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On Unit Sum Numbers of Rational Groups
B. Goldsmith, C. Meehan and S. Wallutis

Abstract.

The unit sum numbers of rational groups are investigated: the importance of the prime 2 being an au-

tomorphism of the rational group is discussed and other results are achieved by considering the number

and distribution of rational primes which are, or are not, automorphisms of the group. Proof is given of

the existence of rational groups with unit sum numbers greater than 2 but of finite value .

Unit sum numbers of Rational groups

§1 Introduction

The relationship between the groups of units of a unital associative ring and the ring itself

has been studied in various forms over a long number of years. Prompted by a question

of Fuchs [4], there has been special interest in the situation in which the ring is the full

endomorphism ring of an abelian group, or more generally a module, and the group of

units is then the corresponding automorphism group. Recall the definitions from [8]: an

associative ring R is said to have the n-sum property(for a positive integer n) if every

element of R can be written as the sum of exactly n units of R. Clearly if this property

holds for an integer n, then it also holds for any integer k > n, and so we can make the

following definition of the unit sum number of a ring R: usn(R):= min{n|R has the n-sum

property}. If there is an element of R which is not a sum of units we set the unit sum

number to be ∞ while if every element of R is a sum of units but R does not have the

n-sum property for any n, we set usn(R)= ω. The unit sum number of an abelian group

or module is defined to be equal to that of its endomorphism ring. There is a considerable

body of literature on this topic, often without using the terminology above. The principal

works include [2, 3, 7, 8, 9, 12, 14, 15, 16] .

The focus of the current work is the problem of calculating unit sum numbers of rational

groups i.e. subgroups of the additive group of rational numbers Q. Although we have a
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very concrete description of such groups in terms of types (see Fuchs[4, p.107]) it is not a

simple problem to calculate the unit sum numbers: difficult number-theoretic issues arise

and we shall indicate in Section 4, a relationship exists between our problem and some

known approaches to additive number theory. Our principal result is that there exists a

rational group G with finite unit sum number strictly greater than two.

Our terminology is standard and may be found in Fuchs [4, 5]; an exception is that we write

maps on the right and we denote the set of rational primes by Π. Concepts from number

theory may be found in Prachar[13] and from additive number theory in Nathanson[11];

in particular we shall have need of the function π(x) defined, for a real number x, as the

number of rational primes not exceeding x and also the function π(x, k, l) defined, for a

real number x and positive integers k, l with (k, l)=1, as the number of rational primes

congruent to l mod k and not exceeding x. We also adopt the standard practice, where

necessary, of distinguishing a ring from a module by using bold face characters for the

former.

§2 General considerations

The endomorphism ring of a rational group of type τ is easily described: it is the subring

of Q of type τ0, the reduced type of τ . Thus our consideration of unit sum numbers of

rational groups reduces to the study of such rings.

The following two results reflect the importance of the prime number 2 in determining

the unit sum numbers of rational groups .

Proposition 2.1 Let G be a rational group. If 2 is not an automorphism of G then

usn(G)= ω.

Proof: We need only consider E (G) = R, the subring of Q containing Z and with the

reduced type of G. Consider an element
a
b of R where a, b are positive integers . If b is

even then (a
b)(

b
2) = (a

2) is an element of R. Therefore a must be even or else
a−1
2 ∈ Z
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in which case (a
2)− (a−1

2 ) = (1
2) must be an element of R, contradicting 2 not being

a unit of R . Therefore if
a
b is a unit of R, expressed in lowest form, then both a and b

must be odd.

Let n be any even positive integer. Consider any sum of n units of R,
a1
b1

+ a2
b2

+ . . . + an
bn

= a1b2...bn+a2b1b3...bn+...+anb1...bn−1
b1...bn

,

where
ai
bi

is a unit of R expressed in lowest form for each i ∈ 1, 2, . . . , n. Observe that

the denominator is a product of odd numbers and therefore odd and the numerator is an

even sum of odd number products and therefore even. A sum of n units can never be a

unit in this case. Therefore R has not got the n–sum property for any even integer n.

We know however that for any positive integer n a ring which has the n–sum property

must also have the (n + 1)–sum property. It follows that R cannot have the n–sum

property for any positive integer n. Every element of R is a sum of units so we conclude

that usn(R)=usn(G)= ω.

