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Using the autocorrelation theorem, we have its Power Spectral Density Function or PSDF is a constant),
. . then the autocorrelation function is a delta function whose

I(N,k) = k4/eXp(—ikN -1)[(r)dr Fourier transform is a constant. However, in practice, we can
v expect that few scattering functions have a PSDF characterized

by white noise, rather, the PSDF will tend to decay as the
frequency increases. We can consider a model for the PSDF
I(r) = /V(FI)W*(I‘/ +r)dr based on the Gaussian function

v 1509 P=Texp (7).
0

for example, wherey, = 5(0), £k =| k | and kg is the
standard deviation which is a measure of the correlation
length. This form yields an autocorrelation function which is
of the same type, i.e. a Gaussian function. If the geometry of
the scattering function is self-affine, then we can model the
scattering function as a random scattering fractal whose PSDF
is characterized by [15]

whereTl is the autocorrelation function given by

1
~ 2
V() [F~ %24
whereq > 0, the autocorrelation function being characterized
by
r 1
() ~ 5

Other issues in determining the nature of the autocorrelation
function are related to the physical conditions imposed on the
stochastic characteristics of the scatterer.
The method discussed above can be used to model the
(Born) scattered intensity from a random medium which
requires an estimate of the autocorrelation of the scattering
function to be known. However, this approach assumes that the
density of scattering sites from which the scatterer is composed
is low so that the Born approximation is valid. When the
Fig. 1. Simulation of the coherent (bottom-left) and incoherent (bottondensity of scattering sites increases and multiple scattering

right) images associated with light scattering from a random medium imag present the problem become progressively intractable. One
through a square aperture with coherent (top-left) and incoherent (top-right ’

point spread functions whose absolute values are shown using a Iogarithﬁlﬁproach to Overcoming.this' problem is to re§ort o a pur_ely
grey-scale. stochastic approach which involves developing a statistical

model, not for the scattering function, but for the scattered

. , ) field itself which is discussed later.
This result allows us to evaluate the intensity of the Born

scattered amplitude by computing the Fourier transform of ll. THE DIFFUSION EQUATION
the autocorrelation function of the scattering function which
is taken to be composed of a number of scatterers distribute
at random throughoui/. This requires the autocorrelation 2 0 1

: : . Veu(r,t) = o—u(r,t), o= —
function to be defined for a particular type of random scat-

dl’he homogeneous diffusion equation [7]

ot D
terer. Thus, a random medium can be characterized via vilere D is the ‘Diffusivity’, differs in many aspects from
autocorrelation function by measuring the scattered intensihe scalar wave equation. The most important single feature is
and inverse Fourier transforming the result. the asymmetry of the diffusion equation with respect to time.
From the autocorrelation theorem, the characteristics of ther the wave equation, ii(r,¢) is a solution, so isi(r, —t).
autocorrelation function can be formulated by considering itsowever, ifu(r,t) is a solution of
expected spectral properties since ou
~ Viu=o0—

D(r) <=|7(k) |* ot

the functionu(r,—t) is not; it is a solution of the quite

where 7 is the Fourier transform ofy, k is the spatial different equation,

frequency vector and=> denotes the transformation from
real spacer to Fourier spacé. Hence, in order to evaluate Vzu(r 1) = —oZu(r, —t).
the most likely form of the autocorrelation function we can ’ ot

consider the properties of the power spectrum of the scatterifigus, unlike the wave equation, the diffusion equation differ-
function. If this function is ‘white’ noise, for example (i.e.entiates between past and future. This is because the diffusing
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field u represents the behaviour of some average property ofBy rearranging the exponent in the integral, it becomes pos-
ensemble (e.qg. of particles) which cannot in general go backdible to evaluate each integral exactly. Thus, with
an original state. Causality must therefore be considered in the

2 2
solution to the diffusion equation. This in turn leads to the use ;. p _ 127 — _ (k \/?_ i& \/F) — (on)
e Vo 2 VT

of the one-sided Laplace transform (i.e. a causal transform) for o 4t
solving the equation with respecttgcompared to the Fourier T, oR2
transform - a non-causal transform - used to solve the wave = —;f - (4;>
equation with respect to).
where
e oR,
A. Green’s Function for the Diffusion Equation §=hy—i 27’

To obtain a general solution to the diffusion equation, wihe integral overk, becomes

need to evaluate the Green’s functigh for the diffusion

equation subject to the causality condition

G(I‘|I‘0,t|t0):0 if t<tp.

simultaneously [13]. WithR =| r — r | and 7 =t — t; we

[l o) ()

— 00

This can be accomplished for one-, two- and three—dlmensmni (B2 /ar) P B oR?
e e d¢ = exp T
-

require the solution of the equation

<v2 - o(i) G(R,7) = —6"(R)6(1), T7>0

wheren is 1, 2 or 3 depending on the number of dimensions.
One way of solving this equation is to first take the Laplace

—0o0

with similar results for the integrals ovéy, andk, giving the

result
G(R,7) = % (%)7 exp [— (ff_zﬂ Hi(r).

transform with respect te, then solve forG (in Laplace The function( satisfies an important property which is valid
space) and inverse Laplace transform. This requires an initigt all rn:

condition to be specified (the value 6f at 7 = 0). Another

o 1

G(R,7)d"r =—, 7>0.

way to solve this equation is to take its Fourier transform with oo o

respect toR, solve for (in Fourier space) and then inverserps is the expression for the conservation of the Green's
Fourier transform. Here, we adopt the latter approach. Let fnction associated with the diffusion equation. For example,

G(R,T) = (271r)” /é(k,T) exp(ik - R)d"k
and -
0"(R) = (271r)” /exp(ik-R)d”k.

Then the equation fo6 reduces to
08£ +k*G = 4(7)
or

which has the solution

G= %exp(—sz/U)H(T)

where H(7) is the step function

Hir) = {1, T>0;
0, 7<0.
Hence, the Green’s functions are given by
1 oo
G(R, ) = H(r) / exp(ik - R) exp(—k2r /o) d"k
o(2m)n
-1 H(7) 7e (ikyRy) exp(—k21/o)dk
= 0_(271_)” T XP IRy L1y ) XD 2T/0 T

— OO

if we consider the diffusion of heat, then if at a timegand at a
point in spacery a source of heat is introduced instantaneously
(i.e. a heat impulse), then the heat diffuses out through the
medium characterized hy in such a way that the total heat
energy is unchanged.

B. Green’s Function Solution to the Diffusion Equation

Working in three dimensions, let us consider the general
solution to the equation

<v2 - agt> ulr,t) = —f(r,t)

where f is a source function of compact suppérte V') and
define the Green'’s function as the solution to the equation

ot

It is convenient to first take the Laplace transform of these
equations with respect to = t — t, to obtain

<V2 - 08) G(r | ro,t | to) = —63(r —1ro)d(t — to)

V2u — o|—ug + pu] = —f

and
V3G + o[-Go + pG] = —¢&°

where

oo

u(r,p) = /u(r,T) exp(—pr)dr,
0
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o0

_ IV. DERIVATION OF THE DIFFUSION EQUATION FOR THE
G(r[ro,p) = /G(r | ro, 7) exp(—p7)dr, INTENSITY OF LIGHT
Consider the three-dimensional homogeneous time depen-
dent wave equation
1 0?
2 _
wherec is taken to be a constant (light speed). Let

/f r,7)exp(—p7)dr.
0

ug = u(r,7=0) and Gy =G(r|re,7=0)=0.

