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ABSTRACT. This paper investigates the interaction and bundle dispersion of single walled carbon 

nanotubes (SWNT) produced by arc discharge and by the high pressure decomposition of carbon 

monoxide, often referred to as the HiPco method, in the presence of the molecule p-terphenyl. The study 

will show that the extent of SWNT bundle dispersion and the degree of interaction with p-terphenyl is 

related to the level of purity of the SWNT sample. This study compares the bundle dispersion and 

interaction of SWNT with p-terphenyl in their as produced state and after purification. A number of 

spectroscopic and microscopic techniques are used to probe the SWNT and their interaction with p-

terphenyl. A technique such as energy dispersive analysis by x-ray (EDAX) is used to give an elemental 
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analysis of the SWNT samples before and after purification. Fluorescence and atomic force microscopy 

are used as techniques to assess the degree of interaction and bundle dispersion of the SWNT. 

KEYWORDS: Fluorescence, bundled single walled carbon nanotubes, isolated single walled carbon 

nanotubes, p-terphenyl, atomic force microscopy, high pressure decomposition of carbon monoxide, arc 

discharge, x-ray diffraction, energy dispersive analysis.  

INTRODUCTION 

Obtaining pure, mono-disperse single walled carbon nanotubes (SWNT) of specific structures in large 

quantities is problematic. There is currently no literature on a production or processing method which is 

capable of achieving such specifications. Although SWNT are largely insoluble in solvents such as 

toluene, when added to SWNT/toluene suspensions, the hydrocarbon p-terphenyl has shown potential in 

this context. The hydrocarbon was shown to solubilise, and disperse bundles of SWNT with strong 

evidence of selectivity.1,2 Much literature has been published with regards to the interaction of SWNT 

with various organic molecules.1-7 However, it is well understood and documented in the literature that 

different SWNT production methods result in samples containing SWNT of different bundle size, length 

and diameter as well as different degrees of purity.8,9 The impurities range from the metal catalyst used 

in the production process to amorphous carbon structures. The research questions posed are, to what 

degree do experimental results differ when one SWNT sample is substituted for another and what 

components of the sample are responsible for the differences if any observed. This paper examines two 

samples of SWNT, one produced by arc discharge and the other produced by the HiPco (High pressure 

decomposition of carbon monoxide) method and investigates their interaction with p-terphenyl under 

similar conditions. The aim is to elucidate whether SWNT produced by different methods under similar 

experimental condition exhibit similar or varying behaviour and if so the factors responsible for any 

variations observed. Such a study will yield a better understanding of SWNT processing techniques. 

 

EXPERIMENTAL SECTION 
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Solutions in the range of ~4.5 x 10-12 to ~2.5 x 10-3 M for p-terphenyl in toluene were prepared. HiPco 

SWNT (H-SWNT) obtained from Carbon Nanotechnologies Incorporated (CNI) 

(http://www.cnanotech.com)9 and arc discharge SWNT (AD-SWNT) obtained from Montpellier 

University (now, http://www.nanoledge.com)10,11,12 were added to all p-terphenyl solutions in a 1:1 

weight ratio (w/w); of SWNT/p-terphenyl. Both the composite solutions and solutions containing p-

terphenyl were sonicated using an ultra sonic tip (ultrasonic processor VCX, 750 Watts) for 30s and 

allowed to settle for 24 hours after which the supernatant liquid from the composite solutions was 

carefully withdrawn. The composite solutions were then allowed to settle for a further 24 hours before 

characterization. The precipitate of the composite solutions was found to be relatively rich in SWNT so 

solubility of the SWNT is only partial. Concentrations are quoted as prepared. Analytical techniques 

employed in this paper are, UV/Vis/NIR absorption spectroscopy (Perkin Elmer Lambda 900), 

fluorescence spectroscopy (Perkin Elmer LS55), Raman spectroscopy (JobinYvon, Instruments SA 

LabRam 1B with a confocal Raman imaging microscope), atomic force microscopy (AFM) (Asylum 

MFP-3D) and energy dispersive analysis by x-ray EDAX (Jeol 8600).  

