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Using the autocorrelation theorem, we have

I(N̂, k) = k4

∫
V

exp(−ikN̂ · r)Γ(r)d3r

whereΓ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′.

Fig. 1. Simulation of the coherent (bottom-left) and incoherent (bottom-
right) images associated with light scattering from a random medium imaged
through a square aperture with coherent (top-left) and incoherent (top-right)
point spread functions whose absolute values are shown using a logarithmic
grey-scale.

This result allows us to evaluate the intensity of the Born
scattered amplitude by computing the Fourier transform of
the autocorrelation function of the scattering function which
is taken to be composed of a number of scatterers distributed
at random throughoutV . This requires the autocorrelation
function to be defined for a particular type of random scat-
terer. Thus, a random medium can be characterized via its
autocorrelation function by measuring the scattered intensity
and inverse Fourier transforming the result.

From the autocorrelation theorem, the characteristics of the
autocorrelation function can be formulated by considering its
expected spectral properties since

Γ(r) ⇐⇒| γ̃(k) |2

where γ̃ is the Fourier transform ofγ, k is the spatial
frequency vector and⇐⇒ denotes the transformation from
real spacer to Fourier spacek. Hence, in order to evaluate
the most likely form of the autocorrelation function we can
consider the properties of the power spectrum of the scattering
function. If this function is ‘white’ noise, for example (i.e.

its Power Spectral Density Function or PSDF is a constant),
then the autocorrelation function is a delta function whose
Fourier transform is a constant. However, in practice, we can
expect that few scattering functions have a PSDF characterized
by white noise, rather, the PSDF will tend to decay as the
frequency increases. We can consider a model for the PSDF
based on the Gaussian function

| γ̃(k) |2= γ̃2
0 exp

(
−k2

k2
0

)
,

for example, wherẽγ0 = γ̃(0), k =| k | and k0 is the
standard deviation which is a measure of the correlation
length. This form yields an autocorrelation function which is
of the same type, i.e. a Gaussian function. If the geometry of
the scattering function is self-affine, then we can model the
scattering function as a random scattering fractal whose PSDF
is characterized by [15]

| γ̃(k) |2∼ 1
k2q

whereq > 0, the autocorrelation function being characterized
by

Γ(r) ∼ 1
r3−q

.

Other issues in determining the nature of the autocorrelation
function are related to the physical conditions imposed on the
stochastic characteristics of the scatterer.

The method discussed above can be used to model the
(Born) scattered intensity from a random medium which
requires an estimate of the autocorrelation of the scattering
function to be known. However, this approach assumes that the
density of scattering sites from which the scatterer is composed
is low so that the Born approximation is valid. When the
density of scattering sites increases and multiple scattering
is present, the problem become progressively intractable. One
approach to overcoming this problem is to resort to a purely
stochastic approach which involves developing a statistical
model, not for the scattering function, but for the scattered
field itself which is discussed later.

III. T HE DIFFUSION EQUATION

The homogeneous diffusion equation [7]

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’, differs in many aspects from
the scalar wave equation. The most important single feature is
the asymmetry of the diffusion equation with respect to time.
For the wave equation, ifu(r, t) is a solution, so isu(r,−t).
However, ifu(r, t) is a solution of

∇2u = σ
∂u

∂t

the function u(r,−t) is not; it is a solution of the quite
different equation,

∇2u(r,−t) = −σ
∂

∂t
u(r,−t).

Thus, unlike the wave equation, the diffusion equation differ-
entiates between past and future. This is because the diffusing
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field u represents the behaviour of some average property of an
ensemble (e.g. of particles) which cannot in general go back to
an original state. Causality must therefore be considered in the
solution to the diffusion equation. This in turn leads to the use
of the one-sided Laplace transform (i.e. a causal transform) for
solving the equation with respect tot (compared to the Fourier
transform - a non-causal transform - used to solve the wave
equation with respect tot).

A. Green’s Function for the Diffusion Equation

To obtain a general solution to the diffusion equation, we
need to evaluate the Green’s functionG for the diffusion
equation subject to the causality condition

G(r | r0, t | t0) = 0 if t < t0.

This can be accomplished for one-, two- and three-dimension
simultaneously [13]. WithR =| r − r0 | and τ = t − t0 we
require the solution of the equation(

∇2 − σ
∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

wheren is 1, 2 or 3 depending on the number of dimensions.
One way of solving this equation is to first take the Laplace
transform with respect toτ , then solve forG (in Laplace
space) and inverse Laplace transform. This requires an initial
condition to be specified (the value ofG at τ = 0). Another
way to solve this equation is to take its Fourier transform with
respect toR, solve forG (in Fourier space) and then inverse
Fourier transform. Here, we adopt the latter approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik ·R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik ·R)dnk.

Then the equation forG reduces to

σ
∂G̃

∂τ
+ k2G̃ = δ(τ)

which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

whereH(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green’s functions are given by

G(R, τ) =
1

σ(2π)n
H(τ)

∞∫
−∞

exp(ik ·R) exp(−k2τ/σ)dnk

=
1

σ(2π)n
H(τ)

 ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

 ...

By rearranging the exponent in the integral, it becomes pos-
sible to evaluate each integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− i

Rx

2

√
σ

τ

)2

−
(

σR2
x

4τ

)
= − τ

σ
ξ2 −

(
σR2

x

4τ

)
where

ξ = kx − i
σRx

2τ
,

the integral overkx becomes
∞∫

−∞

exp
[
−

( τ

σ
ξ2

)
−

(
σRx

4τ

)]
dξ

= e−(σR2
x/4τ)

∞∫
−∞

e−(τξ2/σ)dξ =
√

πσ

τ
exp

[
−

(
σR2

x

4τ

)]
with similar results for the integrals overky andkz giving the
result

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−

(
σR2

4τ

)]
H(τ).

The functionG satisfies an important property which is valid
for all n: ∫ ∞

−∞
G(R, τ)dnr =

1
σ

, τ > 0.

This is the expression for the conservation of the Green’s
function associated with the diffusion equation. For example,
if we consider the diffusion of heat, then if at a timet0 and at a
point in spacer0 a source of heat is introduced instantaneously
(i.e. a heat impulse), then the heat diffuses out through the
medium characterized byσ in such a way that the total heat
energy is unchanged.

B. Green’s Function Solution to the Diffusion Equation

Working in three dimensions, let us consider the general
solution to the equation(

∇2 − σ
∂

∂t

)
u(r, t) = −f(r, t)

wheref is a source function of compact support(r ∈ V ) and
define the Green’s function as the solution to the equation(

∇2 − σ
∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)

It is convenient to first take the Laplace transform of these
equations with respect toτ = t− t0 to obtain

∇2ū− σ[−u0 + pū] = −f̄

and
∇2Ḡ + σ[−G0 + pḠ] = −δ3

where

ū(r, p) =

∞∫
0

u(r, τ) exp(−pτ)dτ,
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Ḡ(r | r0, p) =

∞∫
0

G(r | r0, τ) exp(−pτ)dτ,

f̄(r, p) =

∞∫
0

f(r, τ) exp(−pτ)dτ.

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for̄u by Ḡ and the equation for
Ḡ by ū, subtracting the two results and integrating overV we
obtain∫
V

(Ḡ∇2ū−ū∇2Ḡ)d3r+σ

∫
V

u0Ḡd3r = −
∫
V

f̄ Ḡd3r+ū(r0, p).