Pre-multiplying the equation for by G' and the equation for

G by @, subtracting the two results and integrating oVewe u(,y,2,t) = ¢(2,y, 2,t) exp(iwt)
obtain where it is assumed that fiell varies significantly slowly in
/(@Vzﬂ—ﬂvzé)d?’r—l—a/uoédgr _ —/f@d3r+ﬂ(r0,p). time compared withkexp(iwt) and note that
1% \4 1% U*(‘raywzvt) = d)*(xayvzat) eXp(_th)
Using Green’s theorem and rearranging the result gives s 3150 a solution to the wave equation. Differentiating
u(ro,p /f r,p)G(r | ro,p )dgr—l—a/uo(r)é(r | r,p)d’r V2u = exp(iwt) V2,
v and 52 52 ”
?{ (gVa — aVg) - nd’r. preie exp(iwt) <5t2¢ + sza —w ¢>
s
Finally, taking the inverse Laplace transform and using the ~ exp(iwt) <2iw6¢ - w2¢>
convolution theorem for Laplace transforms, we can write ot
when o2 o
u(ro, T //f (r,7)G(r | ro, 7 — 7')drdr’ atf << 2w Of
Under this condition, the wave equation reduces to
+a/u (r)G(r | ro,7)d’r 2ik 0¢
2 k2 _ oY
(VI £ =——
| - ) wherek = w/c. However, since:* is also a solution,
+ /j{ r|rg,T Vu T—T .
2ik 0o*
2 2 * __ avv
0o s (V +k )(b - c Ot
—u(r, 7)VG(r | ro, 7 — 7')] - ad’rdr’. and thus,
The first two terms are convolutions of the Green'’s function ) ) 2ik (.00 dop*
with the source function and the initial field(r,7 = 0) VP~ ¢V = C( ot ¢ ot )
respectively.
By way of a simple example, suppose we consider tifich can be written in the form
source term to be zero and the volume of interest is the infinite V2] — 2V - (V") = 2ik 01
domain, so that the surface integral is zero. Then we have c ot

u(ro.7) = U/UO(r)G(r o 7). wherel = ¢¢* =| ¢ |?. Let ¢ be given by
v o(r,t) = A(r,t) exp(ikn - r)

In one dimension, this reduces to where i is a unit vector andA is the amplitude function.
Differentiating, and noting thaf = A2, we obtain

[ o o—w)Q}
u(zg, T exp | ————— | up(z)dz, T >0.
0 arr / { 0 ﬁ.vA:g%

Observe that the field: at a timet > 0 is given by the or

convolution of the field at timg = 0 with the (Gaussian) o o 0 A 29 A
i = t) === Az, y, 2t
function . - <8x + 3y + 62) (z,9,2,t) T (z,y,2,t)
dnt P <_ it ) : which is the unconditional continuity equation for the ampli-

In two-dimensions, the equivalent result is tude A of a wavefield

{ (Mﬂ ®2 uo(2,y). (5) u(r,t) = A(r,t) expli(ki - r + wt)]

u(z,y,t) = Z exp . o
4t where A varies slowly with time.

47t
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The equation Then, at any time > 0, it can be assumed that light diffusion
%k oI is responsible for blurring the imagé&, and that as time
V2 -2V - (¢Vo*) = ~ o increases, the image becomes progressively more (Gaussian)

. . o ) . blurred. By comparing this model with equation (5) it is clear
is valid for k = ko —ix (i.e.w = wo —irc) and so, by equating 4

the real and imaginary parts, we have

1 (2 + yz))]
I(z,y,t) = ——exp |— | ————— Io(x,y).
DV?I + 2Re]V - (6V")] = % (o0 t) = gy [ ( e )] lol)
This result can, for example, be used to model the diffusion of
and ko OT light through an optical diffuser. An example of such an effect
Im[V- (¢Ve")] = —— = is given in Figure 2 which shows a light source (the ceiling

light of a steam room) imaged through air and then through

respectively where) = c/2x, so that under the condition 00 Steam effects light by scattering it a large number

Re[V - (¢V¢*)] =0 of times through the complex of small water droplets from

_ which (low temperature) steam is composed. The high degree

we obtain oI of multiple scattering that takes place allows us to model the
DV?] = transmission of light through steam in terms of a ‘diffusive’

o o ) ot ) ) ) rather than a ‘propagative’ process. The initial conditiin
This is the diffusion equation for the intensity of light The Jenotes the initial image which is, in effect, and with regard

condition required to obtain this result can be justified by Figure 2, the image of the light source obtained in air.
applying a boundary condition on the surfageof a volume

V' over which the equation is taken to conform. Using t
divergence theorem

Re/v (pV*)dPr = Re]fwgb* -nd?r
S

|4
S

Now, if
Or(r, )V, (r,t) = —¢;(r,t)Vei(r,t), reS
Fig. 2. Image of an optical source (left) and the same source imaged through
then the surface integral is zero and steam (right).
DV?I(r,t) = %I(r,t), reV.
This boundary condition can be written as As observed in Figure 2, the details assqciated with .the
light source are blurred through the convolution of the object
Vor - _ function I, with the Gaussian point spread function, a function
tané
Vo, that is characteristic of diffusion processes in general.
where ¢ is the phase of the fiel¢ which implies that the
amplitude A of ¢ is constant on the boundary (i.8(r,t) = V. DE-DIFFUSION
Ap, re S, Vi), since The problem is to findl, from I at some timet > 0.
V Ag cosf(r, t) Agsin0(r, t)V0(r, 1) Consider the case in which we record the diffused imhge
VAo sin 6(r, ) = " Ay cos B(r, £)VA(r, 1) atimet = T. The Taylor series fof att = 0 may then be
written as
= —tanf(r,t), resS. )
T e.00) = 1o, T) = T | S 1(wi)
Suppose we record the intensityof a light field in the ot =T

zy-plane for a fixed value of. Then forz = z; say, T2 { 2

+— | ==1(z,y,t + ...
I(z,y,t) = I(w,y, 20, t) 2! [ot2 (.9 )L—T

so that For T << 1, we can approximate this function be neglecting
_ 9 all terms after the second term. Using the diffusion equation,

&I(x’y’t) = DVI(z,y,t). we then obtain

Let this two-dimensional diffusion equation be subject to the 0

initial condition I(@,y,0) = I(w,y,T) = T [atl(x’y’t)

I(.’I,',y,O):Io(SC7y) :I(xvva)_DTVQI(xvva)

t=T
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Now, since
I(.’E, Y, O) = Io(l', y)

we have

IO(xvy) = I(.’L‘,y,T) - DTV?[(:L’,:(/, T)

A. The High Emphasis Filter

The high emphasis filter [6] is based on computing an outp
imagel, from the input image via application of the result

Io(l',y) = I(.T, y) - VQI(’JJ,y)

which is the case wheWT = 1.

This filter can be implemented by computing the digité
Laplacian in order to design an appropriate Finite Impulg
Response (FIR) filter [3]. Applying a centre differencind
scheme, i.e.