The samples of SWNT were purified following the procedure given below. This procedure was 

adapted from Cheng et al.13 A mass of 25 mg of Hipco and 20 mg of arc discharge SWNT were     

washed with de-ionised water followed by the addition of 37 % HCL and sonication for two minutes 

with the sonic tip (ultrasonic processor VCX, 750 Watts) at forty percent power to allow iron catalyst 

dissolution. The samples were left to stir overnight. The following day the samples were filtered and 

washed with copious amounts of de-ionised and allowed to dry.  

The UV-Vis-NIR spectrometer used to probe the materials in this paper was the Perkin Elmer Lambda 

900 spectrometer. The spectrometer is a double-beam, double monochromator ratio recording system 

with pre-aligned tungsten-halogen and deuterium lamps as sources.  The wavelength range is from 175 

to 3,300 nm with an accuracy of 0.08 nm in the UV-Vis region and 0.3 nm in the NIR region.  It has a 

photometric range of  6 in absorbance. For all of the experimental studies, the absorption was 

measured at all times with a reference sample in a double beam arrangement; the purpose being to 
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eliminate variations caused by the difference in lamp intensities at different frequencies. Samples were 

prepared by dropcasting SWNT samples onto the quartz cell and allowing them to dry before 

characterization. 

The Perkin Elmer LS55 luminescence spectrometer was computer controlled. Excitation is provided 

by a pulsed Xenon discharge lamp with a pulse width at half peak height of < 10 s and pulse power 20 

kW. The source is monochromated using a Monk-Gillieson type monochromator and can be scanned 

over the range of 200-800 nm. The luminescence is passed through a similar monochromator, which can 

be scanned over the range of 200-900 nm. For analysis of samples a 10ml quartz cuvette was filled with 

the appropriate solutions. 

The Raman instrument used was the Instruments SA LabRam 1B with a confocal Raman imaging 

microscope system. Both Helium-Neon (632.8 nm/11 mW) and Argon ion (514.5 nm/130 mW, 488 

nm/130 mW, 457 nm/20 mW) were available as sources. The light is imaged to a diffraction limited 

spot (typically 1 m) via the objective of an Olympus BX40 microscope. For Raman imaging the 

samples were dropcast onto a glass slide and allowed to dry overnight before analysis. 

The EDAX instrument is a Jeol 8600 microprobe. The microprobe consists of an electron gun and a 

system of electromagnetic lenses for producing a beam and scanning coils to allow the beam to be 

rastered across the specimen. The intensity of the x-rays is a measure of the proportions of the elements 

present. Quantitative analysis using wavelength dispersive spectrometry requires both a stable, well 

tuned instrument and standards for comparison that are both well characterised and appropriate to the 

given specimen. Quantitative analysis can address all elements heavier the lithium. For sample analysis 

powdered SWNT samples are scattered onto the sample disc which is coated in silver chloride. 

The AFM used in this research was the Asylum MFP 3D (Asylum Research, Santa Barbara, 

http://www.asylumresearch.com/Products/Mfp3DIO/Mfp3DIO.shtml). The MFP-3D base and scanner 

have three configurations for illuminating and viewing the sample. The MFP-3D head has a sensored 

optical lever with diffraction limited optics and a low coherence light source virtually eliminates 

interference artifacts. The sensored z axis provides precise measurements of the cantilever position for 
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accurate force and topography measurements. AFM imaging was conducted in air and was performed in 

intermittent-contact mode using Si3Ni4 cantilevers (CSC36 series, MikroMasch) with a spring constant 

of approximately 5 N/m. Igor pro (Wavemetrics, OR) software was used to analyse the image data. For 

AFM studies the composite samples were dispersed on an activated silicon surface and this involved 

covering the silicon surface in a layer of 3-aminopropyl tri-ethoxysilane (APTES) for 10 minutes 

followed by a rinse with de-ionised water and then drying at room temperature. The activated surface 

was then immersed in the composite solution for approximately three weeks and once removed from the 

solution the surface was rinsed with de-ionised water and allowed to dry at room temperature before 

imaging. 

