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Figure 5-6 (b): Mean throughput contour map for minimum contention 

The bottom left corner of each of the contour maps (light blue shading) 

indicates a network with poor connectivity (i.e. the density is too low and/or 

the transmit power is too low to establish paths). 

 

Figure 5-7 (a): Mean throughput plot for minimum hop. 
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Figure 5-7 (b): Mean throughput contour map for minimum hop. 

 

Figure 5-8 (a): Mean throughput plot for maximum received power. 
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Figure 5-8 (b): Mean throughput contour map for maximum received power. 

 

Similarly, the performance of the network when minimum distance is used 

(Figure 5-9) is again comparable with that of minimum hop. 
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Figure 5-9 (a): Mean throughput plot for minimum distance. 

 

Figure 5-9 (b): Mean throughput contour map for minimum distance. 
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Variations can be seen in the throughput performance (and the delay 

performance). A more thorough investigation would be necessary to give an 

explanation as to why this occurs. Again, this metric is used for comparative 

performance analysis as it will exhibit similar behaviour to minimum hop. 

In Figure 5-10 we examine the network throughput performance when the 

ETT link cost metric is used. Once again it can be observed that the ETT 

metric outperforms the previous metrics considered. The general 

characteristic is similar to the previous link cost metrics. However, the peak 

throughput is relatively higher. This is also coupled with the fact that the 

increase in performance is maintained over a greater node density and 

greater transmit power range. This characteristic would indicate that the link 

cost metric ETT would be more tolerant to variations in transmit power while 

also achieving higher throughputs. 

 

Figure 5-10 (a): Mean throughput plot for ETT. 
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Figure 5-10 (b): Mean throughput contour map for ETT. 

 

If we observe the network constellation diagrams using two of the link cost 

metrics we can observe how the paths are formed. In Figure 5-11 and Figure 

5-12 we illustrate how paths are formed using minimum hop and ETT 

respectively. We can clearly see from Figure 5-11 that the use of minimum 

hop will result in links being chosen which will have a low transmission rate 

(indicated in green). In Figure 5-12 the majority of link rates are higher than 1 

Mbps (2 Mbps yellow, 5.5 Mbps orange and 11 Mbps red). 
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Figure 5-11: Network diagram using minimum hop. Majority of links are 1 Mbps (green) 

 

Figure 5-12: Network diagram using ETT. Majority of links have a rate greater than 1 Mbps 
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Table 5-2 summarises the main characteristics of these plots. 

 

Minimum Contention 

 Throughput Max = 0.3 Mbps Comments 

Tx Power High power at low density 
Low power at high density 

A minimum throughput performance is 
observed when the node density and Tx 
power are relatively high. Best performance 
achieved when values are inversely 
proportional 

Density Low density at high power 
High density at low power 

Minimum Hop 

 Throughput Max = 0.3 Mbps Comments 

Tx Power High power at low density 
Low power at high density 

As in the previous case. 
Density Low density at high power 

High density at low power 
Minimum Received Power 

 Throughput Max = 0.3 Mbps Comments 

Tx Power High power at low density 
Low power at high density 

As in the previous case 
Density Low density at high power 

High density at low power 
Minimum Distance 

 Throughput Max = 0.3 Mbps Comments 

Tx Power High power at low density 
Low power at high density 

As in the previous case. Minimum distance 
is not practical for use as a link cost metric. 
It is however useful to validate simulation 
performance. Density Low density at high power 

High density at low power 
ETT 

 Throughput Max = 0.55 Mbps Comments 

Tx Power High power at low density 
Low power at high density 

Significant improvement in max throughput 
performance. Higher throughput observed 
for greater range of node density and Tx 
Power. Suggests higher tolerance to 
changes in the network 

Density Low density at high power 
High density at low power 

Table 5-2: Comparison of main throughput characteristics for each link cost metric. 

 

5.1.3 Node Coverage 

In this section we will briefly examine the network coverage as the node 

density increases. As mentioned in section 4.5 we use Monte Carlo sampling 

to obtain the percentage of node coverage for each PHY rate. Samples 
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determine the percentage coverage of nodes (at each PHY rate) connected to 

the multicast tree. Ideally we would hope to achieve 100% coverage at the 

maximum available transmission rate. However, this is highly impractical from 

a deployment cost point. Figure 5-13 illustrates a typical node coverage plot 

for a fixed transmission power. 

 

Figure 5-13: Percentage node coverage when using ETT at a fixed transmission 

power of 9 dBm. 

 

In the figure we can examine the percentage coverage as the node density 

increases. Figure 5-13 plots the node coverage when using ETT and with a 

fixed transmit power of 9 dBm. As the node density increases so too does the 

percentage node coverage for each transmission rate. We can observe from 

the figure that at high node density deployments the coverage approaches 

100%. It should be noted that the coverage does not guarantee that a 
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particular rate will be used. The coverage is an indication of the maximum rate 

available; the multicast effect will ultimately determine the rate to be used. 

For comparison we also provide two extreme cases for the same link cost 

metric (i.e. with the transmit power fixed at 3 dBm and 18 dBm). We can see 

from Figure 5-14 that for high node density deployment the coverage is 

comparatively low (less than 60% for 1 Mbps). In Figure 5-15 we observe a 

different effect. As a result of the high power setting, the transmission range of 

all nodes is extended significantly. As a result, node coverage (for all 

transmission rates) achieves maximum coverage at relatively low node 

densities. Although this high coverage is desirable, the high transmit power 

creates adverse effects due to increased interference and hence increased 

contention. This is evident in the delay and throughput plots in the previous 

sections. 

 

Figure 5-14: Node coverage when using ETT at 3 dBm. 
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Figure 5-15: Node coverage when using ETT at 18 dBm. 

 

5.1.4 Summary 

In this section we have presented a comparison of the delay and throughput 

performance of five link cost metrics (minimum contention, minimum hop, 

minimum received power, minimum distance and ETT) for the Basic Model. 

We have shown that the performance of the first four is closely matched due 

to the construction of the spanning tree (i.e. long links are used with low 

transmission rates). The exception to this is when ETT is used. When ETT is 

used with Dijkstra’s shortest path algorithm, shorter links with lower delay and 

higher transmission rates are selected. This results in Child nodes of the 

same Parent having a higher multicast rate. 

The coverage plots show us the effects of increasing the node density and 

transmit power. Although increasing the node density and transmit power will 
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lead to higher coverage at higher rates, there is no guarantee of higher 

throughput as can be seen from the throughput plots in section 5.1.2. 

 

5.2 Midpoint Node Optimisation 

In section 4.2 we described a method of eliminating slow 1 Mbps links in order 

to achieve higher link rates and hence higher multicast rates. In this section 

we will present the performance results from simulations using two link cost 

metrics (minimum hop and ETT) with Dijkstra’s shortest path algorithm. The 

simulation set-up uses the Basic Model as set out in section 5.1. However, 

this time we will run simulations using a single fixed transmit power of 9 dBm. 