�

Proposition 2.2 Let G be any rational group such that E (G) = Q(2), the rational

group of type (∞, 0, 0, . . .).

Then usn(G)= ω.

Proof: We prove that for each positive integer n there is an integer, 1 + 22 + . . . + 2n,

which cannot be expressed as a sum of n units of Q(2). In Q(2) each unit is of the form

±2a where a is an integer.

The proof is by induction. The induction statement is

1 + 22 + . . . + 22n �=
n∑

i=1
ai∈

± 2ai ,for all n ∈ Z+. (∗)

The statement is true for n = 1 since 1 + 22(1) = 5 and 5 is not a unit. We assume the

statement is true for all positive integers n < m. Now seeking a contradiction let,

1 + 22 + . . . + 22m =
m∑

i=1
ai∈

± 2ai . (1)

for some fixed set of integers a1, . . . , am. The left hand side of this equation is odd so∑
ai<2

±2ai �= 0 and is an odd integer. We rewrite the equation with renumbering and
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rearrange as

22 + . . . + 22m = (
l∑

i=1
ai<2

± 2ai − 1) +
m∑

i=l+1
ai≥2

± 2ai , some 1 < l ≤ m. (2)

We claim that the term (
l∑

i=1
ai<2

±2ai −1) can be written as a sum of less than l units in Q(2).

Observe from the equation that 4 divides (
l∑

i=1
ai<2

± 2ai − 1). So writing (
l∑

i=1
ai<2

± 2ai − 1) = 4l′

for some l′ ∈ Z, we note that this expresses (
l∑

i=1
ai<2

± 2ai − 1) as a sum of | l′ | units for

l′ �= 0.

To prove the claim we must show | l′ |< l.

If l′ = 0 then | l′ |< l.

If l′ �= 0: Since 2ai ≤ 2 for all ai < 2 it is clear that

| (
l∑

i=1
ai<2

± 2ai − 1) |=| 4l′ |≤ 2l + 1. Since l′ �= 0 then we can write | 2l′ | +1 < 2l + 1 which

gives us | l′ |< l.

The claim is proved.

Returning to equation (2), if (
l∑

i=1
ai<2

± 2ai − 1) can be expresssed as zero or a sum of less

than l units then 22 + . . . + 22m can be expressed as a sum of less than m units. Then we

may write,

22 + . . . + 22m =
m′∑
j=1

bj∈

± 2bj ,for some m′ < m.

Dividing this equation by 4 we get,

1 + . . . + 22(m−1) =
m′∑
j=1

bj∈

± 2bj−2.

This contradicts the induction statement (∗) for n = m − 1 and so the assumption (1) is

false and the proof now follows by induction. Therefore usn(G)=usn(Q(2))= ω. �
The next two lemmas enable us to make some simplifications in our approach.

Lemma 2.3 Let G be a rational group with E (G) = R. If
1
2∈ R then G has the n–sum

property if and only if every positive integer is a sum of exactly n units of R.
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Proof: Clearly, if R has the n–sum property for some positive integer n then every

positive integer is a sum of n units of R.

Conversely, suppose every positive integer is expressible as a sum of n units of R. Then

every negative integer must also be expressible as a sum of n units of R and since

0 = 1 −
n−2∑
i=1

1
2i − 1

2n−2 , all integers are sums of n units.

Consider an arbitrary non–integer element of R,
a
b , expressed in lowest form.

If a = 1, then (a
b) is a unit . Since products of units are units and 1 is a sum of n units

then (a
b)(1) is also.

If b = 1, then
a
b= a, an integer, and so is a sum of n units.

In any remaining case a and b must be relatively prime so there exist integers k, l such

that ka + lb = 1. Now (k(
a
b ) + l) is an element of R and (k(

a
b ) + l)(b) = 1. Therefore b

is a unit of R and so also is
1
b . Since a, as an integer, is a sum of n units then

1
b (a) is also.�

Lemma 2.4 Let G1, G2 be rational groups such that E (G1) ≤ E (G2), then usn(G1) ≥usn(G2).

Proof: Since E (G1) ≤ E (G2) then every unit of E (G1) is also a unit of E (G2).