 

RESULTS AND DISCUSSION 

For the study presented in this paper the hydrocarbon p-terphenyl was chosen because it has been 

previously shown to interact with, suspend and disperse bundles SWNT in organic solvents.1,2 The 

solvent toluene was chosen because it is a non polar solvent and therefore a high degree of solubility of 

p-terphenyl is exhibited as both components are non polar. The solvent toluene also exhibits a poor 

affinity for the retention of SWNT and therefore solubilisation of the SWNT via an interaction with p-

terphenyl can be easily monitored.1,2,14 Two samples of SWNT were investigated, arc discharge SWNT 

(AD-SWNT) and HiPco SWNT (H-SWNT). The arc-discharge method in principle is based on an 

electric arc generated between two graphite electrodes under an inert atmosphere of helium or argon. 

Two graphite rods are used as electrodes. A current is passed through the electrodes and plasma is 

created between them. The temperature in the plasma region is ~ 4000 K and the carbon is sublimated 

and the positive electrode which contains the catalysts Y/Ni/C 1 %/ 4%/ 95% is consumed. The method 

produces SWNT of a broad diameter range with an average diameter of 1.4 nm as well as amorphous 

carbon, spherical metallic nanoparticles, fullerenes and graphitic sheets The sample purity was 

estimated at 70 % and the bundle size at approximately 20 tubes per bundle.10 In the Hipco process the 

tubes are produced by a gas phase catalytic process. The catalyst particles for SWNT growth form in 
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situ as a result of the thermal decomposition of iron pentacarbonyl, with a heated flow of carbon 

monoxide at pressures of 1-10 atm and temperatures of 1100 – 1500 K. A sample purity of ~90 % 

SWNT is estimated and in contrast to the arc method the HiPco method produces SWNT of a narrow 

diameter range with the average diameter of 1.1 nm. The bundles produced are reported to contain on 

average 20 to 40 tubes.9 The main impurity in the HiPco sample is approximately 10 wt% iron catalyst 

particles which are encased in thin carbon shells and distributed throughout the sample as 3-5 nm 

particles.    

 

 

 

Figure 1. UV-Vis-NIR absorbance spectra of arc-discharge and HiPco SWNT. 

 

To demonstrate the different diameter distributions of SWNT within each sample UV/vis/NIR 

absorbance spectra of both the Hipco (H-SWNT) and arc-discharge SWNTs (AD-SWNT) were taken 

and are depicted in Figure 1. The features observed have origin in the singularities in the diameter 

dependent density of states (DOS).15 It is immediately obvious that the absorption spectra of both 

SWNT samples differ. Therefore it may be concluded that the UV-Vis-NIR spectral profiles of SWNTs 
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are to a degree dependent on the production process. However the literature reports that the absorbance 

profile may also differ from batch to batch for SWNTs produced by the same process.16-19 It may be 

deduced that the only information that can be taken from the UV-Vis-NIR spectra is the range of 

diameters of SWNTs present in that sample and the ratio of metallic to semi conducting SWNTs.  

 

Theoretical predictions suggest that the absorbance bands of SWNTs can be ascribed to the inter-band 

transitions between the mirror image spikes in the density of stated (DOS) of SWNTs.20 From electronic 

band theory, absorbances between 1400 – 1900 nm are assigned to the first inter-band transition v1  

c1 in semi conducting SWNTs , whereas the bands between 800 – 1100 nm are assigned to the second 

inter-band transitions v2  c2 again in semi conducting SWNTs.20 The predicted absorbance at 650 nm 

is believed to be the v1  c1 of metallic SWNTs and weak bands at 550 nm and 300 nm are due to v3 

 c3 in semi conducting SWNTs and v2  c2 in metallic tubes respectively.21 The absorbance at 270 

nm is the  plasmon frequency of carbon material such as C60, SWNTs, and graphite. The precise 

position of the SWNT absorption bands has been shown to be roughly described by the following 

equations;  

 