We choose the mid range transmit power based on the results from the un-

optimised results. In the un-optimised results we observed that if the transmit 

power is too low then paths will not be formed. On the other hand if the 

transmit power is too high then nodes will interfere with transmissions of 

neighbouring nodes resulting in an increase in contention and hence lower 

throughput. From section 5.1 we observed that the minimum hop link cost 

metric displays similar performance characteristics as our other link cost 

metrics, with the exception of ETT. Therefore, we will analyse these two 

metrics in the following sections. We will first present the results for the case 

where we remove all 1 Mbps links by introducing additional relay nodes. We 

will further extend this by continuing to add relay nodes in order to guarantee 

all 11 Mbps links and hence an 11 Mbps multicast rate. We will end the 

section with the main findings from our observation and analysis. 
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5.2.1 Adding Relay Nodes on 1 Mbps Links using ETT 

In this section we will analyse the network performance as we run our 

algorithm to place relay nodes along 1 Mbps links. In Figure 5-16 and Figure 

5-17 we illustrate the effect on performance from adding new relay nodes for a 

series of fixed node densities. In both figures each of the coloured lines 

represents the performance of the network for a particular fixed node density. 

As the number of relay nodes increases, the throughput and delay will change 

accordingly. 

 

 

Figure 5-16: ETT throughput plot for increased fixed node density with relay nodes. 
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Figure 5-17: ETT delay plot for increased fixed node density with relay nodes. 

 

We observe that both the throughput and delay follow a similar pattern as that 

shown in section 5.1.2 (i.e. the throughput decreases and the delay begins to 

decrease as the fixed node density increases). However, for this set of 

simulations we further increase the node density by adding new relay nodes. 

Therefore, the first point on each line represents the initial fixed node density. 

The chacteristic of each line changes as the number of relay nodes is added. 

The characteristics are discused in further detail later in this section and 

illustrated in Figure 5-18 and Figure 5-19. We can see from Figure 5-16 that 

for each fixed node density the throughput initially drops as relay nodes are 

added. Likewise, the delay increases as the node density increases. A 

reduced delay can only be seen once the fixed node density has reached a 

critical point of 150 x 10-6 Nodes/m2. 
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In Figure 5-18 we present the mean network throughput (over 1000 

topologies) when using 100, 120 and 140 fixed nodes to help illustrate this 

effect. As the number of additional relay nodes increases we begin to observe 

a gradual increase again in the throughput. The initial drop in performance is 

due to an increase in contention as we add relay nodes. If there is more than 

one Child node (on the same multicast branch) with a link rate of 1 Mbps then 

adding one relay node will result in a decrease in performance (due to 

increased contention). To observe the benefits from adding relay nodes we 

must continue to add nodes until all 1 Mbps links have been removed from a 

branch point (i.e. the rate to all Child nodes has increased by increasing the 

multicast rate). 

 

Figure 5-18: ETT throughput plot with relay nodes for 100, 120 & 140 fixed nodes. 
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Therefore, to observe the gain we should consider the difference between the 

starting throughput, (i.e. the throughput for a particular fixed node setting 

without relay nodes) and the final throughput (i.e. when all 1 Mbps links have 

been eliminated for a particular fixed node setting). Figure 5-19 represents the 

performance for a single topology using 100 fixed nodes. We can clearly see 

the effects of adding nodes. Recall from section 4.2 that relay nodes are first 

placed on point-to-multipoint 1 Mbps links before being placed on point-to-

point 1 Mbps links. The stepped increase in throughput is due to a higher 

multicast rate being used for point-to-multipoint communication. The effects of 

adding nodes decreases in the latter stages as relay nodes are placed on 

point-to-point links. The same stepped characteristic can be seen in the delay 

plot also shown in Figure 5-19. 

 

Figure 5-19: ETT throughput and delay plot for a single topology with 100 fixed nodes. 

Node density is the total fixed plus additional relay nodes used. 
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In the previous plots (Figure 5-16, Figure 5-17 and Figure 5-18) we 

characterise the performance using the mean values. The mean values 

provide us with useful information regarding general characteristics of the 

network behaviour. However, detail can be obscured or hidden when using 

such data. Figure 5-19 is sufficient for detailing the performance for a single 

topology. If we now plot the PDF distribution for all 1000 random topologies in 

a 100 fixed node simulation we can obtain a more insightful view of the 

network performance. In Figure 5-20 we display the PDF of mean network 

throughput for ETT and MinHop when no relay nodes are used (i.e. m = 0) 

and when the maximum number of relay nodes is used (i.e. m = 14 for ETT 

and m = 63 for MinHop). 

 

Figure 5-20: PDF of throughput for ETT and MinHop. Fixed nodes, N = 100, Relay 

nodes, m = 0 
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Using the peak probability values (rather than the mean throughput) we 

determine the performance gain as relay nodes are added. By graphing the 

probability density function (PDF) it is possible to quickly see the distribution 

of values including worst and best case topologies. For example using Figure 

5-20, looking at the PDF for ETT we can see that the peak probability is 0.106 

with a throughput of 0.16 Mbps. Using ETT while adding relay nodes to 

eliminate 1 Mbps links we find that max relay nodes, mpeak = 14, peak 

probability = 0.98 for a throughput of 0.27 Mbps (see Appendix C1 for 

probability tables and Table 5-3 for comparison of gains using ETT and 

MinHop). In the case of 100 fixed nodes the throughput gain is approximately 

69% when the number of relay nodes peaks at 14. Due to the path selection 

when using MinHop the number of 1 Mbps links is comparatively high (see 

Figure 5-12) hence we see a narrow distribution of mean network throughput 

values when m = 0. Conversely, with ETT the number of 1 Mbps links is 

comparatively low when m = 0 (see Figure 5-12) hence a broader distribution 

of values due to multiple line rates being used. We will see in section 5.2.3 

how we can continue to add relay nodes with the aim of improving the 

multicast rate further. 

 

5.2.2 Adding Relay Nodes on 1 Mbps Links using MinHop 

In this section we present a performance evaluation when using the minimum 

hop (MinHop) link cost metric along with our algorithm to place relay nodes. 

As in the previous section the results for throughput and delay follow the same 

general characteristics as the un-optimised results. From Figure 5-21 we can 

see that the throughput performance of MinHop with relay nodes is still lower 
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than ETT. After the node density passes 200 x 10-6  Nodes/m2 the relative 

throughput stays below 0.2 Mbps. The delay performance in Figure 5-22 

displays a significant difference with a greater drop in relative delay as relay 

nodes are added. However, the overall delay performance after the maximum 

number of relay nodes have been added remains lower than that of ETT. 

 

Figure 5-21: MinHop throughput plot for increased fixed node density with relay nodes. 
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Figure 5-22: MinHop delay plot for increased fixed node density with relay nodes. 

 

Again we take a closer look at individual fixed node densities to help clarify 

network performance characteristics. In Figure 5-23 we observe the effects on 

mean throughput performance for 100, 120 and 140 fixed nodes over 1000 

topologies. We can see that the maximum throughput is approximately 0.1 

Mbps for fixed nodes of 100 and above.  
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Figure 5-23: MinHop throughput plot with relay nodes for 100, 120 & 140 fixed nodes. 