So if a positive integer z is a sum of n units in E (G1) then the same is true for z

as an element of E (G2). Therefore by Lemma 2.3 usn(E (G2))≤usn(E (G1)) and so

usn(G2)≤usn(G1). �

§3 Unit sum numbers for various rational groups

Given the description of the endomorphism ring of a rational group G in terms of a reduced

type, it is natural to consider the set XG := {p ∈ Π |1p �∈ E (G)}, where Π denotes the

set of rational primes.

Theorem 3.1 Let G be a rational group with 2 ∈ Aut(G). If XG is a finite set then

usn(G) = 2.

Proof: Let R = E (G) and enumerate XG = {qi | i = 1, . . . , k}. By Lemma 2.3, we

need only prove all positive integers are sums of two units of R. Clearly if 2 is a unit of

6



R then every unit of R is a sum of two units. Now by definition of XG we know that for

all p ∈ Π\XG, p is a unit of R and so any products of primes not in XG are units of R

also. Let z = (
∏

qi∈XG;i=1,...,k

mi∈

qmi
i )(

∏
pj∈Π\XG

nj∈

p
nj

j ) be an arbitrary positive integer which is not a

unit in R, i.e. some qi ∈ XG divides z.

Since (
∏

pj∈Π\XG

nj∈

p
nj

j ) is a unit we need only show that z′ = (
∏

qi∈XG;i=1,...,k

mi∈

qmi
i ) is a sum of two

units of R. If every qi in XG divides z′ then (z′− 1) is relatively prime to all qi ∈ XG and

therefore a unit, in which case z′ = (z′ − 1) + 1 is a sum of two units for z′.

If some qi in XG do not divide z′ then (z′ ± ∏
qi∈XG

qi z′

qi) is a unit since no prime in XG can

divide it. In this way, z′ =
1
2(z′ +

∏
qi∈XG

qi z′

qi)+
1
2(z′ − ∏

qi∈XG

qi z′

qi) expresses z′ as a sum of two

units and the result follows. �
We can extend Theorem 3.1 to some cases where XG is not finite; our next result shows

some similarity to an example of Opdenhövel [12].

Proposition 3.2 Let G be a rational group with E (G) = R where

2 �∈ XG. If for any x ∈ Z+ such that (x, p) = 1 for all p ∈ Π\XG there is some x < q ∈ Π

so that q′ �∈ XG for all q′ ∈ Π with q ≤ q′ < qπ(q), then usn(G) = 2.

Proof: It suffices to show that products of elements of XG are sums of two units of R.

Let x be such a product. If there is some q ∈ Π with x < q so that q′ �∈ XG for all q′ ∈ Π

with q ≤ q′ < qπ(q) then we claim that x is a sum of two units as follows;

x =
1
2(x +

∏
qi∈XG

qi x;qi<q

qi)+
1
2(x − ∏

qi∈XG

qi x;qi<q

qi).

To prove this claim we need to show that (x+
∏

qi∈XG

qi x;qi<q

qi) is a unit of R. Let p ∈ Π be such

that p divides (x +
∏

qi∈XG

qi x;qi<q

qi).

If p < q; since all primes in XG less than q are accounted for by the prime factors of x

and (
∏

qi∈XG

qi x;qi<q

qi), then by construction p cannot divide both x and (
∏

qi∈XG

qi x;qi<q

qi) so p �∈ XG .
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If q ≤ p < qπ(q) then p �∈ XG by the condition that q′ �∈ XG for all q′ ∈ Π with

q ≤ q′ < qπ(q).

Now we consider qπ(q) ≤ p. Note that by construction, x < q and that q > 3 so

qπ(q) > qπ(q)−1 + q. Also notice that | {qi ∈ XG; qi < q} |< π(q) − 1, i.e. 2 �∈ XG,

so (
∏

qi∈XG

qi x;qi<q

qi) < (
∏

qi∈XG

qi<q

q) < qπ(q)−1.

Therefore | (x +
∏

qi∈XG

qi x;qi<q

qi) |< qπ(q)−1 + q < qπ(q).

So p ≥ qπ(q) cannot divide (x +
∏

qi∈XG

qi x;qi<q

qi) since it is too big. Therefore the integer

(x +
∏

qi∈XG

qi x;qi<q

qi) must be a product of primes not contained in XG and therefore a unit of

R. By a similar argument (x − ∏
qi∈XG

qi x;qi<q

qi) is a unit of R also. �

Example 3.3 Denote by τ 1[n] (n ∈ Z+) the index of the least prime greater than p
π(pn)
n

(i.e. pτ1[n] is the least prime greater than pn
π(pn)) and set τ 1[τ (m−1)[n]] = τm[n], for all

integers m > 1.