ES
11 = 2k/d     Equation 1 

ES
22 = 4k/d    Equation 2 

EM
11 = 6k/d    Equation 3 

 

 

where k is a constant, d is the diameter, E is the energy transition and the superscripts S and M represent 

semiconducting and metallic SWNTs respectively whereas the subscripts 11 and 22 represent the first 

and second electronic transition between mirror spikes in the DOS.22 However it has since been shown 

experimentally that the relationship between ES and d is more complex than originally thought as 
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described by more current calculations by Bachilo et al.(2002).21,23 The width of the van Hove bands are 

determined by the overlapping transitions from all different diameters and chiral indices.  

 

Comparing the spectra in Figure 1, it is evident that AD–SWNT has a strong absorbance centered at 

~1700 nm and ~950 nm which corresponds to the first and second inter-band transitions for semi 

conducting SWNTs. H–SWNT has absorbance centered at ~1400 and ~800 nm which also fall under the 

first and second inter-band transitions for semi conducting SWNTs. The fact that H–SWNT are centered 

at ~1400 nm compared to ~1700 nm indicates a different diameter distribution for the H–SWNT sample 

compared with AD–SWNT samples in that range. AD–SWNT and H–SWNT have a strong absorbance 

at ~650 nm and absorbance in this region corresponds to the first inter-band transition for metallic 

SWNTs. Absorbance at ~550 nm corresponds to the third inter-band transition for semi conducting 

SWNTs and it is evident in both the AD–SWNT and H-SWNT samples. Finally, the  plasmon band at 

~270 nm is present in both SWNT samples. It is of interest to note that the H–SWNT spectrum exhibits 

more structure in this region compared to AD-SWNT and this is believed to be due to a smaller average 

tube diameter of about 1.1 nm resulting in a higher degree of structural information.18,19,24  
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Figure 2. Raman spectra of (a) the untreated AD-SWNT, (b) the pristine p-terphenyl powder and (c) the 

composite sample at 2.5 x 10-3 M a 1:1 w/w ratio of p-terphenyl/SWNT at laser excitation 632.8 nm. 

 

Figure 3. The spectra represents the fluorescence of p-terphenyl at excitation wavelength of 300 nm in 

the absence (I) and presence (II) AD-SWNT at a concentration of 2.5 x 10-3 M in toluene.  

 

Figure 2 shows the Raman spectra of SWNT, p-terphenyl and the composite spectrum. The 

vibrational modes in SWNT consist of optical and acustic modes, such as of out-of–plane, in-plane and 

in-plane radial modes. Three phonon modes dominate the Raman spectrum of SWNTs. In the low 

frequency region, the phonon modes are dominated by the radial out-of-plane modes whose frequency is 

diameter-related often referred to as the radial breathing modes (RBMs). In the medium frequency 

region, both radial and tangential modes (stretching and bending modes) are present, and the detailed 

structure of the spectrum depends not only on the diameter but also on the helicity. In the high 

frequency region, the phonon modes are dominated by the tangential modes (G-line). Figure 2 depicts 

the Raman spectrum for an as produced sample of untreated AD-SWNT with an excitation wavelength 
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of 632.8 nm. Although theory predicts that SWNTs have 15 or 16 Raman allowed vibrational modes, 

experimental evidence shows only a few intense and several weaker modes.25,26 The intensity of the 

Raman modes not only depends on parameters such as the SWNT process method and the geometry of 

the SWNT but also on the bundle thickness.27 With respect to p-terphenyl in Figure 2 the modes at 

1603 cm-1 and 1592 cm-1 may be attributed to the C=C stretches in p-terphenyl with the vibrational 

mode at 1271 cm-1 representing a ring stretch. The vibrational modes at 1003 cm-1 and 988 cm-1 are 

due to ring breathing modes and at 770 cm-1 a ring vibrational mode is observed. The spectra in Figures 

2 (a) and (b) agree well with those reported in the literature.28  

Comparing Figure 2 (a) with Figure 2(c) the characteristic features of the SWNT spectrum have been 

changed in composite spectrum (Figure 2(c)) in comparison to that of the pristine SWNT sample 

(Figure 2(a)). The spectral changes are not simply due to the addition of the p-terphenyl whose 

spectrum is shown in Figure 2(b). Notably the changes to the distribution of the RBM’s which are 

diameter dependent is an indication of a change in the local environment of the SWNTs and also 

indicative of bundle dispersion. Similar results were observed in the case of H-SWNT and p-terphenyl 

solutions at similar concentrations. 