Using Green’s theorem and rearranging the result gives

ū(r0, p) =
∫
V

f̄(r, p)Ḡ(r | r0, p)d3r+σ

∫
V

u0(r)Ḡ(r | r, p)d3r

+
∮
S

(ḡ∇ū− ū∇ḡ) · nd2r.

Finally, taking the inverse Laplace transform and using the
convolution theorem for Laplace transforms, we can write

u(r0, τ) =

τ∫
0

∫
V

f(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′

+σ

∫
V

u0(r)G(r | r0, τ)d3r

+

τ∫
0

∮
S

[G(r | r0, τ
′)∇u(r, τ − τ ′)

−u(r, τ ′)∇G(r | r0, τ − τ ′)] · n̂d2rdτ ′.

The first two terms are convolutions of the Green’s function
with the source function and the initial fieldu(r, τ = 0)
respectively.

By way of a simple example, suppose we consider the
source term to be zero and the volume of interest is the infinite
domain, so that the surface integral is zero. Then we have

u(r0, τ) = σ

∫
V

u0(r)G(r | r0, τ)d3r.

In one dimension, this reduces to

u(x0, τ) =
√

σ

4πτ

∞∫
−∞

exp
[
−σ(x0 − x)2

4τ

]
u0(x) dx, τ > 0.

Observe that the fieldu at a time t > 0 is given by the
convolution of the field at timet = 0 with the (Gaussian)
function √

σ

4πt
exp

(
−σx2

4t

)
.

In two-dimensions, the equivalent result is

u(x, y, t) =
σ

4πt
exp

[
−

(
σ(x2 + y2)

4t

)]
⊗2 u0(x, y). (5)

IV. D ERIVATION OF THE DIFFUSION EQUATION FOR THE

INTENSITY OF L IGHT

Consider the three-dimensional homogeneous time depen-
dent wave equation

∇2u− 1
c2

∂2

∂t2
u = 0

wherec is taken to be a constant (light speed). Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that fieldφ varies significantly slowly in
time compared withexp(iωt) and note that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2φ,

and
∂2

∂t2
u = exp(iωt)

(
∂2

∂t2
φ + 2iω

∂φ

∂t
− ω2φ

)
' exp(iωt)

(
2iω

∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ .

Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik

c

∂φ

∂t

wherek = ω/c. However, sinceu∗ is also a solution,

(∇2 + k2)φ∗ = −2ik

c

∂φ∗

∂t

and thus,

φ∗∇2φ− φ∇2φ∗ =
2ik

c

(
φ∗

∂φ

∂t
+ φ

∂φ∗

∂t

)
which can be written in the form

∇2I − 2∇ · (φ∇φ∗) =
2ik

c

∂I

∂t

whereI = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector andA is the amplitude function.
Differentiating, and noting thatI = A2, we obtain

n̂ · ∇A =
2
c

∂A

∂t
or (

∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for the ampli-
tudeA of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

whereA varies slowly with time.
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The equation

∇2I − 2∇ · (φ∇φ∗) =
2ik

c

∂I

∂t

is valid for k = k0−iκ (i.e. ω = ω0−iκc) and so, by equating
the real and imaginary parts, we have

D∇2I + 2Re[∇ · (φ∇φ∗)] =
∂I

∂t

and

Im[∇ · (φ∇φ∗)] = −k0

c

∂I

∂t

respectively whereD = c/2κ, so that under the condition

Re[∇ · (φ∇φ∗)] = 0

we obtain

D∇2I =
∂I

∂t
.

This is the diffusion equation for the intensity of lightI. The
condition required to obtain this result can be justified by
applying a boundary condition on the surfaceS of a volume
V over which the equation is taken to conform. Using the
divergence theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r

=
∮
S

(φr∇φr + φi∇φi) · n̂d2r.

Now, if

φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈ V.

This boundary condition can be written as

∇φr

∇φi
= −tanθ

where θ is the phase of the fieldφ which implies that the
amplitudeA of φ is constant on the boundary (i.e.A(r, t) =
A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= −A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t)

= −tanθ(r, t), r ∈ S.

Suppose we record the intensityI of a light field in the
xy-plane for a fixed value ofz. Then forz = z0 say,

I(x, y, t) ≡ I(x, y, z0, t)

so that
∂

∂t
I(x, y, t) = D∇2I(x, y, t).

Let this two-dimensional diffusion equation be subject to the
initial condition

I(x, y, 0) = I0(x, y).

Then, at any timet > 0, it can be assumed that light diffusion
is responsible for blurring the imageI0 and that as time
increases, the image becomes progressively more (Gaussian)
blurred. By comparing this model with equation (5) it is clear
that

I(x, y, t) =
1

4πDt
exp

[
−

(
(x2 + y2)

4Dt

)]
⊗2 I0(x, y).

This result can, for example, be used to model the diffusion of
light through an optical diffuser. An example of such an effect
is given in Figure 2 which shows a light source (the ceiling
light of a steam room) imaged through air and then through
steam. Steam effects light by scattering it a large number
of times through the complex of small water droplets from
which (low temperature) steam is composed. The high degree
of multiple scattering that takes place allows us to model the
transmission of light through steam in terms of a ‘diffusive’
rather than a ‘propagative’ process. The initial conditionI0

denotes the initial image which is, in effect, and with regard
to Figure 2, the image of the light source obtained in air.

Fig. 2. Image of an optical source (left) and the same source imaged through
steam (right).

As observed in Figure 2, the details associated with the
light source are blurred through the convolution of the object
functionI0 with the Gaussian point spread function, a function
that is characteristic of diffusion processes in general.

V. DE-DIFFUSION

The problem is to findI0 from I at some timet > 0.
Consider the case in which we record the diffused imageI at
a time t = T . The Taylor series forI at t = 0 may then be
written as

I(x, y, 0) = I(x, y, T )− T

[
∂

∂t
I(x, y, t)

]
t=T

+
T 2

2!

[
∂2

∂t2
I(x, y, t)

]
t=T

+ ...

For T << 1, we can approximate this function be neglecting
all terms after the second term. Using the diffusion equation,
we then obtain

I(x, y, 0) ' I(x, y, T )− T

[
∂

∂t
I(x, y, t)

]
t=T

= I(x, y, T )−DT∇2I(x, y, T ).
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Now, since
I(x, y, 0) = I0(x, y)

we have

I0(x, y) = I(x, y, T )−DT∇2I(x, y, T ).

A. The High Emphasis Filter

The high emphasis filter [6] is based on computing an output
imageI0 from the input imageI via application of the result

I0(x, y) = I(x, y)−∇2I(x, y)

which is the case whenDT = 1.
This filter can be implemented by computing the digital

Laplacian in order to design an appropriate Finite Impulse
Response (FIR) filter [3]. Applying a centre differencing
scheme, i.e.

∇2Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij

we have

I0
ij = Iij−∇2Iij = 5Iij−I(i+1)j−I(i−1)j−Ii(j+1)−Ii(j−1).

where
I0
ij ≡ I0(i, j).

The digital Laplacian is a shift invariant linear operation.
Applying this operation to a digital imageIij is the same
as convolving the image with the two-dimensional array (the
FIR filter)  0 1 0

1 −4 1
0 1 0

 .

Hence, computingI0
ij is the same as convolvingIij with the

FIR filter  0 −1 0
−1 5 −1
0 −1 0

 .