Fig. 3. Original image (left) - rings of Saturn - and an enhanced image

(right) using the high emphasis filter.
V2L = Iy + Loy + Liga) + Li-1) — 415

we have ) , . e
obtained. This can be done by noting that (from the diffusion
Iy = Iij= V213 = 5Lij = Iy~ Lii—1y;— Ligg+1) — Lig—1)- ~ equation)
0?1 oI

— =DV?*— = D*V']
where o 12 \% ot Vv
ij = 0(%,7)- @ B sz@ _ vy
The digital Laplacian is a shift invariant linear operation. o oz

Applying this operation to a digital imagé;; is the same and so on. In general we can write
as convolving the image with the two-dimensional array (the

FIR filter) [anI(x,y,t)] _ D"VQ”I(x,y,T).
0 1 0 ot =T
I -4 1. Substituting this result into the series ffy given above, we
Hence, computing?: is the same as convolving; with the = (=1)" .
FIR filter ! Io(z,y) = I(z,y,T) + > o (o7 V(@ T)
0 -1 0 n=1
-1 5 -1 1. and forDT =1
0 -1 0

1 1
o o Io=1-V2I+ VU — =V + ..
An example of the application of this filter is given in Figure 2! 3!
3. Given the simplicity of the process (i.e. application of a From this result, we can design FIR filters for the higher
3 x 3 FIR filter), the method provides an effective imag@rder terms. Since
enhancement technique providing the degradation of the imagg, ., _
conforms to a light diffusion (strong scattering) model. v Lij = Tnyg + Li-nj + i+ + Lig—n — 4l = Ji
then
Vi = Vi = T+ -+ Jigan + Jig-n — 47
B. General Solution = It + Lij + Lty + Lasng-1) — g
If we record an image at a timé = T then by Taylor
expandingl att = 0 we can write
—1)" 1
1" {a

n Wj(xay7t):|

Hlij + Li—2); + Li—1)G+1) + Li-1)G-1) = 4(i-1);
ity G+1) T La-1G+1) + Ligire) + Lij — g

I(z,y,0) = I(z,y,T) +

(03,00 = Hew 1) nz::l =1 -1+ Li-nG-1) +Lij + Lig-2) — 4ig-1)
The high emphasis filter derived earlier is obtained by neglect-  —4L(i+1); — 4L(i—1); — 4Li(j41) + 4Li(j—1) + 1615
ing terms in the series above far> 1 giving an approximate
solution for the de-diffused imag&,. If we include all the

terms in this series, then an exact solution fgrcan be  +1;_9); + 21 _1)(j+1) + 2Li—1)(j—1) — 8L(i—1); + Li(j+2)

= 20035 + Laoy; + 2Ly G+1) + 2L -1) — 8Lt
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—81i(j41) + Li(j—2) — 81i(j—1)-

In terms of a convolution kernel, the result above can |
written as

0 0 1 0 0
0 2 -8 2 0
1 -8 20 -8 1
0o 2 -8 2 O
0 0 1 0 O

Hence, given the convolution kernel associated with the fit
order solution/ — V21, the convolution kernel associated witr i
the second order solutioh— V21 + 1V*I is given by

00 0 0 0 00 12 0 0
0O 0 -1 0 O 0O 1 -4 1 0
0 -1 5 -1 0 |4+]| 5 -4 10 —4 3
0 0 -1 0 O 0o 1 -4 1 0
00 0 0 0 0 i 0 0
0 0 1 0 O
1 0 2 —10 2 0
= = 1 -10 30 -10 1
2l o 2 -10 2 o
0 0 1 0 0 Fig. 4. Original 256256 image (top-left) - M83 galaxy; result after applying

a Gaussian low-pass filter (top-right); output after application of the first order
To compute the convolution kernel associated with the thifgigh emphasis) FIR filter (bottom-left); output after application of the second

order solutionf — V2f + 2V*f — 1VSf, we use the same order FIR filter (bottom-right).
method as above to evaluaf'I;; to obtain
gambling. However, it was many years after Brown’s discovery
that work was undertaken to provide a quantitative description
0 -3 24 -87 924 _3 associated with this motion. The first work of its type was
1 1 15 -87 202 -87 15 —1 und.ert'aken. by Albert. Einstein and publlghed in 1905. The
6 0 -3 94 —87 924 -3 0 basic idea is to con.5|der a random waI.k in which thg mean
0 0 -3 15 -3 0 0 value of each step is but where there is no correlation in
0 0 0 -1 o0 0 0 the direction of the walk from one step to the next. That is,
the direction taken by the walker from one step to next can
An example of the application of these filters is given in Figuriee in any direction described by an angle betwéeand 27
4 which shows the result of diffusing a image by applying eadians - for a walk in the plane. The angle that is taken at
Gaussian low-pass filter and then restoring the image using #ach step is entirely random and all angles are taken to be
first (high emphasis) and second order FIR filter given abowegually likely. Thus, the PDF of angles betwe@mnd 27 is

given by
1 <0< 9
Prg] = { 2% 0<6 = 2m;
0, otherwise.

0 0 0 -1 0 0 0
0 o -3 1 -3 0 0
0

VI. FRACTIONAL DIFFUSION
A. Random Walk Processes If we consider the random walk to take place in the complex

_— . lane, then aften steps, the position of the walker will be
The purpose of revisiting random walk processes is thp b P

. . . N3termined by a resultant amplitudeand angle® given by
it provides a useful conceptual reference for mtroducmtgIe sum of all the steps taken, i.e

fractional diffusion and an appreciation of the use of the
fractional diffusion equation, an equation that arises through A exp(i©) = aexp(ith ) + aexp(ifz) + ... + aexp(it,)
the generalisation of coherent and incoherent random walk n
processes into a single model. =a Z exp(iy,).

In the Nineteenth Century, the Scottish botanist, Robert m=1
Brown, discovered (observing through a microscope) thehe problem is to obtain a scaling relationship betwdesnd
motion exhibited by small particles (pollen grains) that is. The trick to finding this relationship is to analyse the result
immersed in a liquid. Each particle follows a random walbkf taking the square modulus efexp(i©). This provides an
as a result of the elastic collisions it has with ensembles expression for the intensity given by
liguid molecules which are them selves in a state of random n 2
motion_. Brownian mqtion is the basis_of mod_elling al! kinds I = a2 Z exp(i6,m,)
of statistical fluctuations, most prominently in the field of oo}
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— 42 Xn: exp(ifm) i exp(—ifn) Each.scatt.ering event i§ taken to be.a ppint .of the random
= = walk in which a ray of light changes its direction randomly
(any direction between 0 antir radians). The light field is

