ty, (n- D+K@- € *Mun- g,,- 1) @
Therefore, from equations (1) and (2),
&) =y,(N) - Ya(n) =K@- € “M[u(n- g, - - u(n- g, - H]+w(n) ©)

The partial derivative of the error with respect to the delay variation may then be calculated by
using a first order Taylor's series gpproximation for the delay variation. The corresponding
modd difference equation is [6] (assuming the previous process output is used in its calculation)

ymz(n)=e'“”y2(n-1)-Mu(n-gm)-K(e”f 1- M) un-g,-n @

Therefore, from equations (1) and (4), e,(n) =y,(n) - y,,,(n) =

K(gp - gm)Ts T[T 1- (gp - gm)Ts
T T

K@- e™Mum- g,- 1+ u(n- g,) +K( un- g, - D] +w(n) ©)

The corresponding partia derivativeis

_Te(m _KTrin-g)- un-g. -
19,- 9 T utn- g,)- un- g, 3] ©



The update vector for updating the model delay, which depends on the product of e;(n)
andfe, (n)/1(g, - 9.) . is then independent of g,. The cost function that corresponds to this
update vector is the MPE function; this function is defined as E[e,(n)e,(n)] in this case. The
MPE performance surface, E[e,(n)e,(n)], may then be calculated to be [6]

2K*(1- € TP[r,,(0) - 1y (g, - 9] +K2 (- & ™ )Mmu(m- @) +1,, (0, - 9 + D]

1y (Gp - 9T,
S K2(1- @WTy2e Im/ s
d-e) T

[ruu(gp - Om )] * Tow (O) (7)!

rw(n) and r,, (n) being the autocorrelation functions of u(n) and w(n) respectively. Therefore,
Ele,(n)es(n)] =1, (0) for g, =g,.

It may be shown by comparing the sizes of the individual terms in equation (7) that
Ele,(n)e;(n)] > r,,,(0) for g, >g,, only [6]. Thus, the minimum vaue of E e,(n)e,(n)] occurs at
9. =9, (When g,, isrestricted to be less than or equal to g, ) and the measurement noise has no
effect on the estimated process delay value. If g, >g,,, then, from equation (7), the only
Stuation that arises for which He,(n)e,(n)] =r,,, (0) for g, * g, is when the input has a flat

autocorrelation function, which corresponds to a congstant level input. Thus, any input change is
sufficient for correct process delay index estimation, provided that the required condition on g,

is fulfilled, if the process delay index is estimated by determining the minimum of the MPE
performance surface.
However, if a gradient method is used to estimate g, , then an additional restriction that

the MPE function must be unimodd for g, >g,,, with a minimum MPE vaue occurring a
On =9, is imposed. The unimoddity of the MPE function for g, >g,, may be proved by

induction; an outline of the inductive proof (provided in full in reference [6]) is as follows:

It may be proved that the MPE function a g, =g,-1 is greater than the MPE function at
9, =9, (using equation (7)), provided that

(g - gm)TSl"I ~ Ym Ts

= [0 (O) - Tulg, - 91> w W@ W@~ gn+D]  (©
u

It may also be proved that the MPE function at g,, =g, - n- 1 isgreater than the MPE function

22(1- e =My +
g

at g, =9g,- n, provided that 2¢- e ™M)[r, (g, - 9,)- rw(g, - 9, +1] +T?S[ruu(0)— (@]

+%[(gp- 90 (G, - Gn)- (20, - 20, + D1y (G, - G+ + (9, - Gy +Dru(9, - 90 +21>0 (9

Both of the conditions in eguations (8) and (9) are fulfilled by many excitation signads eg. a
white noise signal or a square wave signal [6].
O
The behaviour of the MPE function (equation (7)) versus model delay index is confirmed
by Figures 1 and 2, in representative smulation results. For these smulations, K, =K, =2.0,

T,=T,=0.7secondsand g, =30. The normaised MPE (= MPE/r,,(0)) is plotted versus mode!
delay index; r,, (0) =0. The plots show that the MPE surface is greater than r,,,(0) for g, >g,,

only, and that when the conditions in equations (8) and (9) are fulfilled, the MPE function is
unimodd for g, >g,,, with aminimum MPE value occurring a g,, =g, .