 

In Figure 5-24 we illustrate the case for a single topology with 100 fixed 

nodes. Similar to the results for ETT, we observe the stepped pattern as relay 

nodes are added. The gain in throughput is approximately 29% for an 

additional 55 relay nodes. 
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Figure 5-24: MinHop throughput and delay plot for a single topology with 100 fixed nodes. 

 

As with ETT we use the peak PDF values to determine the gain (see 

Appendix C2 for PDF tables and plots). In the case of 100 fixed nodes the 

throughput gain is approximately 29% when the number of relay nodes peaks 

at, mpeak = 63 with a throughput of 0.09 Mbps. Due to the path selection when 

using MinHop, the number of 1 Mbps links is comparatively high, thus allowing 

for a greater number of relay nodes to be added. Table 5-3 compares the 

throughput gain, ρ and relay nodes, mpeak for eliminating 1 Mbps links when 

using both link cost metrics. 

 

 mpeak Throughput, Mbps ρ 

ETT 14 0.27 69% 

MinHop 63 0.09 29% 
Table 5-3: Percentage throughput gain for ETT and MinHop. 

Relay nodes are added to 1 Mbps links when 100 
fixed nodes are used. 
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5.2.3 Adding Relay Nodes to Guarantee 11 Mbps Links (ETT) 

As we have seen from the previous section, when Dijkstra’s shortest path 

algorithm uses ETT it will generate fewer paths with 1 Mbps links. Therefore 

there are less links to optimise. We will expand upon the previous simulations 

by searching through all links in the network in order to place relay nodes so 

as to guarantee 11 Mbps rates (i.e. we continue adding relay nodes to the 

network until the multicast rate of each Parent is 11 Mbps). In Figure 5-25 and 

Figure 5-26 we present the network performance for throughput and delay. 

Each coloured line represents a specific fixed node density. As before, relay 

nodes are added and the network performance is recorded and plotted. The 

general characteristic of the throughput is consistent with the performance 

seen so far (i.e. the throughput decreases as the node density increases and 

the relative delay initially increases before decreasing at higher node 

densities). 

 

Figure 5-25: ETT throughput plot for guaranteed 11 Mbps multicast rate. 
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Figure 5-26: ETT delay plot for guaranteed 11 Mbps multicast rate. 

 

To make clear the difference before and after relay nodes have been added, 

we present in Figure 5-27 the throughput and delay curves using only the data 

for relay nodes, m = 0 (dashed line) and m = max (solid line). We can see from 

the plots that the node density has increased by approximately 200 x 10-6 

Nodes/m2 at the upper fixed node density (i.e. when 150 fixed nodes are 

used). This corresponds to an increase of approximately 55%. The largest 

percentage node increase of approximately 150% occurs between (95 x 10-6 

and 165 x 10-6) Nodes/m2 (i.e. 50 – 70 fixed nodes). A larger increase in the 

amount of relay nodes used is expected in this region due to node spacing 

and the operation of ETT. As the node density increases the connectivity and 

node coverage will improve as we have previously shown in section 5.1.3. 

When the fixed node density increases further the proximity of node 
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placement will decrease allowing for Dijkstra’s shortest path algorithm to 

select paths with a lower ETT (i.e. shorter links as we have seen in Figure 

5-12). This will result in a reduction in the possibility for relay nodes to be 

added at higher densities. 

 

Figure 5-27: ETT Throughput and delay plot showing maximum and minimum 

relay nodes. 

 

On closer inspection of the graph in Figure 5-25 we can see that there is an 

increase in the throughput as relay nodes are added to the network. In Figure 

5-28 we plot the throughput results for 100, 120 and 140 fixed node densities 

as we add relay nodes. Each curve can be divided into three sections with two 

turning points. These three sections represent relay nodes being added at 1 

Mbps, 2 Mbps and 5.5 Mbps links. If we use the peak probability values for 

throughput we can calculate the performance gain for adding relay nodes. For 
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100 fixed nodes we can obtain an increase in throughput of approximately 

167% when the number of relay nodes is at a maximum (i.e. no more links 

remaining which require relay nodes) of mpeak = 90 with a throughput of 0.40 

Mbps. 

 

Figure 5-28: ETT throughput plot with relay nodes for 100, 120 & 140 fixed nodes. 

 

5.2.4 Adding Relay Nodes to Guarantee 11 Mbps Links (MinHop) 

In this section we present the results for our simulations using the link cost 

metric minimum hop (MinHop) while placing relay nodes to guarantee 11 

Mbps links. As in the previous section each coloured line represents a specific 

fixed node density. In Figure 5-29 we present the graph for the throughput as 

relay nodes are added. The general characteristic for this plot (and the delay 

plot) are similar to those shown in section 5.2.2 when eliminating 1 Mbps 
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links. However, as expected the overall node density has increased 

significantly. 

 

Figure 5-29: MinHop throughput plot for guaranteed 11 Mbps multicast rate. 

 

Figure 5-30 illustrates the results for the delay performance. In Figure 5-30 we 

notice that the delay initially increases before a significant decrease. This is 

due to relay nodes initially having a negative effect on the network until the 

multicast rate has been increased. This effect can also be seen in the 

throughput plot but to a lesser extent (i.e. an initial drop in throughput before 

gradually increasing). 
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Figure 5-30: MinHop delay plot for guaranteed 11 Mbps multicast rate. 

 

Again, to help make clear the difference in the network performance as relay 

nodes are added for each fixed node density we will plot the throughput and 

delay curves (Figure 5-31) using only the data for relay nodes, m = 0 (dashed 

line) and m = max (solid line). 

We can see from the plots that the node density has increased by over 750 x 

10-6 Nodes/m2 at the upper fixed node density (i.e. when 150 fixed nodes are 

used). This amounts to a node density increase of approximately 215%. 

Unlike ETT, MinHop will almost always produce long links. Therefore, the 

percentage of relay nodes increases as the fixed node density increases. 

If we use the PDF values (see Appendix C4) for throughput we can calculate 

the performance gain for adding relay nodes. For 100 fixed nodes we can 

obtain an increase in throughput of approximately 257% when the number of 
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relay nodes is at a maximum (i.e. no more links remaining which require 

relays) of mpeak = 219 with a throughput of 0.25 Mbps. 

 

Figure 5-31: ETT Throughput and delay plot showing maximum and minimum 
relay nodes. 

 

Table 5-4 compares the throughput gain, ρ and relay nodes, mpeak for 

guaranteed 11 Mbps multicast rates when using both link cost metrics.  

 mpeak Throughput, Mbps ρ 

ETT 90 0.40 167% 

MinHop 219 0.25 257% 
Table 5-4: Percentage throughput gain for ETT and MinHop. 

Relay nodes are added to 100 fixed nodes for 
guaranteed 11 Mbps multicast rate. 

 

5.2.5 Summary 

In the previous sections we presented the results for adding relay nodes to a 

network. We presented throughput and delay performance for the link cost 
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metrics ETT and MinHop. We began by adding relay nodes to eliminate 1 

Mbps links on the network with the intention of improving the multicast rate. 