) n _ n . taken to be composed of a complex of rays, each of which
=a® [n+ Y exp(if;) Y exp(—ibh)| . propagates through the diffuser in a way that is incoherent and
J=Li#k k=1 uncorrelated in time. If this is the case, then the propagation of
Now, in a typical term light can be considered to analogous to a process of (classical)
diffusion and instead of modelling the process in terms of the
exp(i6;) exp(—iby) = cos(0; — bx) + isin(6; — Ox) (inhomogeneous) wave equation
of the double summation, the function®s(¢; — 6;) and 5 1 02
sin(6; — 6x) have random values betweetrl. Consequently, < () at2> u(r,t) =0

asn becomes larger and larger, the double sum will reduces

: Lo B 5 :
to zero since more and more of these terms cancel each offjar. NENSIty given _byI(r, t) =| “(r’t.) |* we can consider
out. This insight is the basis for stating that for>> 1 the intensity to be given by the solution of the homogeneous

diffusion equation
2

I =na 19
] ) . ] (V2—> I(r,t)=0
and the resulting amplitude is therefore given by Dot
A = /na. with initial condition I(r,¢) = Ip(r) at¢ = 0. This assumes
that the diffusivity D is constant throughout the diffuser
Thus, A is proportional to the square root of the number aofhich in turn assumes that P(f)] for a random scattering
steps taken and if each step is taken over a mean time perio@del (based on a solution to the wave equation) is the same
then we obtain the result throughout the diffuser and thus, the autocorrelation function
Alt) = avi I'(r) required to compute the intensity.
' Although the discussion above has been presented for the
Clearly, if each step in the walk is in the same directiorgase of light, the principle remains the same for the case of any
then the resulting amplitude after a timewill be at. This form of electromagnetic wavefield, for example, or indeed for
is a deterministic result. However, with a random walk, th#e propagation/diffusion of information in general. Thus, for
interpretation of the above result is thay/t is the amplitude some random walk process whose macroscopic characteristic
associated with the most likely position that the random walkare defined by a field,, if the process is diffusive, then the
will be after timet. If we imagine many random walkers, eacHield  is characterised by the operator
starting out on their ‘journey’ from the origin of the (complex) , 18
plane att = 0, record the distances from the origin of this " Dot
plane after a set period of timg then the PDF ofA will
have a maximum value - the ‘mode’ of the distribution - th
occurs atav/t. In the case of a non-random walk, the PD 1 92
will consist of a unit spike that occurs at. 2 - SCICYOR
. o . . c? ot
In the (classical) kinetic theory of matter (including gases,

and, if the process is propagative, then it is characterised by
e operator

L . . In multiple wave scattering theory, we consider a wavefront
liquids, plasmas and some solids), we considetio be the . . .
travelling through space and scattering from a site that changes

average distance a particle travels before it randomly coIIidﬁ]s L9 . .
. : e direction of propagation. The mean free path is taken to
and scatters off another particle. The scattering process, IS

. L . : b(-%' the average number of wavelengths taken by the wavefront

taken to be entirely elastic, i.e. the interaction does not affeTc : : i

the particle in any way other than to change the direction Q propagate from one |ntera§:t|on to another as described by
e free space Green's function. After scattering from many

Wh'(.:h it avels. Thusa reprgsents ihenean free patmf_a sites, the wavefront can be considered to have diffused through
particle. The mean free path is a measure how far a particle (Eﬁn e ) )
fhe ‘diffuser’. Here, the mean free path is a measure of the

travel before scattering with another particle which in turn, i

: . density of scattering sites, which in turn, is a measure of the
related to the number of particle per unit volume - the densi e . . .
) . . gier Iffusivity of the material - an optical diffuser for example.
of a gas, for example. If we imagine a particle ‘diffusing

through an ensemble of particles, then the mean free path

is a measure of the ‘diffusivity’ of the medium in whichB- Hurst Processes

the process of diffusion takes place. This is a feature of all We have considered random processes that characterise fully

classical diffusion processes which can be formulated in termsherent (propagative) and fully incoherent (diffusive) behav-

of the diffusion equation with diffusivityD. The dimensions of iour and through the physical interpretation of such processes

diffusivity are length? /time and must be interpreted in termswe have related them to differential operators associated with

of a characteristic distance of the process which varies wittie corresponding macroscopic behaviour. For a random walk

the square root of time. model in the plane,A(t) = at for a coherent walk and
Suppose we now consider the three-dimensional diffusiof(t) = av/t for an incoherent walk. What would be the

of light to be based on a three-dimensional random walkesult if the walk is neither coherent or incoherent but partially
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coherent/incoherent? In other words, suppose the random wadéximum minus the minimum value of this time series,
exhibited a bias with regard to the distribution of angles used to )
change the direction. What would be the effect on the scaling Ry, = max(Y;) — min(Y;).

law +/£? Intuitively, one expects that as the distribution ofpis adjusted range?,, is the distance the systems travels for
angles reduces, the corresponding walk becomes more §dime index:, i.e. the distance covered by a random walker

more coherent, exhibiting longer and longer time correlationsihe data sety; were the set of steps. Einstein’s equation
until the process conforms to the scaling lawConceptually, » _ ay/n will apply provided that the time series; is
scaling models associated vi/ith the intermediate case(s) ShQH[Lﬂependent for increasing values of However, Einstein’s
be based on a generalisation of the scaling lafisand ¢ oquation only applies to series that are in Brownian motion.

to the form¢™ where0.5 < H < 1. This reasoning is the y,rsp's contribution was to generalize this equation to
basis for generalising the random walk processes considered
so far, the exponentl being known as the Hurst exponent or (R/S), = an™
‘dimension’. h is th dard deviation for th b .
H E Hurst (1900-1978) was an English civil engineer wh¥ ereS IS the standar e\_/iation or the sam@bservations
emda is a constant. We define a Hurst process to be a process

designed dams and worked on the Nile river dam projects h a (fairl T value. Th . S is referred
the 1920s and 1930s. He studied the Nile so extensively tgfh a (fairly) constantf value. The qu_otienR/ IS referre .
as the ‘rescaled range’ because it has zero mean and is

some Egyptians reportedly nicknamed him ‘the father of tH8 : .
Nile The Nile river posed an interesting problem for Hurs xpressed in terms of local standerd deviations. In general,
as a hydrologist. When designing a dam, hydrologists ne value of R/S increases according to a power law value

to estimate the necessary storage capacity of the result al tOH known as the Hurst exponent._ ) _
reservoir. An influx of water occurs through various natural Rescaling the adjusted range was a major innovation. Hurst

sources (rainfall, river overflows etc.) and a regulated amoufff9nally performed this operation to enable him to compare
needs to be released for primarily agricultural purposes, fBWefse phenomen.on. Rescaling, fortunateiy, also allows us to
example, the storage capacity of a reservoir being based GinPare time periods many years apart in a range of time
the net water flow. Hydrologists usually begin by assuminﬁer'e{;' It is the relative change and r_iot the change |ts_elf titat
that the water influx is random, a perfectly reasonable ds-Of intérest. Rescaled range analysis can also describe time
sumption when dealing with a complex ecosystem. Hur ,riee thet have no charaeteristic .scale. By considering the
however, had studied the 847-year record that the EgyptidRgarithmic version of Hurst's equation, i.e.
haq kept of the Nile river overflows, from 622 to 1469. He log(R/S), = loga + Hlog(n)
noticed that large overflows tended to be followed by large
overflows until abruptly, the system would then change to loikis clear that the Hurst exponent can be estimated by plotting
overflows, which also tended to be followed by low overflowsog(R/S), against thelog(n) and solving for the gradient
There appeared to be cycles, but with no predictable periodth a least squares fit, for example. If the system were
Standard statistical analysis of the day revealed no significamiependently distributed, thed = 0.5. Hurst found that the
correlations between observations, so Hurst developed his ogwponent for the Nile River wa&l = 0.91, i.e. the rescaled
methodology. range increases at a faster rate than the square root of time.
Hurst was aware of Einstein’s (1905) work on Brownia his meant that the system was covering more distance than
motion (the erratic path followed by a particle suspended érandom process would and therefore the annual discharges
a fluid) who observed that the distanfethe particle covers of the Nile had to be correlated.