An example of the application of this filter is given in Figure
3. Given the simplicity of the process (i.e. application of a
3 × 3 FIR filter), the method provides an effective image
enhancement technique providing the degradation of the image
conforms to a light diffusion (strong scattering) model.

B. General Solution

If we record an image at a timet = T then by Taylor
expandingI at t = 0 we can write

I(x, y, 0) = I(x, y, T ) +
∞∑

n=1

(−1)n

n!
Tn

[
∂n

∂tn
I(x, y, t)

]
t=T

The high emphasis filter derived earlier is obtained by neglect-
ing terms in the series above forn > 1 giving an approximate
solution for the de-diffused imageI0. If we include all the
terms in this series, then an exact solution forI0 can be

Fig. 3. Original image (left) - rings of Saturn - and an enhanced image
(right) using the high emphasis filter.

obtained. This can be done by noting that (from the diffusion
equation)

∂2I

∂t2
= D∇2 ∂I

∂t
= D2∇4I

∂3I

∂t3
= D∇2 ∂2I

∂t2
= D3∇6I

and so on. In general we can write[
∂n

∂tn
I(x, y, t)

]
t=T

= Dn∇2nI(x, y, T ).

Substituting this result into the series forI0 given above, we
get

I0(x, y) = I(x, y, T ) +
∞∑

n=1

(−1)n

n!
(DT )n∇2nI(x, y, T )

and forDT = 1

I0 = I −∇2I +
1
2!
∇4I − 1

3!
∇6I + ...

From this result, we can design FIR filters for the higher
order terms. Since

∇2Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij = Jij

then

∇4Iij = ∇2Jij = J(i+1)j +J(i−1)j +Ji(j+1) +Ji(j−1)−4Jij

= I(i+2)j + Iij + I(i+1)(j+1) + I(i+1)(j−1) − 4I(i+1)j

+Iij + I(i−2)j + I(i−1)(j+1) + I(i−1)(j−1) − 4I(i−1)j

+I(i+1)(j+1) + I(i−1)(j+1) + Ii(j+2) + Iij − 4Ii(j+1)

+I(i+1)(j−1) + I(i−1)(j−1) + Iij + Ii(j−2) − 4Ii(j−1)

−4I(i+1)j − 4I(i−1)j − 4Ii(j+1) + 4Ii(j−1) + 16Iij

= 20Iij + I(i+2)j + 2I(i+1)(j+1) + 2I(i+1)(j−1) − 8I(i+1)j

+I(i−2)j + 2I(i−1)(j+1) + 2I(i−1)(j−1) − 8I(i−1)j + Ii(j+2)
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−8Ii(j+1) + Ii(j−2) − 8Ii(j−1).

In terms of a convolution kernel, the result above can be
written as 

0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 .

Hence, given the convolution kernel associated with the first
order solutionI−∇2I, the convolution kernel associated with
the second order solutionI −∇2I + 1

2∇
4I is given by

0 0 0 0 0
0 0 −1 0 0
0 −1 5 −1 0
0 0 −1 0 0
0 0 0 0 0

 +


0 0 1

2 0 0
0 1 −4 1 0
1
2 −4 10 −4 1

2
0 1 −4 1 0
0 0 1

2 0 0



=
1
2


0 0 1 0 0
0 2 −10 2 0
1 −10 30 −10 1
0 2 −10 2 0
0 0 1 0 0


To compute the convolution kernel associated with the third
order solutionf − ∇2f + 1

2∇
4f − 1

6∇
6f , we use the same

method as above to evaluate∇6Iij to obtain

1
6



0 0 0 −1 0 0 0
0 0 −3 15 −3 0 0
0 −3 24 −87 24 −3 0
−1 15 −87 202 −87 15 −1
0 −3 24 −87 24 −3 0
0 0 −3 15 −3 0 0
0 0 0 −1 0 0 0


An example of the application of these filters is given in Figure
4 which shows the result of diffusing a image by applying a
Gaussian low-pass filter and then restoring the image using the
first (high emphasis) and second order FIR filter given above.

VI. FRACTIONAL DIFFUSION

A. Random Walk Processes

The purpose of revisiting random walk processes is that
it provides a useful conceptual reference for introducing
fractional diffusion and an appreciation of the use of the
fractional diffusion equation, an equation that arises through
the generalisation of coherent and incoherent random walk
processes into a single model.

In the Nineteenth Century, the Scottish botanist, Robert
Brown, discovered (observing through a microscope) the
motion exhibited by small particles (pollen grains) that is
immersed in a liquid. Each particle follows a random walk
as a result of the elastic collisions it has with ensembles of
liquid molecules which are them selves in a state of random
motion. Brownian motion is the basis of modelling all kinds
of statistical fluctuations, most prominently in the field of

Fig. 4. Original 256×256 image (top-left) - M83 galaxy; result after applying
a Gaussian low-pass filter (top-right); output after application of the first order
(high emphasis) FIR filter (bottom-left); output after application of the second
order FIR filter (bottom-right).

gambling. However, it was many years after Brown’s discovery
that work was undertaken to provide a quantitative description
associated with this motion. The first work of its type was
undertaken by Albert Einstein and published in 1905. The
basic idea is to consider a random walk in which the mean
value of each step isa but where there is no correlation in
the direction of the walk from one step to the next. That is,
the direction taken by the walker from one step to next can
be in any direction described by an angle between0 and 2π
radians - for a walk in the plane. The angle that is taken at
each step is entirely random and all angles are taken to be
equally likely. Thus, the PDF of angles between0 and2π is
given by

Pr[θ] =

{
1
2π , 0 ≤ θ ≤ 2π;
0, otherwise.

If we consider the random walk to take place in the complex
plane, then aftern steps, the position of the walker will be
determined by a resultant amplitudeA and angleΘ given by
the sum of all the steps taken, i.e.

A exp(iΘ) = a exp(iθ1) + a exp(iθ2) + ... + a exp(iθn)

= a
n∑

m=1

exp(iθm).

The problem is to obtain a scaling relationship betweenA and
n. The trick to finding this relationship is to analyse the result
of taking the square modulus ofA exp(iΘ). This provides an
expression for the intensityI given by

I = a2

∣∣∣∣∣
n∑

m=1

exp(iθm)

∣∣∣∣∣
2
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= a2
n∑

m=1

exp(iθm)
n∑

m=1

exp(−iθm)

= a2

n +
n∑

j=1,j 6=k

exp(iθj)
n∑

k=1

exp(−iθk)

 .

Now, in a typical term

exp(iθj) exp(−iθk) = cos(θj − θk) + i sin(θi − θk)

of the double summation, the functionscos(θj − θk) and
sin(θj − θk) have random values between±1. Consequently,
as n becomes larger and larger, the double sum will reduces
to zero since more and more of these terms cancel each other
out. This insight is the basis for stating that forn >> 1

I = na2

and the resulting amplitude is therefore given by

A =
√

na.

Thus,A is proportional to the square root of the number of
steps taken and if each step is taken over a mean time period,
then we obtain the result

A(t) = a
√

t.