We further extended upon this by continuing to add relay nodes in order to 

provide 11 Mbps multicast rates throughput the network. We presented the 

performance gains for the case of 100 fixed nodes for both 1 Mbps and 11 

Mbps optimised rates and compared the gains for each link cost metric. 

We present the combined results from the previous sections in Table 5-5 for 

convenience. As we are using an example of 100 fixed nodes the value for the 

maximum relay nodes added, mpeak will also represent the percentage of 

nodes added. We can see from the table below that when we add relay nodes 

to eliminate 1 Mbps links, ETT will yield larger gains than MinHop using 4.5 

times less relay nodes. Using ETT will also provide higher throughputs as was 

the case in the original un-optimised network performance. 

When we continue to add relay nodes in order to provide 11 Mbps multicast 

rates throughout the network, we observe that MinHop can produce a higher 

gain in throughput than ETT. However, ETT continues to outperform MinHop 

with regard to the mean network throughput (approximately 2 times higher) 

and requires significantly less relay nodes (approximately 2.5 times less). 

 

 mpeak Throughput, Mbps ρ 

Eliminating 1 Mbps links 

ETT 14 0.27 69% 

MinHop 63 0.09 29% 

Guaranteed 11 Mbps rates 

ETT 90 0.40 167% 

MinHop 219 0.25 257% 
Table 5-5: Comparison of performance gains from previous 

sections. 
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By provisioning relay nodes in a deliberate and specific manner we have 

shown that it is possible to improve the network performance with regard to 

throughput and delay. By placing nodes in key locations we can improve the 

multicast rate by targeting links with low link rates. The number of nodes 

required to improve the performance gain can be seen to be considerably less 

than that suggested by Gupta and Kumar in [GuK00]. However, it should be 

noted that the quantity of nodes required to provide such performance gains; 

in the case of ETT is almost equal to the number of fixed network nodes, or in 

the case of MinHop over double the number of fixed network nodes. 

 

5.3 Power Optimisation Results 

In this section we present the results for the power control algorithm described 

in section 4.3. Based on previous results we have chosen the link cost metric 

ETT in our simulation. A set of simulations is conducted using the same 

settings as outlined in section 5.1 with the following changes; 

 

Tx Power: The initial starting power is fixed for all nodes. The power 

control algorithm adjusts the transmit power on a per 

node basis. Series of simulations are run using starting 

powers of 0 dBm – 18 dBm with increments of 1 dBm. 

Link Cost Metric: ETT will be used throughout all simulations. 

Optimal Tree: A combination of Dijkstra’s shortest path algorithm and 

our power control algorithm will be used to search for an 

optimal tree within each topology. 
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5.3.1 Power Optimisation using ETT 

We begin our analysis by examining the results from simulations using the 

power optimisation algorithm and comparing them to results without any 

optimisation techniques used. Recall that the method for controlling the 

transmit power and subsequent search for an optimal spanning tree is 

described in section 4.3 and section 4.4. 

As one of our main objectives is to develop a method of improving the 

multicast throughput (and hence the overall tree throughput) we will begin by 

examining the behaviour of the mean throughput across all power settings (0 

dBm to 18 dBm, in 1 dBm steps) as the fixed node density is increased. 

Figure 5-32 illustrates the throughput using ETT. The upper diagram in Figure 

5-32 plots the throughput for increasing transmit power and increasing node 

density. The lower diagram displays the contour map for the same results. 

The results for the mean network throughput without optimisation are given in 

Figure 5-33. 

When we compare the throughput plots below, the most notable differences 

are at the lower density and lower transmit power levels. The throughput 

performance at the opposite end of the scale (i.e. high density and high 

transmit power) is closely matched. When we increase the node density or 

transmit power we are effectively increasing the transmission contention. The 

reduced throughput at higher node density and transmit power is expected 

due to the fact that our throughput performance metric is a function of the 

contention. Although Figure 5-33 appears to be uniform it does in fact follow 

the same general characteristic as Figure 5-32. However, due to the scaled 

performance improvement of Figure 5-32 the difference at the lower transmit 
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power and node density is less significant in comparison. (The difference can 

be seen in the un-optimised results in Figure 5-10). We will examine the 

throughput performance in more detail in section 5.3.2. 

 

 

Figure 5-32: Throughput plot using power control algorithm. Upper: 3D plot. Lower: 

contour map. 
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Figure 5-33: Throughput plot without optimisation. Upper: 3D plot. Lower: contour map. 
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Next we will briefly examine the network performance for the delay when 

comparing the un-optimised network to one using our power control algorithm. 

As done previously, we will examine the performance across all power 

settings (0 dBm to 18 dBm, in 1 dBm steps) as the fixed node density is 

increased. Figure 5-34 illustrates the network delay performance when power 

control is used while Figure 5-35 illustrates the network delay performance 

without any optimisation. 

In both figures, the light colours in the contour maps represent concentrations 

of relatively high delays. The performance of the network when using the 

power control algorithm appears reduced in comparison to the un-optimised 

network. This can be seen by the lower peak levels in the upper graph in 

Figure 5-34 when compared to Figure 5-35. In general, using the power 

control algorithm reduces the network delay across all transmit power levels 

and node densities. However, a significant difference in delay can be 

observed for the reduction of peak values (i.e. the delay is greatest at high 

density and low transmit power. Relatively high delays are also observed 

when the density and transmit power are varied inversely to each other, e.g. 

decreasing the density and increasing the power). 
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Figure 5-34: Delay plot using ETT with power control algorithm. 
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Figure 5-35: Delay plot using ETT without optimisation. 
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5.3.2 Detailed Analysis (Throughput and Delay) 

In this section we will describe the performance of the network in terms of 

throughput and delay when using the power control algorithm. To achieve this 

we will observe the effects of the network performance for a particular initial 

power setting and fixed node density. In the following example we use 100 

nodes (i.e. a fixed node density of 236 x 10-6 Nodes/m2) with an initial transmit 

power of 9 dBm for all nodes. In Figure 5-36 we illustrate the network 

constellation before and after the use of the power control algorithm. 

The most significant change in the diagram after the use of the power control 

algorithm is the elimination of the 1 Mbps links (green coloured) and the 

increase in the number of 11 Mbps links (red coloured). Less obvious from the 

diagram are minor changes in the routes taken by nodes (i.e. Child nodes 

switching to a new Parent). As we are using successive runs of Dijkstra’s 

shortest path algorithm after each power adaptation, all paths will again be 

searched in order to find an optimal tree. 
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Figure 5-36: Comparison of network diagram before and after using power control algorithm. 