In fluorescence spectroscopy molecules that absorb photons can discard its excess energy via 

radiative decay, in which an electron relaxes back into the lower energy levels of the ground electronic 

state and in the process generates a photon and yields information with regards to the electronic and 

vibrational levels of the ground electronic state. The two materials used in this study undergo 

fluorescent radiative decay. However only p-terphenyl is discussed as the fluorescence of the SWNTs 

was beyond the range of the fluorimeter used.29 Figure 3 shows the fluorescence of p-terphenyl before 

and after the addition of AD-SWNT. 

p-Terphenyl is known to have an emission maximum at 345 nm, as shown in Figure 3(I). Upon 

addition of SWNT to p-terphenyl/toluene solutions, the fluorescence is visibly seen to quench Figure 

3(II). This quenching is an indication that an interaction occurs between the p-terphenyl molecules and 

the SWNTs as the fluorescence energy of p-terphenyl is lost in the π stacking between the two 
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components.1 To gain a better understanding of the results obtained in Figure 3, the behaviour of p-

terphenyl and its interaction with SWNT, the fluorescence of p-terphenyl over a broad range of 

concentrations in toluene were probed. 
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Figure 4. Fluorescence of p-terphenyl at an excitation wavelength of 300 nm within a concentrations 

range of ~2.5 x 10-9 and ~2.5 x 10-3 M in the absence (filled black circles) and presence (filled grey 

squares) of SWNT at a 1:1 w/w ratio on a linear/log axis. The solid line denotes a linear fit. The filled 

grey squares in (a) represent the presence of AD-SWNT and (b) H-SWNT both at a 1:1 w/w ratio with 

respect to p-terphenyl. 

 

  Two sets of samples were prepared, one set contained just p-terphenyl and the second set contained 

similar concentrations of the p-terphenyl/SWNT at a 1:1 w/w ratio. The fluorescence of the p-terphenyl 

in the absence and presence of SWNT yields information with regards to the interaction between the 

two components. Changes in the aggregation process of p-terphenyl are monitored on the addition of 

SWNT.  

  The fluorescence of p-terphenyl in the absence (filled black circles) and presence of AD-SWNT (filled 

grey squares) is depicted in Figure 4 (a) within the concentration range of ~2.5 x 10-9 and ~2.5 x 10-3 M. 

With respect to p-terphenyl (filled black circles) the concentration dependence of the fluorescence fits 

well to a linear increase between ~2.5 x 10-9 and ~4 x 10-6 M denoted by the black solid line (note the 

plot is depicted in a linear/log axes format). Within a concentration range of ~4 x 10-6 to ~2.5 x 10-3 M 

the fluorescence of p-terphenyl deviates from linearity and this deviation is evident both at the spectral 

maximum and on the red side of the spectrum, indicating that it is not due to re-absorption. Therefore 

the deviation is attributed to the formation of aggregates of p-terphenyl which causes quenching of the 

fluorescence.  

  Upon the addition of AD-SWNT (filled grey squares) to the p-terphenyl solutions at a 1:1 w/w ratio, 

the composite fluorescence trend appears similar to that of the p-terphenyl discussed in the previous 

paragraph but with quenching evident due to interaction with the SWNT, within the concentration range 

of ~2.5 x 10-9 and ~2 x 10-5 M. Between a concentration of ~4 x 10-5 M and 1 x 10-4 M the composite 

fluorescence deviates from linearity and relative to the fluorescence of p-terphenyl the composite 
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fluorescence is now in excess. The additional fluorescent intensity observed is explained by the 

dispersion of the p-terphenyl aggregates as the fluorescence data suggests that the presence of SWNT 