increased with the square root of time, i.e. It is important to appreciate that this method makes no prior
assumptions about any underlying distributions, it simply tells
R(t) x V1 us how the system is scaling with respect to time. So how

whereR is the range (equivalent to the amplitude for a walk if® We interpret the Hurst exponent? We know that= 0.5

the complex plane) covered in tintelt results, from the fact IS consistent with an independently distributed system. The
that increments are identically and independently distributégn9€0-5 < H < 1, implies a persistent time series, and a
random variables. Hurst's idea was to use this property to i@grsistent time series is characterized by positive correlations.
the Nile River's overflows for randomness. His method washeoretically, what happens today will ultimately have a
as follows: Begin with a time series; (with i = 1,2, ..., n) lasting effect on the future. The ran@e< H < 0.5 indicates

which in Hurst's case was annual discharges of the Nile Riv@nti-persistence which means that the time series covers less
Next, create the adjusted serigs,— z; — & (whereZ is the ground than a random process. In other words, there are

mean ofz;). Cumulate this time series to give negative correlations. For a system to cover less distance, it
‘ must reverse itself more often than a random process.
: Hurst analysed all the data he could including rainfall,
Y= Z;%' sunspots, mud sediments, tree rings and others. In all cases,
=

Hurst foundH to be greater thaf.5. He was intrigued thai/
such that the start and end of the series are both zero afigén took a value of abouit7 and Hurst suspected that some
there is some curve in between. (The final vallig, has to universal phenomenon was taking place. He carried out some
be zero if the mean is zero.) Then, define the range to be #eriments using numbered cards. The values of the cards
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were chosen to simulate a probability density function witbharacterised by generalizing the diffusion operator

finite moments, i.e0, +1, +3, +5, £7and +9. He first verified 9
that the time series generated by summing the shuffled cards v? - e
gaveH = 0.5. To simulate a bias random walk, he carried out t
the following steps. to the fractional form
1) Shuffle the deck and cut it once, noting the number, say v2_ aqﬁ
n ot

2) Replace the card and re-shuffle the deck.
3) Deal out 2 hands of 26 cards, A and B.
4) Replace the lowest cards of deck B with the highest

whereq € [1,2] and D? = 1/09 is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
. as intermediate between diffusive processes proper (random
n cards of deck A, thus biasing deck B to the level phase walks with/7 = 0.5; diffusive processes witly = 1)
5) Place a joker in de.Ck B afﬁd shuffle. . _ and ‘propagative process’ (coherent phase walks for=
6) Use deck B as a time series generator until the Joker1|§ propagative processes with — 2). For non-stationary
cut, then create a new biased hand. processes, we consider the operator
Hurst undertook 1000 trials of 100 hands and calculated
H = 0.72. We can think of the process as follows: we first V2 _ 54
bias each hand, which is determined by a random cut of ota®)’

the pack; then, we generate the time series itself, which isshould be noted that the fractional diffusion operator given
another series of random cuts; then, the joker appears, Whigdhve is the result of a phenomenology. It is no more (and
again occurs at random. Despite all of these random eveRis |ess) than a generalisation of a well known differential
H = 0.72 would always appear. This is called the ‘jokepperator to fractional form which follows from a physical

effect’. The joker effect, as described above, demonstrate%"?awsis of a fully incoherent random process and it gener-
tendency for data of a certain magnitude to be followed Ryfisation to fractional form in terms of the Hurst exponent.

more data of approximately the same magnitude, but only fofjike the diffusion operator (which is based on accepted
a fixed and random length of time. A natural example of thigng experimentally verifiable physical laws - Fourier's law of

phenomenon is in weather systems. Good weather and pagkmal condition, for example) this approach to introducing
weather tend to come in waves or cycles (as in a heat way@ractional differential operator is based on postulation alone.
for example). This does not mean that weather is periodig.js therefore similar to certain other operators, a notable

which it is clearly not. We use the term ‘non-periodic cycleexample being Scbidinger’s operator in quantum mechanics,
to describe cycles of this kind (with no fixed period). Thus,e.

Hurst processes exhibit trends that persist until the equivalent h? 2 ik 0

of the joker comes along to change that bias in magnitude om Y T M

and/or direction. In o_ther WQrdS res_caled range z_analys_ls_ “@Nn order to work with fractional derivatives, it is necessary to
be used to characterise a time series that contains W|th|nb|t

. ) ) L riefly review the fractional calculus which for completeness,
many different short-lived trends or biases (both in size and y P

direction). The process continues in this way giving a constafﬁtprovmed in Appendix 1.
Hurst exponent, sometimes with flat episodes that correspond
to the average periods of the non-periodic cycles, dependibg Solution to the Fractional Diffusion Equation
on the distribution of actual periods.

The generalisation of Einstein’s equatiot(t) = a+/t by I
Hurst to the formA(t) = atf’ |0 < H < 1 was necessary in

H q

order for Hulrst to analyse the apparent rand0|_”n behavpur of DIV2I(r,t) = i[(r,t)
the annual rise and fall of the Nile river for which Einstein’s otd
model was inadequate. In considering this generalisatiQ@nere D is the fractional diffusivity and(r) = I(r,t = 0)

Hurst paved the way for an appreciation that most naturge initial condition). Fory = 1, the solution to this equation

stochastic phenomena which, at first site, appear random, hgyge infinite domain (see Section I1l) for dimensions= 1, 2
certain trends that can be identified over a given period g3 is (with o = 1/D)

time. In other words, many natural random patterns have a

bias to them that leads to time correlations in their stochastic I(ro,7) = a/]o(r)G(r | vo, 7)d"T.
behaviour, a behaviour that is not an inherent characteristic of

a random walk model and fully diffusive processes in generglnere

94(t)

Consider the fractional diffusion equation for the intensity
of a wavefield given by

n 2

C. The Fractional Diffusion Equation G(R,7) = é (i) *exp [— (Uﬁﬂ H(r).
Given that incoherent random walks, whefét) = a\/t, o _

describe processes whose macroscopic behaviour is chagich is the solution to

terised by the diffusion equation, then, by induction, Hurst <V2 Y 0

processes, wherel(t) = at!, H e (0,1], should be 8t> G(R,7) = =0"(R)o(r).
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For the fractional diffusion equation, we consider the same 1 1 7 .
basic solution but where the Green’s function is given by the = VRrR 27 / dw exp(iwT)...
solution of
Vot 8 Gk, 7) = 5 (R)3(r) 1 VR4 k(o)
ota ’ - W (Z(AJO') ol (’LUJU
whereo? = 1/D9. Using the Fourier based operator for a 1 1 I
fractional derivative (see Appendix 1), we can transform this = \/7Raq/471ﬂ/4 — 870(1/ 6/ (1)

equation into the form

(VZ+Q2)g(r | ro,w) = —5"(r — ro) f Z + o] RGnH1/253na/453na/4 ().
(n
where
n=3:
ol [r0.w) = [ Glr | ro,) explir)dr LT el R
G(R,T) = Py / dw exp(iwT) R
™ m
Q= —iwo, Q= +i(iwa) V2. oo