The upper diagram represents the original network and the lower diagram 

represents the network after using the power control algorithm. 
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In Figure 5-37 we present the results when an initial transmit power of 9 dBm 

is set for all nodes. Solid lines indicate the performance after power control is 

applied and an optimal tree has been found. As can be seen in the overall plot 

for all power settings in Figure 5-32, the throughput is relatively higher for 

lower node densities. As the node density increases from the initial starting 

value to approximately 150 x 10-6 Nodes/m2 the throughput decreases 

monotonically. At this point the working plane becomes densely populated 

with nodes resulting in an increase in contention. As we have seen previously 

and again here, the node density is a major contributing factor to the 

performance of the network. While the density is low, the power control 

algorithm is able to take full advantage of its ability to increase the transmit 

power and improve the multicast rate. This is due to nodes being placed at 

greater distances from their neighbours resulting in lower received power 

which results in a lower link rate. The power control algorithm increases the 

power of Parent nodes thus increases the received power of the Child node. 

 

Figure 5-37: Throughput and delay performance comparison. 
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As the density increases beyond 150 Nodes/m2 x 10-6 there is less opportunity 

for the algorithm to improve the multicast rate by increasing the transmit 

power. In fact, increasing the transmit power excessively at this point would 

typically result in a reduction in the throughput due to an increase in the 

number of neighbours coming into interference range of a Parent node. For 

this reason we have allowed our algorithm to back off (i.e. reduce) the 

transmit power to a lower value if a gain in throughput is not achieved. This is 

reflected in the delay performance of the network. We can see in Figure 5-37 

that when the density reaches 150 x 10-6 Nodes/m2 the delay begins to level 

off at approximately 30 units. It should be noted that the relative delay will 

naturally begin to decrease as the density increases. This is due to an 

increase in the availability of higher link rates for path selection (see section 

5.1.1). This can be seen in the delay curve for the un-optimised network in 

Figure 5-37 (i.e. the dashed green line). Recall from previous results that 

more paths will be formed as the node density increases which will initially 

result in an increase in network delay. As the density increases further, nodes 

will be placed closer together resulting in shorter hops with increased data 

rates and hence reducing the delay. There are two contributing and opposing 

factors with increased node density; shorter paths with higher link rates and 

increased contention. Shorter paths with higher link rates will decrease the 

delay (and increase throughput). However, this will be negated by increased 

contention which will increase delay (and decrease throughput). 
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5.3.3 Detailed Analysis (Contention and Power) 

We can see in Figure 5-38 how the path contention increases monotonically 

with the node density. The increase in contention can be observed in both the 

un-optimised network and the network when power adaptation is used. 

However, as the density increases the power control algorithm allows the 

Parent node to reduce its transmit power when a gain in throughput is not 

achieved. This can be clearly seen in Figure 5-38 (solid line), as the node 

density increases beyond 150 x 10-6 Nodes/m2 the path contention for the 

power adapted network is approximately 100 units less than the original 

network. 

 

Figure 5-38: Path contention comparison using the power control algorithm. 

 

If we plot the mean power for this same network we can observe how the 

transmit power and the network react to the change in node density. Figure 
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5-39 illustrates the transmit power (Ptx) of a network with an initial starting 

power of 9 dBm. As we can see from the diagram, the mean network transmit 

power varies between approximately 9 dBm and 10 dBm. There are two 

turning points in the curve, both of which occur for the same reason. When the 

node density is low few paths will be formed due to poor connectivity. The 

power adaptation will attempt to increase the power in order to improve the 

multicast throughput. If this cannot be achieved the power will reduce which 

results in the first dip in the curve. As the node density increases, the 

connectivity improves allowing more paths to be formed. This allows the 

power control algorithm to increase the transmit power in order to improve the 

multicast rate. Once the node density (and consequently transmit power) has 

reached a critical point (in the case of this example, a node density above 150 

x 10-6 Nodes/m2) there are less opportunities to increase the transmit power 

(due to a densely packed network with shorter paths), therefore the power 

control algorithm falls back to a lower value in order to reduce contention. 
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Figure 5-39: Mean transmit power (Ptx). An initial starting power of 9 dBm is 
used for all nodes. 

 

This peak in the characteristic can be seen to shift depending on the initial 

transmit power. A complete set of mean transmit power plots for each power 

setting can be found in Appendix D. Therefore we can observe that the critical 

point in a network (with regard to tuning the transmit power) will depend on 

the initial starting power and node density which ultimately means the 

connectivity. As an example we provide the mean transmit power using an 

initial transmit power of 6 dBm and 12 dBm in Figure 5-40 and Figure 5-41 

below. 
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Figure 5-40: Mean transmit power for 6 dBm initial power. 

 

 

Figure 5-41: Mean transmit power for 12 dBm initial power. 
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5.3.4 Detailed Analysis (Node Coverage) 

So far we have concentrated on the performance of relaying traffic across 

high throughput paths on the network by improving the multicast rate. We 

have shown that there is a significant gain in throughput performance when 

the node density is relatively low (see Figure 5-32 and Figure 5-37). However, 

this throughput gain can be misleading if we do not take into account the 

connectivity and node coverage under these conditions. 

In Figure 5-42 we present the percentage node coverage using each of the 

available PHY rates with an initial power of 9 dBm. Solid lines represent the 

coverage for the power adapted network while dashed lines represent the 

original un-optimised network. From the diagram we can see that using the 

power control algorithm improves the coverage for all available rates over all 

node densities. When we use the power control algorithm, nodes which were 

initially out of communication range are now be capable of receiving 

transmissions of a nearby neighbour. This typically occurs at the boundary 

edges of the working plane. These nodes will now become Leaf nodes (i.e. 

non forwarding last hop nodes). In general such nodes will consequently have 

a low link rate due to their proximity to the Parent. In such cases, the mean 

network throughput will appear to be artificially low. 
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Figure 5-42: Comparison of node coverage for each PHY rate. An initial 
starting power of 9 dBm is used. 

 

We also note that the coverage is relatively poor below 150 x 10-6 Nodes/m2. 

This is due to poor connectivity as a result of the transmit power being too low 

to develop paths in a low density network. We further highlight this by showing 

two extreme cases when the transmit power is initially set relatively low and 

high (i.e. 3 dBm and 18 dBm respectively). In Figure 5-43 we compare the 

difference between both of these instances. We can see from the figure that 

using a power setting which is relatively low will result in poor node coverage. 

We can opt to use a high initial power setting to achieve optimal node 

coverage as shown in the figure when 18 dBm is used. However, as we 

observed from the throughput and delay results this would not yield a high 

performing network. Likewise, if the initial node throughput is set relatively low 
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we can obtain higher throughputs however, the node coverage will be 

insufficient. 

 

 

Figure 5-43: Comparison of node coverage with low and high percentage 

coverage. Low coverage achieved when initial power is 3 dBm (upper) 

compared to that of 18 dBm (lower). 
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5.3.5 Summary 

In this section we have presented the results when using the power control 

algorithm as described in section 4.3. We first present the results for a range 

of initial power settings before selecting an individual case using 9 dBm. We 

observed that the power control algorithm works best at creating high 

throughput multicast branch rates by increasing the power on a per node 

basis when the node density is relatively low. As the node density increases 

there is less opportunity to increase the throughput due to increased 

contention. At this stage the power control algorithm makes use of its power 

fall back mechanism in order to reduce the transmission contention and hence 

increase the throughput. 