interferes with and hinders the aggregation process of p-terphenyl. This affect on aggregation indicates 

that p-terphenyl preferentially interacts with the SWNT and suggests that the binding energy of p-

terphenyl/SWNT is greater than the binding energy between p-terphenyl/p-terphenyl. This suggestion is 

not unreasonable since theoretical binding energy calculations and thermal desorption studies show that 

polycyclic aromatic hydrocarbons and graphite (PAH/graphite) interactions are more favourable than 

the PAH/PAH interactions.30-33 Similar results were observed in the case where H-SWNT replaced AD-

SWNT and the results are depicted in Figure 4 (b). The only significant difference between Figure 4 (a) 

and (b) is that at ~1 x 10-4 M the excess fluorescence is more evident in Figure 4 (a) perhaps indicating 

that AD-SWNT interact with and more effectively disperse p-terphenyl molecules. The hydrocarbon p-

terphenyl and SWNT are non polar molecules. Non polar molecules interact via van der Waals forces, 

also known as dispersion forces. Dispersion forces can be exhibited by non polar molecules because 

electron density moves about the molecules probabilistically. When electrons are more concentrated in 

part of the molecule a temporary multipole is created. Dispersion forces become stronger as the 

molecule becomes bigger hence the preferred interaction between the hydrocarbons with SWNT as 

opposed to itself. The AD-SWNT contains SWNT of larger diameters compared with the Hipco sample 

and perhaps for this reason AD-SWNT interacts more strongly with and are more effective at dispersing 

p-terphenyl aggregates compared with H-SWNT. 

To conclude, the study in Figure 4 indicates the concentration range where p-terphenyl exists as 

isolated and aggregated molecules and that the presence of SWNT hinders the aggregation of p-

terphenyl molecules and this is expressed by the excess emission of p-terphenyl in the composite 

solutions compared to the fluorescence of p-terphenyl alone.  

  To follow on from the study in Figure 4 further fluorescence studies were conducted to probe the 

extent of bundle dispersion of the SWNT in the presence of p-terphenyl in toluene with decreasing 

concentration. The model to investigate the bundle dispersion of SWNT is described in references 1 and 
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5 and the model is adapted to this study to monitor and compare the extent of bundle dispersion of both 

the H-SWNT and AD-SWNT. The model is based on the concentration dependent interaction of organic 

molecules with SWNT at a 1:1 w/w ratio of SWNT/organic molecules. 1,5 Thus all concentrations 

quoted refer to 1:1 ratios by mass, w/w of p-terphenyl and are quoted in terms of p-terphenyl 

concentration. The model presented is for low concentrations and when the system is in equilibrium the 

adsorption rate equals the desorption rate.5 The adsorption rate was calculated theoretically; 

representing a SWNT (or bundle) as a cylinder and assuming that any molecule that reaches the SWNT 

adsorbs via van der Waals interactions. The desorption rate was shown to follow first order kinetics and 

was calculated as a function of the number of bound molecules per unit volume, the volume of solution 

occupied by one SWNT. As the fraction of free fluorescent molecules changes over the concentration 

range studied, a relationship is derived whereby the change in the fraction of free fluorescent molecules 

could be described by a characteristic concentration C0 and SWNT concentration CNT.  

Equation 4 represents the equilibrium at which the adsorption rate equals the desorption rate, where 

NF is the number of free molecules, NB is the number of bound molecules, Flcomp is the fluorescence of 

the composite and Flmol is the fluorescence of the fluorescent organic molecule which gives the fraction 

of free fluorescent organic molecules in solution. The model is derived for 1:1 w/w ratios and so for all 

concentrations the partial SWNT concentration, CNT, equals the partial molecular concentration, Cm. 