Clearly, if each step in the walk is in the same direction,
then the resulting amplitude after a timet will be at. This
is a deterministic result. However, with a random walk, the
interpretation of the above result is thata

√
t is the amplitude

associated with the most likely position that the random walker
will be after timet. If we imagine many random walkers, each
starting out on their ‘journey’ from the origin of the (complex)
plane att = 0, record the distances from the origin of this
plane after a set period of timet, then the PDF ofA will
have a maximum value - the ‘mode’ of the distribution - that
occurs ata

√
t. In the case of a non-random walk, the PDF

will consist of a unit spike that occurs atat.
In the (classical) kinetic theory of matter (including gases,

liquids, plasmas and some solids), we considera to be the
average distance a particle travels before it randomly collides
and scatters off another particle. The scattering process is
taken to be entirely elastic, i.e. the interaction does not affect
the particle in any way other than to change the direction in
which it travels. Thus,a represents themean free pathof a
particle. The mean free path is a measure how far a particle can
travel before scattering with another particle which in turn, is
related to the number of particle per unit volume - the density
of a gas, for example. If we imagine a particle ‘diffusing’
through an ensemble of particles, then the mean free path
is a measure of the ‘diffusivity’ of the medium in which
the process of diffusion takes place. This is a feature of all
classical diffusion processes which can be formulated in terms
of the diffusion equation with diffusivityD. The dimensions of
diffusivity are length2/time and must be interpreted in terms
of a characteristic distance of the process which varies with
the square root of time.

Suppose we now consider the three-dimensional diffusion
of light to be based on a three-dimensional random walk.

Each scattering event is taken to be a point of the random
walk in which a ray of light changes its direction randomly
(any direction between 0 and4π radians). The light field is
taken to be composed of a complex of rays, each of which
propagates through the diffuser in a way that is incoherent and
uncorrelated in time. If this is the case, then the propagation of
light can be considered to analogous to a process of (classical)
diffusion and instead of modelling the process in terms of the
(inhomogeneous) wave equation(

∇2 − 1
c2(r)

∂2

∂t2

)
u(r, t) = 0

with intensity given byI(r, t) =| u(r, t) |2 we can consider
the intensity to be given by the solution of the homogeneous
diffusion equation(

∇2 − 1
D

∂

∂t

)
I(r, t) = 0

with initial condition I(r, t) = I0(r) at t = 0. This assumes
that the diffusivity D is constant throughout the diffuser
which in turn assumes that Pr[c(r)] for a random scattering
model (based on a solution to the wave equation) is the same
throughout the diffuser and thus, the autocorrelation function
Γ(r) required to compute the intensity.

Although the discussion above has been presented for the
case of light, the principle remains the same for the case of any
form of electromagnetic wavefield, for example, or indeed for
the propagation/diffusion of information in general. Thus, for
some random walk process whose macroscopic characteristic
are defined by a fieldu, if the process is diffusive, then the
field u is characterised by the operator

∇2 − 1
D

∂

∂t

and, if the process is propagative, then it is characterised by
the operator

∇2 − 1
c2

∂2

∂t2
.

In multiple wave scattering theory, we consider a wavefront
travelling through space and scattering from a site that changes
the direction of propagation. The mean free path is taken to
be the average number of wavelengths taken by the wavefront
to propagate from one interaction to another as described by
the free space Green’s function. After scattering from many
sites, the wavefront can be considered to have diffused through
the ‘diffuser’. Here, the mean free path is a measure of the
density of scattering sites, which in turn, is a measure of the
diffusivity of the material - an optical diffuser for example.

B. Hurst Processes

We have considered random processes that characterise fully
coherent (propagative) and fully incoherent (diffusive) behav-
iour and through the physical interpretation of such processes
we have related them to differential operators associated with
the corresponding macroscopic behaviour. For a random walk
model in the plane,A(t) = at for a coherent walk and
A(t) = a

√
t for an incoherent walk. What would be the

result if the walk is neither coherent or incoherent but partially
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coherent/incoherent? In other words, suppose the random walk
exhibited a bias with regard to the distribution of angles used to
change the direction. What would be the effect on the scaling
law

√
t? Intuitively, one expects that as the distribution of

angles reduces, the corresponding walk becomes more and
more coherent, exhibiting longer and longer time correlations
until the process conforms to the scaling lawt. Conceptually,
scaling models associated with the intermediate case(s) should
be based on a generalisation of the scaling laws

√
t and t

to the form tH where 0.5 ≤ H < 1. This reasoning is the
basis for generalising the random walk processes considered
so far, the exponentH being known as the Hurst exponent or
‘dimension’.

H E Hurst (1900-1978) was an English civil engineer who
designed dams and worked on the Nile river dam projects in
the 1920s and 1930s. He studied the Nile so extensively that
some Egyptians reportedly nicknamed him ‘the father of the
Nile.’ The Nile river posed an interesting problem for Hurst
as a hydrologist. When designing a dam, hydrologists need
to estimate the necessary storage capacity of the resulting
reservoir. An influx of water occurs through various natural
sources (rainfall, river overflows etc.) and a regulated amount
needs to be released for primarily agricultural purposes, for
example, the storage capacity of a reservoir being based on
the net water flow. Hydrologists usually begin by assuming
that the water influx is random, a perfectly reasonable as-
sumption when dealing with a complex ecosystem. Hurst,
however, had studied the 847-year record that the Egyptians
had kept of the Nile river overflows, from 622 to 1469. He
noticed that large overflows tended to be followed by large
overflows until abruptly, the system would then change to low
overflows, which also tended to be followed by low overflows.
There appeared to be cycles, but with no predictable period.
Standard statistical analysis of the day revealed no significant
correlations between observations, so Hurst developed his own
methodology.

Hurst was aware of Einstein’s (1905) work on Brownian
motion (the erratic path followed by a particle suspended in
a fluid) who observed that the distanceR the particle covers
increased with the square root of time, i.e.

R(t) ∝
√

t

whereR is the range (equivalent to the amplitude for a walk in
the complex plane) covered in timet. It results, from the fact
that increments are identically and independently distributed
random variables. Hurst’s idea was to use this property to test
the Nile River’s overflows for randomness. His method was
as follows: Begin with a time seriesxi (with i = 1, 2, ..., n)
which in Hurst’s case was annual discharges of the Nile River.
Next, create the adjusted series,yi = xi − x̄ (where x̄ is the
mean ofxi). Cumulate this time series to give

Yi =
i∑

j=1

yj

such that the start and end of the series are both zero and
there is some curve in between. (The final value,Yn has to
be zero if the mean is zero.) Then, define the range to be the

maximum minus the minimum value of this time series,

Rn = max(Yi)−min(Yi).

This adjusted range,Rn is the distance the systems travels for
the time indexn, i.e. the distance covered by a random walker
if the data setyi were the set of steps. Einstein’s equation
Rn = a

√
n will apply provided that the time seriesxi is

independent for increasing values ofn. However, Einstein’s
equation only applies to series that are in Brownian motion.
Hurst’s contribution was to generalize this equation to

(R/S)n = anH

whereS is the standard deviation for the samen observations
anda is a constant. We define a Hurst process to be a process
with a (fairly) constantH value. The quotientR/S is referred
to as the ‘rescaled range’ because it has zero mean and is
expressed in terms of local standard deviations. In general,
the value ofR/S increases according to a power law value
equal toH known as the Hurst exponent.