As a result of the increased multicast rate the delay performance of the 

network will also show an increase (i.e. an overall decrease in the maximum 

relative path delay). The relative path delay is based on the path rate and the 

maximum path delay. As such, the performance will not display the same 

large gains as can be seen for the throughput when the node density is low. 

Figure 5-44 illustrates the percentage gain of throughput and decreased delay 

when using an initial power of 9 dBm. A full set of plots for each power setting 

(0 dBm to 18 dBm) can be found in Appendix D. 
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Figure 5-44: Performance gains when using the power control algorithm. 

 

In the graph shown in Figure 5-45 we plot the maximum and minimum 

throughput values when using all 1 Mbps and 11 Mbps links and a power 

setting of 9 dBm. If we assume a receiver sensitivity of -95 dBm for 

interference and a path loss coefficient, γ = 3 we can calculate the coverage 

area by manipulating the formula in section 2.9.1. Then, for any given node 

density we can estimate the number of nodes within range. Then taking either 

1 Mbps or 11 Mbps as the link rate and their corresponding efficiency factor 

as given in [Uni05] we can plot the maximum and minimum achievable 

throughputs for our simulator.  
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Figure 5-45: Theoretical operating region for power optimisation algorithm. 

 

The grey area in Figure 5-45 represents the region in which our power 

optimisation algorithm will operate. As we can see by comparing this graph to 

the throughput results in Figure 5-37 the performance of our network after 

power adaptation is closely matched. Our optimised network fails to find 

optimal trees at higher node densities, however it will still provide a 

performance gain in the region of 25% to 40%. 

We have also shown that our power control algorithm will conserve power in 

the network in order to reduce the overall network contention. Power 

conservation is normally not an issue when dealing with WMNs however, this 

algorithm can easily be adapted for use in low power sensor networks. 
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5.4 Comparison to Fixed Line Rate Network 

In the previous sections a performance evaluation of the optimised network 

(i.e. through relay nodes and power adaptation) compared to the Basic Model 

was presented. Recall however, that the Basic Model allows for different 

multicast branch line rates to be selected based on the poorest performing 

Child node without any further optimisation. In this section the case of using a 

fixed line rate and fixed transmit power throughout the network for all nodes is 

considered for performance comparison. Two scenarios are considered; a 1 

Mbps line rate using a transmit power of 9 dBm and a 1 Mbps line rate using a 

transmit power of 18 dBm. (Plots for the transmit power ranging from 0 dBm – 

18 dBm can be found in Appendix D). 

 

Figure 5-46: Throughput comparison with 1 Mbps line rate. 
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In Figure 5-46 the throughput performance using the power adaptation 

algorithm (dashed blue line) is compared to both of the 1 Mbps fixed line rate 

cases (i.e. with a transmit power of 9 dBm (red line) and 18 dBm (green line)). 

A significant increase in throughput can be observed when using the power 

adaptation algorithm at lower node densities. This is due to the algorithm 

adjusting the transmit power to take full advantage of the higher line rates 

available and thus increasing the multicast branch rates. 

 

 

Figure 5-47: Throughput % difference with 1 Mbps line rate. 

 

Figure 5-47 represents a plot of the percentage difference in throughput 

between the 1 Mbps fixed line rate cases and the power adaptation method as 

the node density increases. For a node density of 237 x 10-6 Nodes/m2 (i.e. 

100 nodes) there is approximately a fourfold increase in throughput over a 
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fixed line rate with a transmit power of 9 dBm and a tenfold increase over a 

fixed line rate with a transmit power of 18 dBm. 

Similarly, the relative delay performance for the same configurations is 

presented below. Again, the power adaptation algorithm (dashed blue line) 

outperforms both of the fixed line rate cases as illustrated in Figure 5-48. A 

significant improvement can be seen over a fixed line rate with a transmit 

power of 9 dBm. This is due to a lower transmit power requiring more hops 

(i.e. Parent nodes) to reach the destination nodes than would be necessary 

using a higher transmit power or the power adaptation algorithm. When a 

fixed line rate is used, the advantage of using the ETT link cost metric is 

negated. 

 

Figure 5-48: Delay comparison with 1 Mbps line rate. 
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Figure 5-49 represents a plot of the percentage difference in delay between 

the 1 Mbps fixed line rate cases and the power adaptation method as the 

node density increases. For a node density of 237 x 10-6 Nodes/m2 (i.e. 100 

nodes) there is approximately a 69% decrease in delay over a fixed line rate 

with a transmit power of 9 dBm and a 33% decrease over a fixed line rate with 

a transmit power of 18 dBm. 

 

Figure 5-49: Delay % difference with 1 Mbps line rate. 

 

Table 5-6 summarises the difference in throughput (TP) and delay 

performance when a node density of 237 x 10-6 Nodes/m2 (i.e. 100 nodes) is 

used. The performance difference for each of the node densities can be found 

in Appendix D. 
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Density = 237 x 10-6 
Nodes/m2 (n =100) 

TP, Mbps Power Opt. 
% TP Difference 

Delay Power Opt. 
% Delay Difference 

1 Mbps, 9 dBm 0.068 +393 % 98 -69 % 
1 Mbps, 18 dBm 0.029 +1043 % 45 -33 % 
Power Opt., 9 dBm 0.336  31  

Table 5-6: Comparison of throughput (TP) and delay.  

 

5.5 Practical Implementation - Prototype 

In [KBK08a] we have demonstrated that per packet power control can be 

implemented with a granularity of 0.5 dBm with a latency < 1 ms. We have 

also demonstrated in [KBK08b] a technique for a conservative transmit power 

control scheme using the Click Modular Router [KMC00]. In this paper we 

have demonstrated the relationship between delivery rate and Tx power (as 

well as RSSI and Tx power). In this paper it was shown that it is possible to 

decrease the transmit power to maintain an acceptable delivery rate and 

reduce interference and hence increase throughput. 

Our multicast power adaptation algorithm presented in section 4.3 can 

therefore be adapted to operate in a similar way. In our simulation the 

algorithm determines if the Tx power should be changed depending on the 

received power and the receiver sensitivity thresholds. This can be modified to 

operate based on the delivery rate. The MadWifi [TMP10] driver used in 

[KBK08a] and [KBK08b] is capable of supporting various bit rate selection 

algorithms. By using a feedback mechanism to control the Tx rate we can 

then achieve the following; 

• Increase the Parent Tx power to increase the delivery rate to the 

weakest Child. 
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• An increased delivery rate will allow for an increase in the Tx rate. 

• Increased Tx rate on a previously weak Child will increase the 

whole multicast rate on a given branch of a multicast tree. 

 

Multicast Probe 
Request

Probe Return
(ETT with delivery rates)

Power Adaptation.
Parent sets power based 
on delivery rate of 
weakest Child

Bit Rate selection 
feedback

MadWifi.
Bit Rate Selection 
Algorithm

 

Figure 5-50: Operation of power adaptation algorithm using MadWiFi 
bit rate selection. 

 

Figure 5-50 above illustrates the basic concept of the implementation. A 

multicast probe request packet is sent to all nodes within the multicast group. 