 

 

NF / (NF + NB) = 1 / (1+ CNT / C0) = Flcomp / Flmol  Equation 4 

 

 

C0 is an important term as it contains much of the information about the dynamics of the system 

(Equations 4 and 5).1,5 The binding energy of the p-terphenyl with the SWNTs is described by EB and 

the SWNT bundle surface area by Abun. The C0 value is sensitive to such things as the viscosity of the 

solvent and the size of the hydrocarbon and these are both accounted for in the diffusion (D) term. The 

varying SWNT bundle mass (ρbun) and surface area Abun are recognised as factors that will effect the 
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position of the C0 curve which is also dependent on the binding energy EB. Other parameters within the 

equation are υ which represents a pre-exponential factor and describes desorption of organic molecules 

from graphitic surfaces whereas f, the space integral, describes the probability of the organic molecule 

reaching the SWNT bundle and adsorbing to it. 

 

 

C0= π2 υ ρbun Abun e
-E

B
/kT/(48Df)                                       Equation 5 

 

 

 

Figure 5. A plot of the fraction of free p-terphenyl on interaction with H-SWNT (blackcircles) and AD-

SWNT (grey squares) in their as produced state (defined by Flcomp/Flmol), as a function of concentration 

of p-terphenyl.  

 

Adapting the model to the fluorescence studies above and applying Equation 4 to Figure 5, a plot of 

the fraction of free p-terphenyl on interaction with SWNT as a function of concentration of p-terphenyl 
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where SWNT are present at a 1:1 w/w ratio is achieved as a result of the interaction between the two 

components.  

Figure 5 is a plot of the fraction of free p-terphenyl on interaction with SWNT in their as produced 

state. What is interesting with this graph is that in the case of the H-SWNT and AD-SWNT the 

fluorescence of p-terphenyl exceeds 1.0 between a concentration range of 5 x 10-10 M to 4 x 10-8 M for 

AD-SWNT and 5 x 10-10 M to 5 x 10-6 M for H-SWNT respectively. This is within the range where 

isolated p-terphenyl occurs (see Figure 4).1Therefore the excess fluorescence could not be attributed to 

the destacking of p-terphenyl aggregates. The results raised the question as to whether or not impurities 

were present in the composite samples and if so were they responsible for the results observed. The 

AFM image in Figure 6 shows the presence of SWNT and impurities are evident within the composite 

sample.  

 

 

(a) 

16

 



 

(b) 

 

Figure 6. AFM of (a) AD-SWNT at ~1 x 10-8 M and (b) H-SWNT at ~1 x 10-8 M for p-terphenyl with 

SWNT present at a 1:1 w/w ratio of p-terphenyl/SWNT. The arrows point to the SWNT in the 

composite samples and the impurities are circled by the black ring. 
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Figure 7. Energy Dispersive Analysis by X-ray (EDAX) was conducted on AD-SWNT before (A) and 

after (B) purification. 
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Figure 8. Energy Dispersive Analysis by X-ray (EDAX) was conducted on H-SWNT before (A) and 

after (B) purification. 

The as produced samples of AD-SWNT and H-SWNT were purified as described in the experimental 

section. Energy dispersive analysis by X-ray (EDAX) was conducted on the SWNT samples before and 

after the purification process to assess the degree of success of the method and the results presented in 

Figures 7 and 8. In Figure 7(A) the following elements are listed; C for carbon, Cu for copper, Y for 

yttrium, Cl for chlorine, Ag for silver and Ni for nickel. The carbon, yttrium and nickel are all 

components of the as produced AD-SWNT sample. The chlorine and silver are components of the paint 

used to retain the SWNT sample on the sample holder which comprises of copper, also seen in the 

analysis. Comparing Figure 7(B) the purified AD-SWNT sample with Figure 7(A), the as produced 

SWNT sample the yttrium peak is not observed in Figure 7(B) and both the nickel and carbon peaks are 

greatly reduced. This indicates that on purification the metal catalyst impurities are significantly 

reduced. The reduction in the carbon peak may be indicative of the removal of amorphous carbon from 

the sample. Similar results were observed for Figure 8. In Figure 8(A) the elements observed are carbon 

(C), iron (Fe) and the components of the paint chlorine and silver (Cl and Ag) for the as produced H-
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SWNT sample. In Figure 8(B) the iron peak is no longer observed and the carbon peak is reduced when 

compared to Figure 8(A) indicating that purification of the SWNT sample was successful.  