Rescaling the adjusted range was a major innovation. Hurst
originally performed this operation to enable him to compare
diverse phenomenon. Rescaling, fortunately, also allows us to
compare time periods many years apart in a range of time
series. It is the relative change and not the change itself that
is of interest. Rescaled range analysis can also describe time
series that have no characteristic scale. By considering the
logarithmic version of Hurst’s equation, i.e.

log(R/S)n = loga + Hlog(n)

it is clear that the Hurst exponent can be estimated by plotting
log(R/S)n against thelog(n) and solving for the gradient
with a least squares fit, for example. If the system were
independently distributed, thenH = 0.5. Hurst found that the
exponent for the Nile River wasH = 0.91, i.e. the rescaled
range increases at a faster rate than the square root of time.
This meant that the system was covering more distance than
a random process would and therefore the annual discharges
of the Nile had to be correlated.

It is important to appreciate that this method makes no prior
assumptions about any underlying distributions, it simply tells
us how the system is scaling with respect to time. So how
do we interpret the Hurst exponent? We know thatH = 0.5
is consistent with an independently distributed system. The
range0.5 < H ≤ 1, implies a persistent time series, and a
persistent time series is characterized by positive correlations.
Theoretically, what happens today will ultimately have a
lasting effect on the future. The range0 < H ≤ 0.5 indicates
anti-persistence which means that the time series covers less
ground than a random process. In other words, there are
negative correlations. For a system to cover less distance, it
must reverse itself more often than a random process.

Hurst analysed all the data he could including rainfall,
sunspots, mud sediments, tree rings and others. In all cases,
Hurst foundH to be greater than0.5. He was intrigued thatH
often took a value of about0.7 and Hurst suspected that some
universal phenomenon was taking place. He carried out some
experiments using numbered cards. The values of the cards
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were chosen to simulate a probability density function with
finite moments, i.e.0,±1,±3,±5,±7and±9. He first verified
that the time series generated by summing the shuffled cards
gaveH = 0.5. To simulate a bias random walk, he carried out
the following steps.

1) Shuffle the deck and cut it once, noting the number, say
n.

2) Replace the card and re-shuffle the deck.
3) Deal out 2 hands of 26 cards, A and B.
4) Replace the lowestn cards of deck B with the highest

n cards of deck A, thus biasing deck B to the leveln.
5) Place a joker in deck B and shuffle.
6) Use deck B as a time series generator until the joker is

cut, then create a new biased hand.

Hurst undertook 1000 trials of 100 hands and calculated
H = 0.72. We can think of the process as follows: we first
bias each hand, which is determined by a random cut of
the pack; then, we generate the time series itself, which is
another series of random cuts; then, the joker appears, which
again occurs at random. Despite all of these random events
H = 0.72 would always appear. This is called the ‘joker
effect’. The joker effect, as described above, demonstrates a
tendency for data of a certain magnitude to be followed by
more data of approximately the same magnitude, but only for
a fixed and random length of time. A natural example of this
phenomenon is in weather systems. Good weather and bad
weather tend to come in waves or cycles (as in a heat wave
for example). This does not mean that weather is periodic,
which it is clearly not. We use the term ‘non-periodic cycle’
to describe cycles of this kind (with no fixed period). Thus,
Hurst processes exhibit trends that persist until the equivalent
of the joker comes along to change that bias in magnitude
and/or direction. In other words rescaled range analysis can
be used to characterise a time series that contains within it,
many different short-lived trends or biases (both in size and
direction). The process continues in this way giving a constant
Hurst exponent, sometimes with flat episodes that correspond
to the average periods of the non-periodic cycles, depending
on the distribution of actual periods.

The generalisation of Einstein’s equationA(t) = a
√

t by
Hurst to the formA(t) = atH , 0 < H ≤ 1 was necessary in
order for Hurst to analyse the apparent random behaviour of
the annual rise and fall of the Nile river for which Einstein’s
model was inadequate. In considering this generalisation,
Hurst paved the way for an appreciation that most natural
stochastic phenomena which, at first site, appear random, have
certain trends that can be identified over a given period of
time. In other words, many natural random patterns have a
bias to them that leads to time correlations in their stochastic
behaviour, a behaviour that is not an inherent characteristic of
a random walk model and fully diffusive processes in general.

C. The Fractional Diffusion Equation

Given that incoherent random walks, whereA(t) = a
√

t,
describe processes whose macroscopic behaviour is charac-
terised by the diffusion equation, then, by induction, Hurst
processes, whereA(t) = atH , H ∈ (0, 1], should be

characterised by generalizing the diffusion operator

∇2 − σ
∂

∂t

to the fractional form

∇2 − σq ∂q

∂tq

whereq ∈ [1, 2] and Dq = 1/σq is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
as intermediate between diffusive processes proper (random
phase walks withH = 0.5; diffusive processes withq = 1)
and ‘propagative process’ (coherent phase walks forH =
1; propagative processes withq = 2). For non-stationary
processes, we consider the operator

∇2 − σq(t) ∂q(t)

∂tq(t)
.

It should be noted that the fractional diffusion operator given
above is the result of a phenomenology. It is no more (and
no less) than a generalisation of a well known differential
operator to fractional form which follows from a physical
analysis of a fully incoherent random process and it gener-
alisation to fractional form in terms of the Hurst exponent.
Unlike the diffusion operator (which is based on accepted
and experimentally verifiable physical laws - Fourier’s law of
thermal condition, for example) this approach to introducing
a fractional differential operator is based on postulation alone.
It is therefore similar to certain other operators, a notable
example being Schrödinger’s operator in quantum mechanics,
i.e.

~2

2m
∇2 − i~

∂

∂t
.

In order to work with fractional derivatives, it is necessary to
briefly review the fractional calculus which for completeness,
is provided in Appendix I.

D. Solution to the Fractional Diffusion Equation

Consider the fractional diffusion equation for the intensity
I of a wavefield given by

Dq∇2I(r, t) =
∂q

∂tq
I(r, t)

whereD is the fractional diffusivity andI0(r) = I(r, t = 0)
(the initial condition). Forq = 1, the solution to this equation
in the infinite domain (see Section III) for dimensionsn = 1, 2
and3 is (with σ = 1/D)

I(r0, τ) = σ

∫
I0(r)G(r | r0, τ)dnr.

where

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−

(
σR2

4τ

)]
H(τ).

which is the solution to(
∇2 − σ

∂

∂t

)
G(R, τ) = −δn(R)δ(τ).
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For the fractional diffusion equation, we consider the same
basic solution but where the Green’s function is given by the
solution of(

∇2 − σq ∂q

∂tq

)
G(R, τ) = −δn(R)δ(τ)

where σq = 1/Dq. Using the Fourier based operator for a
fractional derivative (see Appendix I), we can transform this
equation into the form

(∇2 + Ω2
q)g(r | r0, ω) = −δn(r− r0)

where

g(r | r0, ω) =

∞∫
−∞

G(r | r0, τ) exp(iωτ)dτ,

Ω2
q = −iωσ, Ωq = ±i(iωσ)q/2.

Note that forq = 2, this equation becomes

(∇2 + k2)g(r | r0, ω) = δn(r− r0)

wherek = ±ωσ. This equation defines the Green’s function
for the time independent wave operator inn dimensions, the
‘out going’ Green’s functions being given by [19], [20]
n = 1 :

g(r | r0, k) =
i

2k
exp(ik | r − r0 |);

n = 2 :
g(r | r0, k) =

i

4
H0(k | r− r0 |)

' 1√
8π

exp(iπ/4)
exp(ik | r− r0 |)√

k | r− r0 |
, k | r− r0 |>> 1

whereH0 is the Hankel function, and
n = 3 :

g(r | r0, k) =
1

4π | r− r0 |
exp(ik | r− r0 |), n = 3.