Let R be the subring of Q with type(R) = (kpi
) where

kpi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ for i = 1

0 for 1 < i ≤ τ 1[2]

∞ for τ 1[2] < i ≤ τ 2[2]

. . . . . .

0 for τ j[2] < i ≤ τ j+1[2], j(> 1)even

∞ for τ j[2] < i ≤ τ j+1[2], j(> 1)odd

By Proposition 3.2, any rational group, G, with E (G) > R has unit sum number 2.

Next, rational groups are investigated which have only two symbols ∞ within their re-

duced type or in other words where | Π \ XG |= 2. Because of the importance of the

prime 2, as illustrated in Proposition 2.1, we are, in fact, considering groups of the type

(∞, r2, r3, . . .) where only a single ri is ∞, the rest being finite. We begin with a technical
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lemma.

Lemma 3.4 Let a, b, c, d ∈ Z \ {0} and let
a
b ,

c
d be rational numbers expressed in lowest

form. If (a
b + c

d) is an integer then b = ±d.

Proof: Straightforward. �

Corollary 3.5 Let k, l, m, n ∈ Z. Let z be an integer and let p �= 2 be a rational prime

such that z = ±(2kpl ± 2mpn). If k < 0(or m < 0) then k = m. If l < 0(or n < 0) then

l = n.

Proof This follows directly from Lemma 3.4 �
The following proposition provides a useful simplification in discussing the 2–sum property

for all rational groups with only two symbols infinity in their reduced type, one of which

corresponds to the rational prime 2.

Lemma 3.6 Let p ∈ Π\{2} and let G be a rational group with

E (G) = R, where R is the subring of Q generated by
1
2 and

1
p . Then usn(G) = 2 if

and only if every positive integer z with (z, 2) = 1 = (z, p) can be expressed in one of the

following forms:

(1) z = ±(2k ± pl) for some k > 0, l > 0.

(2) z = 2kpl ± 1 for some k > 0, l ≥ 0.

(3) z =
1
pl (2

k ± 1) for some k > 0, l > 0.

(4) z =
1
2k (pl ± 1) for some k > 0, l > 0.

where k, l ∈ Z.

Proof: In the first direction we assume that usn(G)= 2 and so usn(R)= 2. Every unit

of R is of the form ±2apb where a, b ∈ Z. Let z be a positive integer greater than 1 and

relatively prime to both 2 and p. Let z = ±(2apb ± 2cpd) be a two unit sum for z, where

a, b, c, d ∈ Z. Notice that a, b, c, d cannot all be less than or equal to zero since z cannot
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take the values ±1,±2, or 0.

By Corollary 3.5 if a < 0 then c = a and since z is relatively prime to 2 then if either a

or c is greater than 0 then the other must be zero, i.e. if a > 0 then c = 0. Similarly if

b < 0 then d = b and since z is relatively prime to p then if either b or d is greater than

0 then the other must be zero, i.e. if b > 0 then d = 0. In light of this we consider the

possible two unit sums for z.

If a > 0 (forcing c = 0) and d > 0 (forcing c = 0) then z = ±(2a ± pd). This is of form

(1). Similarly form (1) occurs for c > 0 and b > 0.

If a > 0 (forcing c = 0) and b > 0 (forcing d = 0) then z = 2apb ± 1. Note that only one

± sign occurs in this equaton and it must accompany the 1, otherwise a negative integer

would result. This equation is of form (2). Similarly form (2) occurs for c > 0 and d > 0.

If a = c < 0 then b > 0 and d = 0, or b = 0 and d > 0 resulting in z =
1

2−a (pb ± 1) or

z =
1

2−a (pd ± 1). Notice there is only one ± sign in each equation and it must precede

the 1 otherwise a negative integer would result. These equations are of form (4).

If b = d < 0 then a > 0 and c = 0, or a = 0 and c > 0 resulting in z =
1

p−b (2a ± 1) or

z =
1

p−b (2c ± 1). Again the only ± sign accompanies the 1 or a negative integer results.