Note that forq = 2, this equation becomes

1
/ dw exp(iwT) (iwa)q/2R+—'(in)qR2—...]
(V2 + k2)g(r | ro,w) = 6" (r — 1o) o 2

wherek = +wo. This equation defines the Green’s function ~ (1) 1 a/250/2
for the time independent wave operatorsirdimensions, the T ixR  ar’ (7)
‘out going’ Green'’s functions being given by [19], [20] 1S (1)t
=1: ) - L RprgntDa/25(nt1)q/2
n +47r Z (n+ 1! R"o &

{ .
g(r| ro, k) = ﬁexp(zkj | =710 |);
These are the Green’s functions for the fractional diffusion
equation in one-, two- and three-dimensions. Simplification of

these infinite sums can be addressed be considering suitable

n=2: ;
g(r [ ro, k) = J Ho(k | r — 0 |)
1 exp(ik | r — 1o |) asymptotics, the most significant of which (for arbitrary values
~ T exp(im/4) p ; klr—ro[>>1 of R) is the case when the (fractional) diffusivify is large.
m Vk[r—ro| In particular, we note that as — 0,

where Hy is the Hankel function, and 1
n=3: G(R’T)Zm—§R5(T)’ n =1
g(r|ro, k) = ——exp(ik |[r—ro |), n=23. 1
- G(R,T) = =2
4’/T|I‘ I'0| ( 7T) maq/471_(q/4)7 n )
Generalizing these results, for € [1,2], by writing the 5
exponential function in its series form, witR =| r — ry | we G(R,T) = @, = 3.
have, forQ, = i(iwo)?/?, ATR
Thus, in two-dimensions, we can consider a solution to the
n=1: fractional diffusion equation
91
g2 2 — —0) —
G(R,T) =5 / —exp (24 R) exp(iwT)dw (D v ota > I(r,t) =0, I(r,t=0)=Io(r)
T
of the form (fort, = 0 and at timet = T')
2 1 1 1
il exp iwr) _ PR(i q/2 Ji ; q _ I(z, ® RIy(x
= / Niwo)12 <1 R(iwo)?= 4+ 51 (lwo)? — ... (z,y) = 2var (DT)1-9/ (32 1 y2)3 o(z,y),
D — o0
! 1 L s
T 954/2 71-(a/2) 9 (7) which should be compared to the solution to the two-
00 (—1)m+L dimensional diffusion equation, i.e.
— n+1 nq/2 qn/2
+n§:2( 1)R o) I(z,y) = 1 exp |— M ®2 To(x,y).
’ 47 DT 4DT ’

n=2 Observe that when the diffusivity is large and the diffusion
7" exp(m/4) exp|— (iwo)9/2R] timet = T is small such thaDT" = 1, the difference between
dw exp(iwT)

—— an image obtained by a full two-dimensional diffuser and a
T v 8m ViR(iwo)1/* fractional diffuser is compounded in the difference between



18 ISAST TRANSACTIONS ON ELECTRONICS AND SIGNAL PROCESSING, VOL. 1, NO. 1, 2007

the convolution of the initial image with (ignoring scaling)Now, since

the functionsexp(—R?/4) and 1/v/R. Compared with the u ol de
Gaussian, the functio®~'/2 decays more rapidly and hence ot oti-a g
will have broader spectral characteristics leading to an output

that is less blurred than that produced by the convolution of tffén from the fractional diffusion equation

input with a Gaussian which, in the context of the fractional ou ol
diffusion model introduced, is to be expected. — =D1"——V?u
ot ot~
. . . and
E. Optical Fractional Diffusers 92
Optical diffusers are used in a range of applications includ- oz

ing the de-pixelation of Liquid Crystal Displays (LCDs) which
becomes especially important when the LCD is composed of 0 @ _ 2 q ota 2y ) = Do o1 VQ@
ot ot ot otl—e " ot

relatively few elements and is viewed at close range, e.g. Ot
LCD goggles. A common technique is to produce a thin

film that is composed of a randomly distributed complex of . o, . ot _, 2 S R e
scatterers (micro-spheroids whose relative permittivity is al mv (D 8t1—qv “) =D Itl—a (WV “)
weak perturbation of the body of the film) that is over-layed

onto the LCD. The goal is to produce a diffuser that ‘manages0 that in general,

the light in such a way that it de-pixelates the LCD while

minimizing the angular distribution of light. This requires the "u nq ortt-o v2ny

manufacture of a fractional optical diffuser, an example of ot otr1-a)
which is given in Figure 5 which shows the effect of a ‘lightyow since (see Appendix )
management film’ manufactured by Microsharp Corporation

Limited (http://www.microsharp.co.uk). 01 B 1
m[(r,t) = W ®I(I‘,t)

we can write the Taylor series for the field tat 0 in terms
of the field att =T as

I(r,0)=I(r,T) + % {% (tll_q ® VQI(r,t)ﬂ

T?D?1 [ 92 1
461 P T=YZ Y |:w <t1__2‘1 ® V4I(I',t)>:|

6 i | _. 2IT'(2q)

DY [ [ 1 ]
3G [aT (t ® VL, ”)LZT o

For the case whefl’ << 1,

t=T

t=T

i : I(r,0) = I(r,T) + % [% (t%q ® VQI(r,t)ﬂ .

HitH B néi..ﬁiﬁ and under the condition that

EELERIT AR

Fig. 5. lllustration of the application of a fractional optical diffuser to a 2 1 ® (r t) — I(r T)
low resolution LCD. The effect of the diffuser is to eliminate the pixelation ot \ tl—q ’ T ’
(central area) generated by the regular LCD lattice (edges) while minimizing -

the angular field of view. we can write

TD1
—_V?I(r,T).
g~ 7
VII. FRACTIONAL DE-DIFFUSION Thus, for an imagel(z,y) recorded in the image plane at
z = 0 say, after the imagé, has been fractionally diffused
over a period of timel’, we have

I(r,0) =I(r,T) +

Let Iy be represented as a Taylor series at some Time0,
ie.
T2 62

TD1?
I(r,0) = I(xr,T)+T [%I(r,t)] o [ﬁl(r,t)] e Io(z,y) = I(z,y) + WWI ().
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VIII. | MAGE SEGMENTATION METRIC equation, we have shown that the point spread function of
The result above provides us with an approach to estimatifitp image! is determined byR~'/?>, D >> 1. An FIR
¢ given T and I, as follows: Let filter (a fractional high emphasis filter) has been designed

) which scales a§'D?/T'(q) compared withT'D for the fully
P(z,y) =| Io(z,y)—I(z,y) |, and Q(z,y)=|V I(z,y)| diffusive case wherl’ << 1. This has provided the basis for
then with R(z,y) = P(z,y)/Q(x,y) fthe proposition ef anew algorithm for segmenting an image
into regions of similarity based on a measure of the parameter

(R(z,y)) = D q (the metricM) in contrast to those algorithms published in,
I'(q) [15] for example.
where
R _ JJ B(z,y)dady APPENDIX|
J [ dxdy OVERVIEW OF FRACTIONAL CALCULUS
Hence, In a famous letter from I'Hospital to Leibnitz written in
InT —Inl'(q) + ¢InD =M 1695, I'Hospital asked the following question: ‘Given that
where M is the metric (i.e. a measure gf given by d"f/dt" exists for all integer n, what if n be’. The reply
from Leibnitz was all the more interesting: ‘It will lead to a
M =In(R) <In <<P>> paradox ... From this paradox, one day useful consequences
(@) will be drawn’.