Generalizing these results, forq ∈ [1, 2], by writing the
exponential function in its series form, withR =| r− r0 | we
have, forΩq = i(iωσ)q/2,

n = 1:

G(R, τ) =
1
2π

∞∫
−∞

i

2Ωq
exp(iΩqR) exp(iωτ)dω

=
1
2π

∞∫
−∞

dωi
exp(iωτ)
2(iωσ)q/2

(
1−R(iωσ)q/2 +

R2

2!
(iωσ)q − ...

)

=
1

2σq/2

1
τ1−(q/2)

− 1
2
Rδ(τ)

+
∞∑

n=1

(−1)n+1

2(n + 1)!
Rn+1σnq/2δqn/2(τ);

n = 2:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp(iπ/4)√

8π

exp[−(iωσ)q/2R]√
iR(iωσ)q/4

=
1√
8πR

1
2π

∞∫
−∞

dω exp(iωτ)...

...

(
1

(iωσ)q/4
− (iωσ)q/4R +

1
2!

(iωσ)3q/4R2 − ...

)

=
1√
8πR

1
σq/4τ1−q/4

−
√

R

8π
σq/4δq/4(τ)

+
1√
8π

∞∑
n=1

(−1)n+1

(n + 1)!
R(2n+1)/2σ3nq/4δ3nq/4(τ);

n = 3:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp[−(iωσ)q/2R]

4πR

=
1

4πR

1
2π

∞∫
−∞

dω exp(iωτ)[1−(iωσ)q/2R+
1
2!

(iωσ)qR2−...]

=
δ(τ)
4πR

− 1
4π

σq/2δq/2(τ)

+
1
4π

∞∑
n=1

(−1)n+1

(n + 1)!
Rnσ(n+1)q/2δ(n+1)q/2.

These are the Green’s functions for the fractional diffusion
equation in one-, two- and three-dimensions. Simplification of
these infinite sums can be addressed be considering suitable
asymptotics, the most significant of which (for arbitrary values
of R) is the case when the (fractional) diffusivityD is large.
In particular, we note that asσ → 0,

G(R, τ) =
1

2σq/2τ1−(q/2)
− 1

2
Rδ(τ), n = 1;

G(R, τ) =
1√

8πRσq/4τ1−(q/4)
, n = 2;

G(R, τ) =
δ(τ)
4πR

, n = 3.

Thus, in two-dimensions, we can consider a solution to the
fractional diffusion equation(

Dq∇2 − ∂q

∂tq

)
I(r, t) = 0, I(r, t = 0) = I0(r)

of the form (for t0 = 0 and at timet = T )

I(x, y) =
1

2
√

2π

1
(DT )1−q/4

1
(x2 + y2)

1
4
⊗⊗I0(x, y),

D →∞

which should be compared to the solution to the two-
dimensional diffusion equation, i.e.

I(x, y) =
1

4πDT
exp

[
−

(
x2 + y2)

4DT

)]
⊗2 I0(x, y).

Observe that when the diffusivity is large and the diffusion
time t = T is small such thatDT = 1, the difference between
an image obtained by a full two-dimensional diffuser and a
fractional diffuser is compounded in the difference between
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the convolution of the initial image with (ignoring scaling)
the functionsexp(−R2/4) and 1/

√
R. Compared with the

Gaussian, the functionR−1/2 decays more rapidly and hence
will have broader spectral characteristics leading to an output
that is less blurred than that produced by the convolution of the
input with a Gaussian which, in the context of the fractional
diffusion model introduced, is to be expected.

E. Optical Fractional Diffusers

Optical diffusers are used in a range of applications includ-
ing the de-pixelation of Liquid Crystal Displays (LCDs) which
becomes especially important when the LCD is composed of
relatively few elements and is viewed at close range, e.g.
LCD goggles. A common technique is to produce a thin
film that is composed of a randomly distributed complex of
scatterers (micro-spheroids whose relative permittivity is a
weak perturbation of the body of the film) that is over-layed
onto the LCD. The goal is to produce a diffuser that ‘manages’
the light in such a way that it de-pixelates the LCD while
minimizing the angular distribution of light. This requires the
manufacture of a fractional optical diffuser, an example of
which is given in Figure 5 which shows the effect of a ‘light
management film’ manufactured by Microsharp Corporation
Limited (http://www.microsharp.co.uk).

Fig. 5. Illustration of the application of a fractional optical diffuser to a
low resolution LCD. The effect of the diffuser is to eliminate the pixelation
(central area) generated by the regular LCD lattice (edges) while minimizing
the angular field of view.

VII. F RACTIONAL DE-DIFFUSION

Let I0 be represented as a Taylor series at some timeT > 0,
i.e.

I(r, 0) = I(r, T )+T

[
∂

∂t
I(r, t)

]
t=T

−T 2

2!

[
∂2

∂t2
I(r, t)

]
t=T

+...

Now, since
∂u

∂t
=

∂1−q

∂t1−q

∂q

∂tq
u

then from the fractional diffusion equation

∂u

∂t
= Dq ∂1−q

∂t1−q
∇2u

and
∂2

∂t2
u

=
∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
Dq ∂1−q

∂t1−q
∇2u

)
= Dq ∂1−q

∂t1−q
∇2 ∂u

∂t

= Dq ∂1−q

∂t1−q
∇2

(
Dq ∂1−q

∂t1−q
∇2u

)
= D2q ∂1−q

∂t1−q

(
∂1−q

∂t1−q
∇4u

)
so that in general,

∂nu

∂tn
= Dnq ∂n(1−q)

∂tn(1−q)
∇2nu.

Now, since (see Appendix I)

∂−q

∂t−q
I(r, t) =

1
Γ(q)t1−q

⊗ I(r, t)

we can write the Taylor series for the field att = 0 in terms
of the field att = T as

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

− T 2D2q

2!Γ(2q)

[
∂2

∂t2

(
1

t1−2q
⊗∇4I(r, t)

)]
t=T

+
T 3D3q

3!Γ(3q)

[
∂3

∂t3

(
1

t1−3q
⊗∇6I(r, t)

)]
t=T

− ...

For the case whenT << 1,

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

and under the condition that[
∂

∂t

(
1

t1−q
⊗ I(r, t)

)]
t=T

= I(r, T )

we can write

I(r, 0) = I(r, T ) +
TDq

Γ(q)
∇2I(r, T ).

Thus, for an imageI(x, y) recorded in the image plane at
z = 0 say, after the imageI0 has been fractionally diffused
over a period of timeT , we have

I0(x, y) = I(x, y) +
TDq

Γ(q)
∇2I(x, y).
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VIII. I MAGE SEGMENTATION METRIC

The result above provides us with an approach to estimating
q given I andI0 as follows: Let

P (x, y) =| I0(x, y)−I(x, y) |, and Q(x, y) =| ∇2I(x, y) |

then withR(x, y) = P (x, y)/Q(x, y),

〈R(x, y)〉 =
TDq

Γ(q)

where

〈R(x, y)〉 =
∫ ∫

R(x, y)dxdy∫ ∫
dxdy

.