These equations are of form (3).

If b = d = 0 then a > 0 and c = 0, or a = 0 and c > 0 resulting in z = 2a±1 or z = 2c±1.

These equations are of form (2).

We have covered all possible cases.

In the other direction let x be a positive integer. We can write x = 2apb(z) with

a, b ∈ Z where (z, 2) = 1 = (z, p) or z = 1. If z(�= 1) can be expressed in one of

the forms (1),(2),(3) or (4) then, since 1 =
1
2+

1
2, every positive integer can be expressed

as unit(unit+unit). Then by Lemma 2.3 usn(G)= 2. �
It is convenient for our purposes to consider the primes modulo 24. Excluding 2 and 3 the

primes fall into eight classes modulo 24, these being 1, 5, 7, 11, 13, 17, 19 and 23 mod 24.

By Dirichlet’s famous theorem (see Prachar[13, IV, Theorem 4.3]) for primes in an arith-

metic progression, we know that in each of these classes there is an infinite number of

primes. Let P ∗ denote the set of primes {p ∈ Π | p ≡ 1, 5, 11, 13, 19 or 23 mod 24}.
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Proposition 3.7 Let P ∗
25 = P ∗\{5, 13, 23, 29, 101} and p ∈ P ∗

25. Let R be the subring of

Q generated by
1
2 and

1
p . Then usn(R) > 2.

Proof: We will show that 25 cannot be expressed as a sum of two units in R and there-

fore usn(R)> 2. Since (25, p) = 1 for all p ∈ P ∗
25, and (25, 2) = 1, then by Proposition

3.6 if 25 can be expressed as a sum of two units of R it must be expressible in one of the

forms (1),(2),(3) or (4).

Form (1): We tabulate modulo 24 values of ±2k ± pl for k, l > 0 and for all possible

values of p in P ∗.

±2k mod 24

±pl mod 24

+ 1 5 11 13 19 23

2 3 7 13 15 21 1

4 5 9 15 17 23 3

8 9 13 19 21 3 7

16 17 21 3 5 11 15

-4 21 1 7 9 15 19

-2 23 3 9 11 17 21

Table: ±2k ± pl mod 24; k, l > 0, p ∈ P ∗.

On this table 1 mod 24 occurs only for ±2k ≡ 2 or −4 mod 24, which correspond to

±2k = 2 or −4. However 25 = 2 ± pl implies that p = 23, which is not contained in P ∗
25;

and 25 = −4 ± pl implies p = 29, which is not contained in P ∗
25. Therefore 25 does not

occur in R as form (1).

Form (2): This time we tabulate values of 2kpl modulo 24 for k > 0, l ≥ 0 and for all

values of p in P ∗.
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±2k mod 24

pl mod 24

× 1 5 11 13 19 23

2 2 10 22 2 14 22

4 4 20 20 4 4 20

8 8 16 16 8 8 16

16 16 8 8 16 16 8

Table: 2kpl mod 24; k > 0, l ≥ 0, p ∈ P ∗.

From this table we deduce that 2kpl ± 1 with k > 0 and l ≥ 0 can only be congruent

to 1 mod 24 for k = 1 (i.e. see values resulting in 0 or 2 in the table above). However

25 = 2pl ± 1 implies p = 13 which is not contained in P ∗
25. Therefore 25 does not occur in

R as form (2).

Form (3): The set of congruences modulo 24 for 25pl with l > 0 and p ∈ P ∗ is

{1, 5, 11, 13, 19, 23}. The set of congruences modulo 24 for 2k±1 with k > 0 is {1, 3, 5, 7, 9, 15, 17}.
Values common to both sets are 1 and 5 mod 24; these correspond to k = 1 and k = 2.

Since 25 > 2k ± 1 for k = 1 or 2, then 25 cannot be expressed as form (3) in R.