The multicast probe return contains the delivery rates to each of the nodes in 

the multicast group. The power adaptation algorithm now operates based on 

the delivery rate of the weakest Child. Feedback (in the form of positive or 

negative acknowledgement) to the bit rate selection algorithm determines the 
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Tx rate. The feedback mechanism, sent by all Child nodes, allows us to 

extend existing rate adaptation algorithms (such as Onoe, Amrr [LMT04] or 

Sample [Bic05] implemented by MadWifi) which are designed for unicast, to 

now operate in a multicast environment. 

Figure 5-50 demonstrates how the power and rate are closely coupled 

together. This is due to the fact that an increase in the Tx power allows for the 

use of higher modulations rates (i.e. Tx rates) and therefore more efficient use 

of the wireless medium. However, at the same time an increase in the Tx 

power increases interference on the neighbouring branches of the tree. 

Therefore, power and rate control should not be implemented as separate 

mechanisms. Only a combined operation can lead to optimal network-wide 

performance. 

 

5.6 Chapter Summary 

In this chapter we present the main findings of our results obtained through 

simulation. We characterise the network performance using different link cost 

metrics. This is achieved by using our Basic Model to evaluate and compare 

the link cost metrics on the performance of mean network throughput, 

maximum relative delay and node coverage as the transmit power and node 

density is increased. It was shown that poor performance in throughput and 

delay occurs when there is a lack of network connectivity. This generally 

occurs through a combination of the node density being relatively low (below 

70 x 10-6 Nodes/m2) and when the transmit power is insufficient to ensure 

reliable connections. It can also be seen that, for results with high throughput 
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and low delay performance, the node density and transmit power are inversely 

proportional to each other (i.e. high density and low power or vice versa). 

Through a comparison of link cost metrics in the Basic Model we found that 

ETT performs best. Increasing the transmit power will increase the node 

coverage, however the increased power will also increase the contention for 

access causing the network performance to degrade. A high network 

coverage will not guarantee a particular rate; this will be determined by the 

multicast rate. 

By adding relay nodes to the network, using ETT again performs better when 

compared to MinHop. We have shown that by increasing the node density by 

14% for ETT a throughput performance gain of 69% can be achieved. We 

have shown that by increasing the number of nodes further we can provide 11 

Mbps multicast rates throughout the entire network. For ETT we can provide a 

167% gain for a 90% node density increase. Although the MinHop 

performance gain is higher than ETT the overall network throughput 

performance is less. 

To put these results into perspective Figure 5-51 illustrates the gain in mean 

network throughput performance for each of our relay node placement 

methods alongside the predicted gains (red line) for adding relay nodes 

according to [GuK00] [ABS08]. 
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Figure 5-51: Comparison of relay node placement gains. The red line indicates 

the theoretical values presented by [GuK00] [ABS08]. 

 

The plot shows the approximate gains for both of our methods compared to a 

single fixed rate network and an un-optimised multirate network. The figure 

clearly shows that by strategically placing relay nodes, the network gain can 

be improved considerably and will use significantly less relay nodes (less than 

100 additional relay nodes for all cases) than that predicted by [GuK00] 

[ABS08]. 

We then present results for using our power adaptation algorithm. The 

algorithm improves the network performance in two ways: by improving the 

multicast rate (by increasing the Parent node transmit power) and by 

decreasing the Parent node transmit power when a higher rate cannot be 

achieved in order to reduce the path contention. We have shown that mean 



 

 215 

network throughput gains and a reduction in delay can be achieved across all 

node densities, with lower densities showing higher gains. Initial starting 

power should be selected based on the node density. Using our power control 

algorithm will also improve the node coverage without the overhead of adding 

additional relay nodes. 

To further highlight the performance gain of the power adaptation algorithm 

we compare it to the performance of a network using a fixed line rate. Two 

scenarios are presented; a 1 Mbps line rate with using a transmit power of 9 

dBm and a 1 Mbps line rate using a transmit power of 18 dBm. In both cases 

the power adaptation algorithm significantly outperforms these scenarios with 

regard to the mean network throughput and delay. Figure 5-52 and Figure 

5-53 illustrates the PDF and CCDF of the average network throughput 

calculated for 1000 random topologies for each of the scenarios tested. 

 

Figure 5-52: Comparison of throughput performance using PDF 
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Both of these diagrams display graphs for a fixed node density of 237 x 10-6 

Nodes/m2 (i.e. 100 nodes) and for a transmit power of 9 dBm for the following 

simulation results. 

• Fixed line rate for all nodes (green line). 

• Multirate multicast with no relay nodes and no power optimisation 

used (purple line). 

• Multirate multicast using relay nodes to remove 1 Mbps links (red 

line, x marker). 

• Multirate multicast using relay nodes to guarantee all 11 Mbps links 

(red line, □ marker). 

• Multirate multicast using the power adaptation algorithm (blue line). 

 

Figure 5-53: Comparison of throughput performance using CCDF 

 

Figure 5-53 shows the level of mean network throughput that can be expected 

from each of the multicasting methods. For example, if 1 Mbps fixed line rate 
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is used (green), then the maximum network throughput that can be expected 

is 0.05 Mbps. On the other hand, if an average throughput of at least 0.2 

Mbps is required, then the m = 0 case (i.e. a multirate multicast without 

optimisation, purple) can only deliver this performance for approximately 20% 

of the topologies. For the case providing relay nodes to remove all 1 Mbps 

links, m = max (red line, x marker) the same performance can be achieved for 

40% of the topologies. The power adaptation algorithm can deliver this 

performance for approximately 80% of the topologies. As expected, using 

relay nodes to provide all 11Mbps links, m = max (red line, □ marker) can 

deliver this performance for 100% of the topologies, but at the cost of a 

considerable amount of additional nodes. 

Finally, we presented a brief outline for a practical implementation of the 

power control algorithm using the MadWiFi driver. A feedback mechanism, 

sent by all Child nodes, allows us to extend existing rate adaptation algorithms 

used by the MadWiFi to tune the transmit power of Parent nodes. 
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6 Summary and Conclusions 

Multicast is a bandwidth-conserving technology specifically designed to reduce 

traffic by simultaneously delivering a single stream of information. The most 

significant benefits of multicasting can be seen in high bandwidth applications 

such as multimedia transmissions where a single transmission can be used. 

When employing multicast on wireless networks, the traditional approach of 

using a single fixed transmission rate for all nodes results in suboptimal 

performance that limits the capacity and prevents high bandwidth applications 

from being supported. In this thesis we have proposed two novel approaches 

for increasing the network throughput in a multirate multicast WMN. 