Hence,
lnT − ln Γ(q) + q lnD = M

whereM is the metric (i.e. a measure ofq) given by

M = ln〈R〉 ≤ ln
(
〈P 〉
〈Q〉

)
This metric can be used effectively as a quality control
measure for the manufacture of fractional optical diffusers
(see Figure 5). For an imageI which has been formed by
the fractional diffusion of a uniform light source in whichI0

is a constant,

I − I0 =
TDq

Γ(q)
∇2(I − I0)

and withJ = I − I0,

M = ln
(

〈J(x, y)〉
〈| ∇2J(x, y) |〉

)
which can be applied on a moving windowW basis in order
to segment an image formed through short time fractional
diffusion with variableq, the computation of〈I〉(x,y)∈W (the
moving average filter) and〈| ∇2I |〉(x,y)∈W (moving average
of the second order edge detector) being relatively simple.

IX. CONCLUSIONS

The use of a fully diffusive process for modelling strong
(multiple) scattering has been considered and then extended
to model intermediate scattering by generalizing the diffusion
equation to fractional orderq ∈ (1, 2). The rationale for this
approach follows that of a random walk model in which
diffusive processes characterized by at

1
2 scaling law and

propagative processes characterized by at1 scaling law are
generalized to a scaling law of the formtH where 1

2 < H < 1
is the Hurst exponent.

The homogeneous diffusion equation provides a series solu-
tion to the inverse problem in which a Gaussian blurred image
can be restored using appropriate FIR filters that depend on
the order of the solution that is considered (i.e. the number of
terms in the Taylor series). This approach has been extended
to include fractional diffusion as defined by the equation (for
an imageI)

Dq∇2I(x, y, t) =
∂q

∂tq
I(x, y, t)

whereD is the fractional diffusivity andI0(x, y) = I(x, y, t =
0). By computing the appropriate Green’s function for this

equation, we have shown that the point spread function of
the imageI is determined byR−1/2, D >> 1. An FIR
filter (a fractional high emphasis filter) has been designed
which scales asTDq/Γ(q) compared withTD for the fully
diffusive case whenT << 1. This has provided the basis for
the proposition of a new algorithm for segmenting an image
into regions of similarity based on a measure of the parameter
q (the metricM ) in contrast to those algorithms published in,
[15] for example.

APPENDIX I
OVERVIEW OF FRACTIONAL CALCULUS

In a famous letter from l’Hospital to Leibnitz written in
1695, l’Hospital asked the following question: ‘Given that
dnf/dtn exists for all integer n, what if n be12 ’. The reply
from Leibnitz was all the more interesting: ‘It will lead to a
paradox ... From this paradox, one day useful consequences
will be drawn’.

Fractional calculus (e.g. [21], [22], [23] and [24]) has
been studied for many years by some of the great names of
mathematics since the development of (integer) calculus in
the late seventeenth century. Relatively few papers and books
exist on such a naturally important subject. However, a study
of the works in this area of mathematics clearly show that the
ideas used to define a fractional differential and a fractional
integral are based on definitions which are in effect, little more
than generalizations of results obtained using integer calculus.
The classical fractional integral operators are the Riemann-
Liouville transform [21]

Îqf(t) =
1

Γ(q)

t∫
−∞

f(τ)
(t− τ)1−q

dτ, q > 0

and the Weyl transform

Îqf(t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q

dτ, q > 0

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt.

For integer values ofq (i.e. whenq = n wheren is a non-
negative integer), the Riemann-Liouville transform reduces
to the standard Riemann integral. This transform is just a
(causal) convolution of the functionf(t) with tq−1/Γ(q).
For fractional differentiation, we can perform a fractional
integration of appropriate order and then differentiate to an
appropriate integer order. The reason for this is that direct
fractional differentiation can lead to divergent integrals. Thus,
the fractional differential operator̂Dq for q > 0 is given by

D̂qf(t) ≡ dq

dtq
f(t) =

dn

dtn
[În−qf(t)].

Another (conventional) approach to defining a fractional dif-
ferential operator is based on using the formula fornth order
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differentiation obtained by considering the definitions for the
first, second, third etc. differentials using backward and then
generalising the formula by replacingn with q. This approach
provides us with the result [21]

D̂qf(t) = lim
N→∞

 (t/N)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f

(
t− j

t

N

) .

A review of this result shows that forq = 1, this is a point
process but for other values it is not, i.e. the evaluation of a
fractional differential operator depends on the history of the
function in question. Thus, unlike an integer differential oper-
ator, a fractional differential operator has ‘memory’. Although
the memory of this process fades, it does not do so quickly
enough to allow truncation of the series in order to retain
acceptable accuracy. The concept of memory association can
also be seen from the result

D̂qf(t) =
dn

dtn
[În−qf(t)]

where

Îq−nf(t) =
1

Γ(n− q)

t∫
−∞

f(τ)
(t− τ)1+q−n

dτ, n− q > 0

in which the value ofÎq−nf(t) at a point t depends on
the behaviour off(t) from −∞ to t via a convolution with
the kerneltn−q/Γ(q). The convolution process is of course
dependent on the history of the functionf(t) for a given kernel
and thus, in this context, we can consider a fractional derivative
defined via the result above to have memory.

A. The Laplace Transform and the Half Integrator

It informative at this point to consider the application of
the Laplace transform to identify an ideal integrator and then
a half integrator. The Laplace transform is given by

L̂[f(t)] ≡ F (p) =

∞∫
0

f(t) exp(−pt)dt

and from this result we can derive the transform of a derivative
given by

L̂[f ′(t)] = pF (p)− f(0)

and the transform of an integral given by

L̂

 t∫
0

f(τ)dτ

 =
1
p
F (p).

Now, suppose we have a standard time invariant linear system
whose input isf(t) and whose output is given by

s(t) = f(t)⊗ g(t)

where the convolution is causal, i.e.

s(t) =

t∫
0

f(τ)g(t− τ)dτ.

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then,G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f(t)⊗H(t) =

t∫
0

f(t− τ)dτ =

t∫
0

f(τ)dτ.

Now, consider the case when we have a time invariant linear
system with an impulse response function by given by

g(t) =
H(t)√

t
=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system isf ⊗ g and the output of such a
system with inputf ⊗ g is f ⊗ g ⊗ g. Now

g(t)⊗ g(t) =

t∫
0

dτ
√

τ
√

t− τ
=

√
t∫

0

2xdx

x
√

t− x2

= 2
[
sin−1

(
x√
t

)]√t

0

= π.

Hence,
H(t)√

πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function
H(t)/

√
πt represents a ‘half-integrator’ with a Laplace trans-

form given by

L̂

[
H(t)√

πt

]
=

1
√

p
.

This result provides an approach to working with fractional
integrators and/or differentiators using the Laplace transform.
Fractional differential and integral operators can be defined
and used in a similar manner to those associated with con-
ventional or integer order calculus and we now provide an
overview of such operators.

B. Operators of Integer Order

The following operators are all well-defined, at least with
respect to all test functionsu(t) say which are (i) infinitely
differentiable and (ii) of compact support (i.e. vanish outside
some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =

t∫
−∞

u(τ)dτ.

Differential Operator:

D̂u(t) ≡ D̂1u(t) = u′(t).

Identify Operator:

Î0u(t) = u(t) = D̂0u(t).
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Now,

Î[D̂u](t) =

t∫
−∞

u′(τ)dτ = u(t)

and

D̂[Îu](t) =
d

dt

t∫
−∞

u(τ)dτ = u(t)

so that
Î1D̂1 = D̂1Î1 = Î0.