Form (4): The set of congruences modulo 24 for 25(2k) with k > 0 is {2, 4, 8, 16}. The set

of congruences modulo 24 for pl±1 with l > 0 and p ∈ P ∗ is {0, 2, 4, 6, 10, 12, 14, 18, 20, 22}.
Only the congruences 2 and 4 mod 24 occur in both sets. These correspond to k = 1 or

2. For k = 1 we get 2(25) = pl ± 1 giving pl = 49 or 51 both of which are impossible for

p ∈ P ∗. For k = 2 we get 4(25)= pl ± 1 giving pl = 99 or 101, neither of which is possible

for p ∈ P ∗
25. Therefore 25 cannot be expressed in form (4) in R. �

Proposition 3.8 Let P ∗
73 = P ∗\{37, 71, 293} and p ∈ P ∗

73. If R is the subring of Q

generated by
1
2 and

1
p , then usn(R) > 2.

Proof: We will show that 73 cannot be expressed as a sum of two units in R. The proof

follows Proposition 3.7 exactly, so we summarise just one form:

Form (1): Let 73 = 2 ± pl with l > 0 and p ∈ P ∗. This implies p = 71 which is not

contained in P ∗
73.

Let 73 = −4 ± pl with l > 0 and p ∈ P ∗. This implies that 77 = pl which is impossible
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for p ∈ P ∗. Therefore 73 cannot be of form (1) in R. �

Corollary 3.9 Let p ∈ P ∗. If R is the subring of Q generated by
1
2 and

1
p and if G is a

rational group such that E = R, then usn(G) > 2.

Proof: Recall from Propositions 3.7 and 3.8 that P ∗
25 = P ∗ \ {5, 13, 23, 29, 101} and

P ∗
73 = P ∗ \ {37, 71, 293}. Therefore P ∗ = P ∗

25 ∪ P ∗
73. The proof then follows directly from

these two propositions. �
Using similar arithmetic arguments we can establish the following:

Theorem 3.10 Let p ∈ Π\{2}. Let G be a rational group such that E (G) is the subring

of Q generated by
1
2 and

1
p . Then usn(G) > 2.

Proof: Full details may be found in Meehan [10, III]. �
If P is a proper subset of Π containing 2 and at least one other prime, then we have the

following analogue of the reduction Lemma 3.6.

Proposition 3.11 Let {2} � P � Π. Let G be a rational group such that E (G) is the

subring of Q generated by {1
p | p ∈ P}. Then usn(G) = 2 if and only if every positive

integer z with (z, p) = 1 for all p ∈ P can be expressed in one of the following forms:

(a) z =
1

2mB (C ± D)

(b) z = ± 1
B (2mC ± D)

where m ∈ Z+ and B, C, D are products of elements of P\{2} such that (B, C) =

1 = (C,D) = (B,D).

Proof: The proof is similar to that of Lemma 3.6. For full details see Meehan [10]. �

Corollary 3.12 Let G be a rational group such that E (G) is the subring of Q generated

by {1
2} ∪ {1

p | p ∈ Π, p ≡ 1 mod 24}. Then usn(G) > 2.
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Proof: Consider the set P = {2} ∪ {p ∈ Π | p ≡ 1 mod 24} and let z = 11. Then z

is not of the form (a) since:

(C ± D) ≡ 0 or 2 mod 24 and

2m · 11B ≡ 22, 20, 16 or 8 mod 24.

Moreover, z is not of form (b) either, since:

11B ≡ 11 mod 24 and

±(2mC ±D) ≡ ±1, ±3, ±5, ±7, ±9, ±15 or ±17 mod 24. Therefore

by Proposition 3.11 usn(R)�= 2. �
By Dirichlet’s Theorem (see [13, IV, Theorem 4.3]), the set {p ∈ Π | p ≡ 1 mod 24} is

infinite and co-infinite and so the group G in Corollary 3.12 is an example of a rational

group having endomorphism ring R with Π \ XG infinite but usn(R) �= 2. In the next

section we shall see that usn(G) is finite.

§4 A number theoretical approach

A different line of approach is followed now adapting some results from additive number

theory to get some interesting outcomes. We begin by recalling some fundamental notions

and results; further background material may be found in Nathanson [11].

Definitions 4.1 Let A be a set of integers, x ∈ Z, and h ∈ N.

(i) The Counting Function of the set A, defined for x ∈ Z, is the number of positive

elements of A not exceeding x, written A(x),

A(x) =
∑
a∈A

1≤a≤x

1.

(ii) The Shnirel’man Density of the set A, denoted σ(A), is

σ(A) = infn=1,2,...(
A(n)

n )

(iii) The set A is a basis of order h if every non–negative integer can be expressed as a

sum of exactly h elements of A.