A representative smulation result corresponding to Theorem 1 is given in Figures 3 and
4. The gtarting values of the process and model delay index were both equalised; a step change
was then made to the process delay index. The process and model gain and time constant
parameters were put equal to 2.0 and 0.7 seconds, respectively (as above). The Levenberg
Marquardt gradient algorithm [9] was used to update the model delay index; the sample time is
0.1 seconds. Coloured measurement noise, generated by low-pass filtering a white noise signd,



was added. The model delay index was limited in variation to one sample period per iteration;
such filtering was found to be @sirable in smulaion. Good convergence to the process delay
index is seen for g, >g,,. Other supplementary simulation results show no convergence to the

process delay index when g, <g,, . This verifies Theorem 1. The error, e,(n), in Figures 3b and
4b is non-zero due to the presence of the coloured measurement noise.

Figure I Normalised MPE vs. time delay Figure 2: Normaised MPE vs. time delay
index, g,, - white noise input index, g,, -squarewaveinpUt

10 15 on 2R an Fh 4an 45 a0
Model time delay index

N
Model time delay index

008 00
0.005
0t 0
-0.005
005 | .01 ! ! ! H i i i
i an i 10 15 20 ] kil * a0 15 a0
Model time delay index Mode! time delay index
Figure 3a: Time Delay Index Estimate- Figure 4a: Time Delay Index Estimate-
white noise excitation sguare wave excitation

40 . . . ; : 40

1n — 30 - S e

I'J _._r"'- %:gp . wp L~ : .= gp

1] _.-"--F -—= gm - 10 a —= gm

" w0 sw @m0 om0 N U0 000 190 om0 500 300 0 00 4507 S0
s Sample number . Sample number

AL \
- ' 0 Hﬂ 1 .
15N 4 e B w0 W 1550 o0 130 e e B EE a0 S0 D0
Samole number Samplenumber
Figure 3b: Process minus Model output Figure 4b: Process minus Model output

2.2 Thedelay asareal multiple of the sample period

Theorem 1 dedt with the estimation of delays that are integer multiples of the sample
period. For the estimation of delays that are real multiples of the sample period (ard assuming
T,=T,=T, K, =K, =K), the FOLPD process difference equation is [6]:

ya(n)=e Ty (n- )+ K- e™Mu(n- g,) +KE™ - e™Mu(n-g,-D+w(n)  (10)
with g, = process delay minus the process delay index. The corresponding mode difference
equation (assuming the previous process output is used in its caculation) is



Yma() =€ Ty (n- D+K@A- € Nu(n- g,) +KE " - e MNun-g,-9 (1)
with g, = model delay minus modd delay index. The modd difference equation for caculating

the partiad derivative of the error with respect to the delay variation (and assuming that the
previous process output is used in its calculation) is [6]

yms(n):e-Ts/TY3(n- 1) - K(gp B gm:;:gb 3 ga)Ts

u(n - g,)

(g - On +0; - ga)Ts-l
. T - Ju(n-9g,-1) (12

The MPE performance surface, E[e,(n)es(n)], may be obtained in a similar manner to the

devedlopment outlined in  equations (5) to (7), with e, (n)=yyn)- y.(n) and

es(n) = Y5(n) - Yis(n) . It may be shown that Efe,(n)es(n)] = r,,,0) if g, =g,, and g, =g, [6].
Simulation results show that the MPE function versus mode delay is multimodal when

the delay is a rea multiple of the sample period [6]. The estimation of the real value of the
process time delay, using the approach, is impossible using gradient methods.