For n (integer) order:

Înu(t) =

t∫
−∞

dτn−1...

τ2∫
−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and
În[D̂nu](t) = u(t) = D̂n[Înu](t).

C. Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally
integrable. We can then define an integral of ordern in terms
of a convolution as

Înu(t) =
(

u⊗ 1
(n− 1)!

tn−1
+

)
(t)

=
1

(n− 1)!

t∫
−∞

(t− τ)n−1u(τ)dτ

=
1

(n− 1)!

t∫
−∞

τn−1u(t− τ)dτ

In particular,

Î1u(t) = (u⊗H)(t) =

t∫
−∞

u(τ)dτ.

These are classical (absolutely convergent) integrals and the
identity operator admits a formal convolution representation,
using the delta function, i.e.

Î0u(t) =

∞∫
−∞

δ(τ)u(t− τ)dτ

where
δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =

∞∫
−∞

δ(n)(τ)u(t− τ)dτ = u(n)(t).

On the basis of the material discussed above, we can now
formally extend the integral operator to fractional order and
consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t− τ)dτ

=
1

Γ(q)

t∫
−∞

u(τ)tq−1
+ (t− τ)dτ

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear
system with impulse response functiontq−1

+ (t) and transfer
function 1/pq. For the cascade connection ofIq1 andIq2 we
have

Îq1 [Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all
real q > 0 (and formally forq = 0, with the delta function
playing the role of an impulse function and with a transfer
function equal to the constant 1).

D. Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville )
derivative of orderq as

D̂qu(t) ≡ d

dt
[Î1−qu](t) =

1
Γ(1− q)

d

dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,
Îq[D̂qu] = Îq[Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator̂Iq. Given any
q > 0, we can always writeλ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t− τ)−qdτ.

Dq is an operator representing a time invariant linear system
consisting of a cascade combination of an ideal differentiator
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and a fractional integrator of order1− q. For Dλ we replace
the single ideal differentiator byn such that

D̂0u(t) =
1

Γ(1)
d

dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫

−∞

u(τ)δ(t− τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ

= u(n)(t) ≡
∞∫

−∞

u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of
fractional derivatives and integrals, more general definitions
are available including the Erdélyi-Kober fractional integral
[25]

t−p−q+1

Γ(q)

t∫
0

τp−1

(t− τ)1−q
f(τ)dτ, q > 0, p > 0

which is a generalisation of the Riemann-Liouville fractional
integral and the integral

tp

Γ(q)

∞∫
t

τ−q−p

(τ − t)1−q
f(τ)dτ, q > 0, p > 0

which is a generalization of the Weyl integral. Further de-
finitions exist based on the application of hypergeometric
functions and operators involving other special functions such
as the Maijer G-function and the Fox H-function [26]. More-
over, all such operators leading to a fractional integral of the
Riemann-Liouville type and the Weyl type to have the general
forms (through induction)

Îqf(t) = tq−1

t∫
−∞

Φ
(τ

t

)
τ−qf(τ)dτ

and

Îqf(t) = t−q

∞∫
t

Φ
(

t

τ

)
τ q−1f(τ)dτ

respectively, where the kernelΦ is an arbitrary continuous
function so that the integrals above make sense in sufficiently
large functional spaces. Although there are a number of
approaches that can be used to define a fractional differen-
tial/integral, there is one particular definition, which in terms
of its ‘ease of use’ and wide ranging applications, is of
significant value and is based on the Fourier transform, i.e.

dq

dtq
f(t) =

1
2π

∞∫
−∞

(iω)qF (ω) exp(iωt)dω

where F (ω) is the Fourier transform off(t). When q =
1, 2, 3..., this definition reduces to a well known result that
is trivial to derive in which, for example, the ‘filter’iω (for

the case whenq = 1) is referred to as a ‘differentiator’.
When q < 0, we have a definition for the fractional integral
where, in the case ofq = −1, for example, the filter(iω)−1

is an ‘integrator’. Whenq = 0 we just havef(t) expressed
in terms of its Fourier transformF (ω). This Fourier based
definition of a fractional derivative can be extended further to
include a definition for a ‘fractional Laplacian’∇q where for
n dimensions

∇q ≡ − 1
(2π)n

∫
dnkkq exp(ik · r), k =| k |

andr is ann-dimensional vector. This is the fractional Riesz
operator. It is designed to provide a result that is compatible
with the case ofq = 2 for n > 1, i.e.∇2 ⇐⇒ −k2 (which is
the reason for introducing the negative sign). Another equally
valid generalization is

∇q ≡ 1
(2π)n

∫
dnk(ik)q exp(ik · r), k =| k |

which introduces aq dependent phase factor ofπq/2 into the
operator.

E. Fractional Dynamics

Mathematical modelling using (time dependent) fractional
Partial Differential Equations (PDEs) is generally known as
fractional dynamics [27], [28]. A number of works have shown
a close relationship between fractional diffusion equations of
the type (wherep is the space-time dependent PDF andσ is
the generalized coefficient of diffusion)

∇2p− σ
∂q

∂tq
p = 0, 0 < q ≤ 1

and

∇qp− σ
∂

∂t
p = 0, 0 < q ≤ 2

and continuous time random walks with either temporal or
spatial scale invariance (fractal walks). Fractional diffusion
equations of this type have been shown to produce a frame-
work for the description of anomalous diffusion phenomena
and Ĺevy-type behaviour. In addition, certain classes of frac-
tional differential equations are known to yield Lévy-type
distributions. For example, the normalized one-sided Lévy-
type PDF

p(x) =
aq

Γ(q)
exp(−a/x)

x1+q
, a > 0, x > 0

is a solution of the fractional integral equation

x2qp(x) = aq Î−qp(x)

where

Î−qp(x) =
1

Γ(q)

x∫
0

p(y)
(x− y)1−q

dy, q > 0.

Another example involves the solution to the anomalous
diffusion equation

∇qp− τ
∂

∂t
p = 0, 0 < q ≤ 2.
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Fourier transforming this equation and using the fractional
Riesz operator defined previously, we have

∂

∂t
P (k, t) = −1

τ
kqP (k, t)

which has the general solution

P (k, t) = exp(−t | k |q /τ), t > 0.

which is the characteristic function of a Lévy distribution.
This analysis can be extended further by considering a fractal
based generalization of the Fokker-Planck-Kolmogorov (FPK)
equation [29]

∂q

∂tq
p(x, t) =

∂β

∂xβ
[s(x)p(x, t)]

wheres is an arbitrary function and0 < q ≤ 1, 0 < β ≤ 2.
This equation is referred to as the fractal FPK equation; the
standard FPK equation is of course recovered forq = 1 and
β = 2. The characteristic function associated withp(x, t) is
given by

P (k, t) = exp(−akβtq)

wherea is a constant which again, is a characteristic of a Lévy
distribution. Finally,d-dimensional fractional master equations
of the type [30], [31]

∂q

∂tq
p(r, t) =

∑
s

w(r− s)p(s, t), 0 < q ≤ 1

can be used to model non-equilibrium phase transitions where
p denotes the probability of finding the diffusing entity at a
position r ∈ Rd at time t (assuming that it was at the origin
r = 0 at time t = 0) andw are the fractional transition rates
which measure the propensity for a displacementr in units of
1/(time)q. These equations conform to the general theory of
continuous time random walks and provide models for random
walks of fractal time.
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