14



We include here some results which will be used later.

Lemma 4.2 Let x be a positive integer greater than 2. Let r(N) denote the number of

representations of the integer N as the sum of two primes.

Then

(i)
∑

N≤x

r(N) > c1
x2

(ln x)2
, for some positive constant c1 .

(ii)
∑

N≤x

(r(N))2 ≤ c2
x3

(ln x)4
, for some positive constant c2 .

Proof: See Nathanson[11, Lemmas 7.6/7.7]. �

Lemma 4.3 Let A and B be sets of integers such that 0 ∈ A, 0 ∈ B.

(i) If n ∈ N and A(n) + B(n) ≥ n,then n ∈ A + B.

(ii) If σ(A) + σ(B) ≥ 1, then n ∈ A + B for each n ∈ N.

(iii) Ifσ(A) >
1
2 then A is a basis of order 2.

Proof: For (i) and (ii) see Nathanson [11, Lemmas 7.3/7.4]; (iii) follows immediately

from (ii) taking A = B. �

Theorem 4.4 (Shnirel’man) Let A and B be sets of integers such that 0 ∈ A, 0 ∈ B.

Let σ(A) = α and σ(B) = β. Then

σ(A + B) ≥ α + β − αβ.

Proof: See Nathanson [11, Theorem 7.5]. �

Theorem 4.5 Let h ≥ 1, and let A1, . . . , Ah be sets of integers such that 0 ∈ Ai for

i ∈ 1, . . . , h. Then

1 − σ(A1 + . . . + Ah) ≤
h∏

i=1

(1 − σ(Ai)).
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Proof: The proof is by induction on h. Let σ(Ai) = αi for i = 1, . . . , h. For h = 1

there is nothing to prove. For h = 2 , the inequality follows from Theorem 4.4.

Let k ≥ 3, and assume the theorem holds for all h < k. Let B = A1 + . . . + Ak−1. It

follows from the induction hypothesis that

1 − σ(B) = 1 − σ(A1 + . . . + Ak−1) ≤
k−1∏
i=1

(1 − σ(Ai)) ,

and so

1 − σ(A1 + . . . + Ak) = 1 − σ(B + Ak)

≤ (1 − σ(B))(1 − σ(Ak)) (by Theorem 4.4)

≤ (1 − σ(Ak))
k−1∏
i=1

(1 − σ(Ai))

=
k∏

i=1

(1 − σ(Ai)).

This completes the proof.

�
The following theorem is fundamental to our line of approach.

Theorem 4.6 (Shnirel’man )

Let A be a set of integers such that 0 ∈ A and σ(A) = α > 0.

Then A is a basis of finite order.

Further, A is a basis of finite order at most h = 2l, h, l ∈ N where l is defined by

0 ≤ (1 − α)l ≤1
2.

Proof: Let σ(A) = α > 0. Then 0 ≤ 1 − α < 1, and so

0 ≤ (1 − α)l ≤1
2 , for some integer l ≥ 1.

By Theorem 4.5,

1 − σ(lA) ≤ (1 − σ(A))l = (1 − α)l ≤1
2,

and so σ(lA) ≥1
2. Let h = 2l. It follows from Corollary ?? that the set lA is a basis of

order 2l = h. This completes the proof. �

Theorem 4.7 (Shnirel’man-Goldbach)

The set A = {0, 1} ∪ {p + q | p, q ∈ Π} has positive Shnirel’man density.
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Proof: See [11, Theorem 7.8]. �

Lemma 4.8 Let S be a subset of Π which contains a positive proportion of Π, in the

sense that S(x) > θπ(x) for some θ(> 0) ∈ R and for all sufficiently large x ∈ Z.

Then the set S ∪ {0, 1} is a basis of finite order.

Proof: We show that the set A = {0, 1} ∪ {p + q; p, q ∈ S} has positive Shnirel’man

density. For any positive integer N let r(N) denote the number of representations of N

as a sum of two primes and let rS(N) denote the number of representations of N as a

sum of two primes belonging to S. Then, for all sufficiently large x ∈ Z,∑
N≤x

rS(N) ≥(S(
x
2 ))2 ≥ (θπ(

x
2 ))2,

and by the Prime Number Theorem (see [13, III Theorem 2.4])

(θπ(
x
2 ))2 ≥ c1(

x
2

logx
2
)2, for some positive constant c1.