This metric can be used effectively as a quality control Fractional calculus (e.g. [21], [22], [23] and [24]) has

measure for the manufacture of fractional optical diffuseleen studied for many years by some of the great names of
(see Figure 5). For an imagk which has been formed by mathematics since the development of (integer) calculus in
the fractional diffusion of a uniform light source in whidp the late seventeenth century. Relatively few papers and books

is a constant, exist on such a naturally important subject. However, a study
T DY of the works in this area of mathematics clearly show that the

I—1Iy= @VQ(I Iy) ideas used to define a fractional differential and a fractional

integral are based on definitions which are in effect, little more
and with J = I — Io, than generalizations of results obtained using integer calculus.

(J(z,y)) The classical fractional integral operators are the Riemann-
M=l V20 (z,9) ) Liouville transform [21]

which can be applied on a moving winddw basis in order

to segment an image formed through short time fractional qu(t) _ 1 / f(7) dr, ¢>0
diffusion with variableg, the computation of ), ,yew (the I(g) J (t—7)t¢

moving average filter) and V21 ) (z,y)ew (Moving average
of the second order edge detector) being relatively simple.and the Weyl transform

— 00

IX. CONCLUSIONS qu / flr) dr. 4> 0
The use of a fully diffusive process for modelling strong F (9) J t—T)tma
(multiple) scattering has been considered and then extended
to model intermediate scattering by generalizing the diffusioiere
equation to fractional ordef € (1,2). The rationale for this 0o
approach follows that of a random walk model in which Tla) — /tqfl _Ddt
diffusive processes characterized bytla scaling law and (a) exp(—t)dt.

propagative processes characterized by acaling law are 0

generalized to a scaling law of the forff where] < H <1 For integer values of (i.e. wheng = n wheren is a non-

is the Hurst exponent. negative integer), the Riemann-Liouville transform reduces
The homogeneous diffusion equation provides a series sdi@-the standard Riemann integral. This transform is just a

tion to the inverse problem in which a Gaussian blurred imageausal) convolution of the functiorf(t) with ¢7=!/I'(q).

can be restored using appropriate FIR filters that depend loor fractional differentiation, we can perform a fractional

the order of the solution that is considered (i.e. the number iofegration of appropriate order and then differentiate to an

terms in the Taylor series). This approach has been extendggropriate integer order. The reason for this is that direct

to include fractional diffusion as defined by the equation (fdfactional differentiation can lead to divergent integrals. Thus,

an imagel) the fractional differential operatab? for ¢ > 0 is given by
q\72 01 q d d" n—q
DIViI(z,y,t) = 52 1(2,9,1) Dif(t) = - f(t) = - [I" (1))

whereD is the fractional diffusivity andy(z,y) = I(x,y,t = Another (conventional) approach to defining a fractional dif-
0). By computing the appropriate Green’s function for thigerential operator is based on using the formulasf8t order
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differentiation obtained by considering the definitions for thBuppose we let

first, second, third etc. differentials using backward and then
generalising the formula by replacimgwith ¢. This approach g(t) = H(t) = L t>0;
provides us with the result [21] 0, t<O0.

Then,G(p) = 1/p and the system becomes an ideal integrator:

N (7). R = ) ¢
Dryt) = Jim T > P(j+1)f(t_JN)

J

s(t)y=ft) @ H(t) = /f(t—T)dT = /f(T)dT.
0 0

A review of this result shows that for = 1, this is a point . h h h . . ) i
process but for other values it is not, i.e. the evaluation of (oW: consider the case when we have a time invariant linear

fractional differential operator depends on the history of tHYStem with an impulse response function by given by

function in question. Thus, unlike an integer differential oper- H(t) It]712, >0
ator, a fractional differential operator has ‘memory’. Although g(t) = i o £ <0
the memory of this process fades, it does not do so quickly ’ '

enough to allow truncation of the series in order to retaifihe output of this system ig ® g and the output of such a
acceptable accuracy. The concept of memory association egstem with inputf ® g is f ® g ® g. Now
also be seen from the result

t Vi
. dr .. B dr B 2xdx
DAf(t) = S (1)] R e e =
where 0 0
1 / f(r) =2 {Sin_l (w)] v =7
17 f(t) = Z——dr, n—q>0 vt/ 1o
Lln - Q)—Zo (t=m)te Hence,
in whi o- - HE)  HE)
in which the value of/9 " f(¢) at a pointt depends on N ® N (t)

the behaviour off (¢) from —co to ¢ via a convolution with ) . )
the kernelt"~¢/T'(q). The convolution process is of coursénd the system defined by the impulse response function

dependent on the history of the functigtx) for a given kernel H(t)/\_/E represents a ‘half-integrator’ with a Laplace trans-
and thus, in this context, we can consider a fractional derivatifd™ given by

defined via the result above to have memory. L [H(t)} = i.
vrt] /b
A. The Laplace Transform and the Half Integrator This result provides an approach to working with fractional

It inf fi t thi int t ider th licati l{?tegrators and/or differentiators using the Laplace transform.

informative at this point to consider the applicalion O, qjnng) differential and integral operators can be defined
the Laplace transform to identify an |dea_l mtggrator and th%ﬁ‘ld used in a similar manner to those associated with con-
a half integrator. The Laplace transform is given by ventional or integer order calculus and we now provide an
overview of such operators.

LI 0) = (o) = [ £0) exp(-ptide
0 B. Operators of Integer Order

and from this result we can derive the transform of a derivative The following operators are all well-defined, at least with

given by . respect to all test functions(¢) say which are (i) infinitely
L[f'(t)] = pF(p) — f(0) differentiable and (ii) of compact support (i.e. vanish outside

and the transform of an integral given by some finite interval).

| 1 Integral Operator:
L[ 10| = Fw). ,
0 fu(t) = Pu(t) = / u(r)dr
Now, suppose we have a standard time invariant linear system o

whose input isf(¢t) and whose output is given by

s(t) = () © g(t)

where the convolution is causal, i.e.

Differential Operator:

Du(t) = Du(t) = u'(t).

Identify Operator:

s(t) = /f(T)g(t —T1)dr. )
4 I%u(t) = u(t) = Du(t).
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Similarly,
Now, o
t
. . AHn = T (4) — (n) _ _ )
() = / o (F)dr = u(t) D"u(t) = I "u(t) /5 (T)u(t — 7)dr = u'™(t).
d B On the basis of the material discussed above, we can now
an ¢ formally extend the integral operator to fractional order and
f)[fu](t) _ % / w(r)dr = u(t) consider the operator
—00 . 1 ®°
Tu(t) = —— tTN it — 71)d
So that ut) = i [ et e =y
I'D' =Dt = I°. o
t
For n (integer) order: _ 1 W — Pdr
t T2 T1 F(q)_oo ( )Jr ( )
I"u(t) = / dTp—1... / dm / u(T)dr, where
. I'(q) = /tq*1 exp(—t)dt, q¢>0
DMu(t) = u'™(t) /
and with the fundamental property that

"[D™u)(t) = u(t) = D" [I™u](t). I'(q+1) = ql'(q).