- K[e™T- 1-

3 Convergence of the full parameter set

Theorem 2 For a first order discrete stable system of unknown parameters, the MPE
performance surface versus model delay index is minimised when the model delay index equas
the process delay index, under the following conditions

(@) Thedelay variation is approximated by afirst order Taylor's series approximation.

(b) The measurement noise is uncorrel ated with the process input and output.

(c) Theresolution on the process delay is assumed to ke equal to one sample period.

(d) The error is calculated based on using a FOLPD process model; the partial derivative of the
error with respect to the delay variation is calculated based on the first order Taylor's series
approximation for the delay variation.

(e) The conditions provided in the theorem are observed on the model parameters.

(f) Theinput to the model and the process is assumed to be a white noise signdl.

Proof: The process difference equation, y,(n), is[7]

y,m=e"Ty(n-D+K,@- e un- g, - 1+ w(n) (13
The model difference equation, y,,(n), is
V() =€y (n-1)+K,, @- € “™)u(n- g, - 1 (14

The partial derivative of the error with respect to the delay variation may then be calculated by

using a first order Taylor's series agpproximation for the delay variation. The corresponding

mode difference equation is[7]

K - g7 - 9,)T,
m(gp gm) s (gp Tgm) s)u(n_ gm _ :D (15)

If e(m)=y,(n)- y,.(n) ad en)=y,(n)- y,s(n), the MPE performance surface, E[e (n)e;(n)],

may then be calculated to be [7]:

Ele (e )] = @ - e ™), (0) +2K,@- €™/7)(e™ - e (g,)

(gp - gm)Ts
T,

Vs =€y, (n-1)- uin- g,) - K, "™ -1-

K (- e P2 eK P @ M- e Mt (0)

(gp - gm)Ts

m

TS/T

Fun(@p - Om) - K @ &™) M)

- - g)T.
+ KK (- e'“’T")((‘ljpﬁruu(gp- gn+ D+ - e'Ts/Tm)Km—(gp 9T,
T T
) - 0T
- @™ - e MK {2(1- € TS/Tm)+%} i (Gm) +Tuny (0) (16)

i2a- e+

-g.)T.
CKyKn(l- € (9 Tgm) s

T
) rylu (gm - l)

m



White noise excitation: r,, (k) =r,, (0, k = 0, r,(k=0 otherwise. r, (g,+n)=0, n<I,
Ty, (G, +1) =(e™" )KL € “I%)r,.(0) otherwise [7]. At g,, = g, , using equation (16),

Ele (N e, (Mg =67 - & ™™)?r, , (@) +[K,@- e /") - K, (1- e™™)r, () +1,, (0 (17)
By comparing the amplitudes of the individua termsin equations (16) and (17), it may be shown
that E[e(n)es(n)] > Ele(n)e,(n)],, for (8 g,>g, (for al vaues of process and model
parameters) and (b) g, <g,, , provided K, (1- € "/")(1- & /" + e ™) > K @- &™) [7].
The condition in (b) is a sufficient condition, rather than a necessary condition.

However, if a gradient method is used to determine g, then, as before, the MPE

function must be unimoda with a minimum MPE vaue occurring at g,, = d,. The conditions for

unimodality may be proved by induction [7]; these conditions are:
(@ g, >09,: Conditions for unimodality are fulfilled for all process and model parameters.

(0) 9, <9,: The MPE function a g, =g, +1 is greater than the MPE function a g, =g,,

provided K, (1- € /)[2(1- &™) - %](1- e 4 gy > %(1- e Tl (18)

m m

The nature of E e (n)e;(n)] means that for a full inductive proof, it is necessary to prove that

Ele (M)es(Wlg, =, 2> Ele(Mes(n)] -, (this is because Ele; (n)e,(m)] (equation (16)) depends on

(9, - 9 +1)). A necessary condition for thisto be trueis[7]:

R R
+(@@™" - e K - e )2 e - TT—S)(l- g™y - %] >0 (19

m

Similarly, it may be proved, tha the MPE function & g, =g, +n+1 is greater than that at
g, =9, +n, povided the following necessary condition isfulfilled [7]:

I

T, <

Kp(l- e /T, )e» (n-2T,[T, (e» T[T - Ts/Tm)

K- &™)

_:—S[(n+1)e' T, (2n +1)e-T5/Tp +n)+21- e Y- € Ts/Tp)e-Ts/Tp (20) 0

m

The theorem indicates that if K, and T, are unknown, then convergence of the model time
delay index to the process time delay index may only be completely guaranteed if the value of
the model delay index is aways less than or equal to the process delay index. The behaviour of
the MPE function (given by equation (16)) versus delay index is confirmed, in representative
smulation results, by Figures 5, 6 and 7. In Figure 5, K,=2.0, K, =10, T,=0.7sand T, =1.0s
so that the conditions given in equations (18) and (19) (but not (20)) are fulfilled. In Figure 6,
K,=20, K,=30, T,=07s T, =0.5s, 50 that none of the conditionsin equations (18), (19) or
(20) are fulfilled. In Figures 7a and 7b, K,=1000, K, =10, T, =2.0s T, =10sso that the
conditions given in equations (18) and (19) are fulfilled; the condition given in equation (20) is
fulfilled for alarge range of time delay index values greater than the process time delay index,
as Figure b shows (it is interesting to see that K, must be large and T, must be greater than
T,, if equation (20) has any chance of fulfillment). The normalised MPE is plotted versus delay
index in al figures, with r,,,(0) put to zero and g, =30. The excitation signal in both casesisa
white noise signal. The results are as expected from the theorem.

A representative smulation result corresponding to Theorem 2 is given in Figures 8 to
10, with the parameters plotted against sample number. It was aso found necessary to limit the



variaion of the nontime delay model parameters, for the smulations taken, 0.5< K, <3.0 and
0.5s < T, <3.0s were the limits. The normalised MPE curve corresponding to these simulation

results is given by Figure 5.

Figure 5 Normalised MPE vstime delay
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These results conform to Theorem 2.
It may aso be shown, using analysis similar to that performed in Section 2.2, that the
MPE function determined when the delay is a red multiple of the sample period is aso

multimodal with respect to delay [7].
For a square wave input, a theorem similar to that of Theorem 2 (labelled Theorem 3)

may be developed [8].



4 Conclusions

A number of theorems have been developed to analyticaly describe the conditions under
which the model parameters may converge to the process parameters. The corresponding cost
functions may be unimodal when g, > g,, ; otherwise, various conditions must be observed on the

process and model parameters to achieve unimodality, which are impossible to evaluate prior to
the implementation (as the process parameters are generaly unknown). In addition, the inability
of the relevant proposed methods to estimate delays that are real multiples of the sample period
is disappointing. Both of these features are difficult to reconcile with a practical application. The
requirement that in some cases the excitation signal to the process should be of white noise form
is another difficulty, as such a signal is not redlisable in practice; however, other excitation
signals may aso be used, as described in the theorems. On a positive note, the fact that
unimodality does exist on the cost function for some conditions, when the delay is unknown a
priori, provides some encouragement. One possibility may be to filter the data before
identification, as this may increase the range of delay over which the cost function is unimodal,
though the speed of convergence of any gradient algorithm used tends to be reduced [10]. In
addition, if the process delay index may be estimated accurately, an estimate of aprocess delay
that is areal multiple of the sample period could be determined by fitting an appropriate curve to
a plot of the cost function (calculated, perhaps, in simulation) versus model delay index. The
main difficulty with the use of the gradient dgorithm, as implemented, is the estimation of the
time delay term. One avenue of future work that may be fruitful would be to estimate the delay
using an alternative (non-gradient) approach, and estimate the nonrdelay parameters using the
gradient approach.
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