 

 

 

 

Figure 9. A plot of the fraction of free p-terphenyl on interaction with purified H-SWNT and AD-

SWNT (defined by Fl p-terphenyl in the composite/Fl p-terphenyl), as a function of concentration of p-terphenyl. The 

solid line and the broken line are fits to Equation 1 for H-SWNT and AD-SWNT respectively. The 

black lines give a C0 value of ~1.2 x 10-9 M and 4.2 x 10-9 M for H-SWNT and AD-SWNT respectively 

as a result of the interaction of p-terphenyl at a 1:1 w/w ratio.  
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The fluorescence study conducted in Figure 5 was repeated on the purified samples and the results are 

presented in Figure 9. Proceeding from left to right across Figure 9, from approximately ~1 x 10-11 to 

~4x 10-8 M of p-terphenyl the fluorescence of the fraction of free p-terphenyl decreases steadily with 

increasing concentration. In this region, the free, isolated hydrocarbon and SWNT which are present at a 

 



1:1 w/w ratio exist in dynamic equilibrium with bound hydrocarbon and SWNT. The data within this 

concentration range fits well to the solid lines which are a plot of Equation 4, resulting in a C0 value of 

~1.2 x 10-9 M for p-terphenyl in the presence of H-SWNT and ~3 x 10-9 M in the presence of AD-

SWNT. The value indicates that below ~3 x 10-9 M for p-terphenyl the hydrocarbon molecules are 

interacting with SWNT where the surface area (bundle size) of the SWNT is constant. Deviation from 

the fit above ~4 x 10-8 M for p-terphenyl is attributed to an increase in the SWNT bundle surface area. 

1,5 Within the concentration range of ~4 x 10-8 to ~1 x 10-5 M for p-terphenyl, isolated p-terphenyl 

molecules are interacting with SWNT of increasing surface area (bundle size). Above this concentration 

the fluorescence of the fraction of free p-terphenyl decreases due to the interaction between bundles of 

SWNT and aggregated p-terphenyl.  

  

Comparing Figure 5 and 9 it is noted that after purification the fluorescence of p-terphenyl no longer 

exceeds 1.0 between a concentration range of 5 x 10-10 M to 4 x 10-8 M for AD-SWNT and 5 x 10-10 M 

to 5 x 10-6 M for H-SWNT respectively. This would indicate that the impurities with in the samples 

were responsible for the additional fluorescence observed. Exactly what in the impurities causes this 

effect is unknown and requires further studies, however the effect is no longer observed after 

purification. It is also noted that the degree of quenching (the extent of interaction between the SWNT 

and p-terphenyl) is similar for both AD-SWNT and H-SWNT in their purified state and this also holds 

true for the rate of bundle dispersion. The results indicate that in their purified state, replacing one 

SWNT type for another in the case of interaction with p-terphenyl has little bearing on the results 

obtained. However replacing one SWNT type with another in their as produced state will have bearing 

on the results obtained as it has been shown in the case of p-terphenyl that the hydrocarbon interacts not 

only with the SWNT but also the impurities in the sample therefore affecting the degree of interaction 

with the SWNT and the rate of bundle dispersion.  

 

CONCLUSION 
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This paper investigated the interaction and bundle dispersion of SWNT produced by arc discharge and 

HiPco method in the presence of p-terphenyl in toluene. The study showed that under similar conditions 

that the degree of interaction of SWNT with p-terphenyl will vary in accordance with the amount of 

impurities present as the impurities interact with p-terphenyl and therefore hamper the hydrocarbon’s 

interaction with SWNT and the rate of bundle dispersion. Once the SWNT samples were purified, 

however, the degree of interaction and the rate of bundle dispersion were similar. The studied also 

showed that while p-terphenyl will solubilise SWNT in toluene and disperse bundles it does not 

exclusively interact with SWNT in an untreated sample and therefore it is not an ideal molecule for 

processing an untreated sample of SWNT. 
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