Also by Lemma 4.2 (ii),∑
N≤x

(rS(N))2 ≤ c2
x3

(logx)4
, for some positive constant c2.

Now by the Cauchy-Schwarz inequality (see [14, Lemma 7.1]),

(
∑

N≤x

(rS(N))2 ≤ ∑
N≤x

rS(N)≥1

1
∑

N≤x

(rS(N))2.

Of course
∑

N≤x

rS(N)≥1

1 ≤ A(x). Therefore we can write,

A(x)
x ≥1

x

(
∑

N≤x
rS(N))2∑

N≤x
(rS(N))2

, and so

A(x)
x ≥1

x

(c1(
x
2

log x
2
)2)2

c2
x3

(logx)4
=

c1
2(ln x)4

c2(ln x−ln 2)4
≥c1

2(ln x)4

c2(ln x)4
.

This means that A(x) ≥ c3x, for some positive constant c3 and for all sufficiently large

x. Since 1 ∈ A it follows that A has positive Shnirel’man density and so is a basis of

finite order, say h ∈ Z+. Therefore every non-negative integer can be expressed as a sum

of exactly h elements of A. Whenever 0 occurs in such a sum we may write 0 + 0 and

whenever 1 occurs we may write 1 + 0 and so any sum of exactly h elements of A is a
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sum of exactly 2h elements of S ∪ {0, 1}. Therefore, S ∪ {0, 1} is a basis of order 2h.

Theorem 4.9 Let S be a subset of Π which contains a positive proportion of Π. If 2 ∈ S

then, R, the subring of Q generated by {1
p | p ∈ S} has finite unit sum number. �

Proof: By Lemma 4.8, the set S∪{0, 1} is a basis of finite order, say of order h ∈ Z+.

For an arbitrary element r of Z+ we have:

r = s1 + s2 + . . . + sh (si ∈ S ∪ {0, 1}, i = 1, . . . , h).

If si ∈ S ∪ {1} for all i = 1, . . . , h then r is a sum of h units of R.

If s1, . . . , sk �= 0 for some 1 ≤ k < h and sk+1, . . . , sh = 0 then,

r =
k−1∑
i=1

si + sk

(
1

2h−k
+

h−k∑
j=1

1

2j

)

is a sum of h units of R. By Lemma 2.3, R has the h–sum property. So, certainly

usn(R) ≤ h. �
This is a significant result. For example, letting Π = {pi}i=1,2,... under the natural

ordering, the ring generated by { 1
p1

,
1
pn

,
1

p2n
, . . . ,

1
pin

,. . .} has finite unit sum number

whatever n ∈ Z+. (Note, R = Q for n = 1.)

From the Prime Number Theorem (see Prachar [13, III, Theorem 2.4]) and the Prime

Number Theorem for Arithmetic Progressions (see Prachar [13, IV, Theorem 7.5]) it is

seen that;

lim
x→∞

π(x,k,l)
π(x) =

1
ϕ(k) ,

where π(x; k, l) denotes the number of rational primes congruent to l mod k and not

exceeding x (k, l ∈ N, (k, l)= 1) and where ϕ is the Euler function.

So, for any ε > 0, we can find x0 ∈ R such that

ε <
π(x,k,l)

π(x) − 1
ϕ(k)< ε for all x > x0,

so that π(x, k, l) > π(x)(
1

ϕ(k)−ε) for all x > x0.
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Now set k = 24, l = 1 and choose ε =
1
16. Then π(x, 24, 1) >

1
16π(x) for all

x > x0 and for some x0 ∈ R.

Therefore the set of primes congruent to 1 mod 24 is a positive proportion of Π, and by

Theorem 4.9 and Proposition 3.7 we have proved ,

Corollary 4.10 Let P = {2} ∪ {p ∈ Π | p ≡ 1 mod 24}. Let G be a rational group such

that E (G) is the subring of Q generated by

{1
p | p ∈ P}. Then usn(G) is finite but greater than 2.

It is possible to extend this approach to obtain an upper bound for the unit sum number

of the above group G. Inevitably the bound so obtained is extravagantly large: it is shown

in Meehan [10, III Proposition 3.15] that 1208000 is an upper bound.
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