Here, I? is an operator representing a time invariant linear
) ) system with impulse response functi(bﬁl(t) and transfer
Consider the function function 1/p?. For the cascade connection Bf and /%2 we

~1 . have
tN ) =t H() = {' I, >0

C. Convolution Representation

791792 — Jq1+q2
0, ¢t <. I [1%2u(t)] =1 u(t).

This classical convolution integral representation holds for all
real ¢ > 0 (and formally forq = 0, with the delta function
playing the role of an impulse function and with a transfer
function equal to the constant 1).

which, for any ¢ > 0 defines a function that is locally
integrable. We can then define an integral of ordén terms
of a convolution as

ru(t) = <u® (n_l 1)!751_1) (t)

D. Fractional Differentiation

1 ¢ For 0 < ¢ < 1, if we define the (Riemann-Liouville )
= — /(t — )" Lu(r)dr derivative of ordery as
(n—1)!
—0o0 t
. d . 1 d
q = _[Jl—q - —_ — —-4q
o Dru(t) = G0 = s [ ¢~ nrumar,
= o1 / " lu(t — 7)dr —o0
n — :
0o then,
In particular, 1 t
g - __ - _ —q,,/ — 7l—q, 1
A . DAu(t) =g /(t )W (7)dT = I" 7%/ (¢).
Iu(t) = (u@ H)(t) = / u(T)dr. oo
e Hence,

, : I1D%) = T~/ = '/ =
These are classical (absolutely convergent) integrals and the (D] [ u] v=u

identity operator admits a formal convolution representatioand D? is the formal inverse of the operatdf. Given any

using the delta function, i.e. q > 0, we can always write\ = n — 1 + ¢ and then define
i 1 dar /
fout:/éTut—TdT D> tzii/ t— )" 9dr.
(t) (T)u(t —7) u(t) I g i w(t)(t — 1)~ 9dr
oo .
where D17 is an operator representing a time invariant linear system

o(t) = DH(t). consisting of a cascade combination of an ideal differentiator
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and a fractional integrator of ordér— ¢. For D* we replace the case whery = 1) is referred to as a ‘differentiator’.

the single ideal differentiator by such that When g < 0, we have a definition for the fractional integral
o where, in the case aof = —1, for example, the filteiw) !
- 1 d is an ‘integrator’. Whery = 0 we just havef(t) expressed
0 — - — = —
ult) = r'(1)dt / u(r)dr = u(t) = / u(r)oft = r)dr in terms of its Fourier transfornf'(w). This Fourier based
- - definition of a fractional derivative can be extended further to
and . include a definition for a ‘fractional Laplaciaiv? where for
() 1 gntl ") n dimensions
D"u(t) = —~—— / T)dT 1
I'(1) dentt Vi=— /d”kkq exp(ik -r), k=|k]|
oo (2m)"
= andr is ann-dimensional vector. This is the fractional Riesz
=uM(t) = / w(T)0"™ (t — 7)dr. operator. It is designed to provide a result that is compatible
e with the case off =2 for n > 1, i.e. V? <= —k? (which is

lf”le reason for introducing the negative sign). Another equally

In addition to the conventional and classical definitions 5 . AR
lid generalization is

fractional derivatives and integrals, more general definitioN&

are available including the Eetyi-Kober fractional integral vo— L /dnk(ik)q exp(ik - 1), k=|k|
[25] (2m)"
gt _— which introduces & dependent phase factor ©§/2 into the
T operator.
o) / = T)lqu(T)dT’ g>0, p>0

E. Fractional Dynamics

which is a generalisation of the Riemann-Liouville fractional . . . . .
integral and the integral Mgthemaﬂcal_modelhng using (t|me_ dependent) fractional
Partial Differential Equations (PDESs) is generally known as
P i 7—4—P fractional dynamics [27], [28]. A number of works have shown
T(q) / )i f(r)dr, ¢>0, p>0 a close relationship between fractional diffusion equations of

the type (wherep is the space-time dependent PDF anik

which is a generalization of the Weyl integral. Further ddhe generalized coefficient of diffusion)
finitions exist based on the application of hypergeometric 94

functions and operators involving other special functions such Vp— 5P = 0, 0<g¢g<l1
as the Maijer G-function and the Fox H-function [26]. More-
over, all such operators leading to a fractional integral of the
Riemann-Liouville type and the Weyl type to have the general
forms (through induction)

0
Vip—o—p=0, 0<qg<2
p U@tp ) q=

: and continuous time random walks with either temporal or
5q g1 T\ 4 spatial scale invariance (fractal walks). Fractional diffusion
rfe) =t / ¢ (t> T f(r)dr equations of this type have been shown to produce a frame-

—o0 work for the description of anomalous diffusion phenomena
and and Lévy-type behaviour. In addition, certain classes of frac-

tional differential equations are known to yieldévy-type
. T distributions. For example, the normalized one-sidexy-
i =0 [o (L) s type PDF

¢ a? exp(—a/x)

respectively, where the kerndt is an arbitrary continuous p(a) = @W’ >0, z>0
function so that the integrals above make sense in sufficienitéy
large functional spaces. Although there are a number of
approaches that can be used to define a fractional differen-
tial/integral, there is one particular definition, which in terms
of its ‘ease of use’ and wide ranging applications, is ofthere
significant value and is based on the Fourier transform, i.e.

a solution of the fractional integral equation

2*Ip(z) = "I~ 9p(x)

x

o s 1 Py
P )= L [ ()P () explivt)d e = gy [ Gt 020
il = o= [ @)P @) explivt)ds e
e Another example involves the solution to the anomalous
where F(w) is the Fourier transform off (¢t). When ¢ = diffusion equation

1,2,3..., this definition reduces to a well known result that 9
is trivial to derive in which, for example, the ‘filteriw (for Vip—1ap=0, 0<g¢<2.
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Fourier transforming this equation and using the fractionglo]
Riesz operator defined previously, we have

[11]
B 1 (12]
- — _ 14
6tp(k’t) Tk P(k,t) 113
which has the general solution [14]
P(k,t) =exp(—t |k |? /7), t>0. (23]
[16]

which is the characteristic function of aélyy distribution.
This analysis can be extended further by considering a fracted
based generalization of the Fokker-Planck-Kolmogorov (FPKl)

equation [29] (18]
54 [19]

L
Sl t) = 5 5ls(@)p(,1)] [20]

wheres is an arbitrary function anfd < ¢ < 1,0 < 8 < 2. [21]
This equation is referred to as the fractal FPK equation; tr[12e2]
standard FPK equation is of course recoveredgfer 1 and

B = 2. The characteristic function associated wjtfx, ¢) is [23]
given by 24]

P(k,t) = exp(—akPt9) [25]

wherea is a constant which again, is a characteristic oeay

distribution. Finally,d-dimensional fractional master equation§26]

of the type [30], [31] [27]
014

ota

(r,1) = Zw(r —s)p(s,t), 0<qg<1 (28]

s [29]
can be used to model non-equilibrium phase transitions where
p denotes the probability of finding the diffusing entity at ggq)
positionr € R? at timet (assuming that it was at the origin
r = 0 at timet = 0) andw are the fractional transition rates(31
which measure the propensity for a displacemeint units of
1/(time)?. These equations conform to the general theory of
continuous time random walks and provide models for random
walks of fractal time.
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