In this thesis we have presented through extensive simulation a comparative 

study of two multicasting schemes specifically designed for WMNs. We have 

characterised the operation of multicasting over wireless networks through 

analysis of a graphical representation of the network topology and through 

analysing the network performance when using various link cost metrics. We 

adopted a methodical design approach in the development of a custom 

simulator which includes all of the detail necessary for conducting wireless 

multicast multirate simulation. A custom simulation model allows us greater 

freedom and flexibility in implementing a multicast WMN simulator. By 

carefully designing a custom simulator it was possible to modify and build 

upon the simulator in a precise manner (i.e. building in minor modifications 

and validating each modification through extensive testing) without the need 

for unnecessary detail. Developing a custom simulator allows us the ability to 

modify and add new features as required with the flexibility to only include the 
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mechanisms which are of interest to us. This degree of flexibility is not 

afforded when using commercially available or open source network 

simulation tools (due to restricted access to modify the necessary modules or 

lack of support). Furthermore, the use of off-the-shelf simulation tools does not 

necessarily provide a comparative platform for validation as highlighted in the 

discussion of simulation tools presented in section 3.4. For these reasons 

many researchers develop custom simulation tools to develop new protocols 

(according to [KCC05] over 27% of network simulators are custom builds). 

The simulation model used makes basic assumptions regarding the channel 

model and surrounding environment. The purpose of the simulation is to 

provide proof of concept. It is likely that the performance gains presented here 

would be less than those in an experimental hardware test-bed. Network 

performance is largely dependent on the topology and as such a hardware 

test-bed would be susceptible to physical limitations of the environment. One 

of the main reasons for a reduction in performance would be due to 

assumptions made regarding the channel model. In reality the network would 

be susceptible to external sources of interference as well propagation losses 

as discussed in section 2.9. Furthermore, by assuming a circular transmission 

range the wireless multicast advantage is maximised. In reality the coverage 

area is not circular (nor is it equal for all radios in the same network) [KNE03] 

and as such the number of neighbours and hence available paths through the 

network would be reduced. However, a worst case scenario using the power 

control algorithm would yield no improvement and a best case which would be 

less than ideal simulation results given a hostile operating environment. 
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The performance of various scenarios which included the position of the Root 

node (multicast source) as well as the effects of local clustering was analysed 

before further development of the Basic Model was carried out. The Basic 

Model was then modified to allow for enhancements to be made to the 

network topology. These enhancements are categorised into two groups; 

• Simulations using additional relay nodes to improve the multicast 

branch line rate. 

• Simulations using a power adaptation algorithm to improve the 

multicast branch line rate. 

 

Both techniques aim to improve the mean throughput of the network by 

allowing higher line rates to be used. Throughout all simulations we found that 

the ETT link cost metric outperforms all other link cost metrics tested in terms 

of mean network throughput and delay. 

For the method requiring additional relay nodes to be added to the network 

two approaches were taken. The first approach was to strategically place relay 

nodes in order to eliminate all 1 Mbps links. The second approach continued 

to add relay nodes to the network until 11 Mbps links were guaranteed. We 

show that our method of strategically placing relay nodes in a network can 

provide significant performance gains in terms of mean network throughput 

and requires less additional relay nodes than that suggested by [GuK00] 

[ABS08]. 

Our next method for enhancing the network throughput performance involved 

using an algorithm for tuning the transmit power on a per node basis. Each 

forwarding node (i.e. a Parent node) adapts its transmit power in order to 
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increase the multicast branch line rate. If an increase in branch line rate can 

not be achieved, the wireless node reduces the transmit power in order to 

decrease interference. We provide statistical results to compare the 

performance of each of the simulation methods developed a particular Root 

node position. It can be shown that when a node density of 237 x 10-6 

Nodes/m2 (i.e. 100 fixed nodes) is used with a transmit power of 9 dBm the 

power optimisation algorithm can deliver a minimum throughput of at least 0.2 

Mbps approximately 80% of the time. The mean network throughput (TP) 

results compare as follows; 

 [ ] 2.02.0 =>Ρ MbpsTP ,  using multirate multicast, m = 0. 

 [ ] 4.02.0 =>Ρ MbpsTP ,   relays on 1 Mbps links, m = max 

 [ ] 8.02.0 =>Ρ MbpsTP   using power adaptation. 

 

From which we can conclude that the power optimisation algorithm is more 

effective in delivering a network throughput performance improvement without 

the need for additional hardware. 

 

6.1 Future Work 

The results show that there is potential for significant gains to be achieved 

when using a power optimised multirate multicast network. For this reason we 

have suggested a method for implementing the power adaptation algorithm 

using the MadWiFi driver to implement rate control by tuning the transmit 

power based on a feedback mechanism. Future work should provide an 

implementation of a hardware test-bed using this method whereby each 
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forwarding node would be responsible for tuning its own transmit power based 

on its immediate neighbours. Furthermore to ensure repeatability and reliability 

of testing, the hardware test-bed should aim to minimise external sources of 

interference. This can be achieved using an RF screened room. However, 

such a solution does not work well with WMNs due to the restricted size of 

such rooms. This is a common problem with large scale wireless mesh 

network experiments and hence the reason why simulation is often used 

[BBE99]. An alternative solution to this problem would be to connect each of 

the wireless nodes radio equipment via RF cabling. Line attenuation can be 

controlled using attenuated couplers to emulate specific network conditions. 

Furthermore, modifying commonly used network simulators such as NS-2 is 

worth further investigation for a comparative evaluation. However, such 

modifications may not be possible or would at least prove to be a non-trivial 

task. NS-2 is a packet based simulator and would require extensive 

modification in order to yield comparable results. The methodology employed 

throughout the design of the simulator meant that each stage was self 

validating. For the purpose of publication it is acknowledged that there may be 

a requirement for further validation. Future work would provide validation 

through the use of a hardware test-bed. 

The network simulator can be improved by using a traffic flow model and a 

more sophisticated channel model in order to provide a more detailed 

simulation environment. Moreover, the simulation assumes a pure multicast 

environment without any other network traffic. Future work should consider a 

mixed traffic environment which would include unicast traffic. However, the 

main objective was to show that single rate multicast networks are sub-optimal 
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and thus it was felt that an increase in such detail was unnecessary to prove 

this. It is worth noting that the simulator can easily be adapted to support 

801.11a/g line rates. For ease of simulation and to reduce the simulation time 

the four line rates available under 802.11b were used. The simulation model 

itself underwent significant profiling analysis in order to improve the efficiency 

of the code. For further development of the simulator it would be worth porting 

the code from its current interpreted language, Perl to a compiled language 

such as C or C++. Using a compiled language would help to improve the 

execution times. The average execution time for 1000 topologies, over 15 

node densities and 19 transmit powers takes approximately 72 hours. 

There still remain many open issues regarding multicasting over WMNs. For 

example, reliable service, efficient membership updates, multi-radio multi-

channel networks, and quality of service guarantees [KLS07] are amongst 

those not covered in our discussion from section 3. These issues and the 

current lack of support present an ideal opportunity for researchers to develop 

new techniques without the constraints of standardised guidelines. 

Furthermore, with the recent advances in network coding a cross discipline 

design would be possible by using our power adaptation algorithm alongside 

such network coding schemes. Furthermore, our research considers a single 

radio solution only. With the emergence of 802.11n and dual radio mesh 

nodes an even more sophisticated solution would  be possible. For instance, 

by using a multi-channel multi-radio wireless mesh network it would be 

possible to schedule separate transmissions on separate channels to the 

multicast group. During multicast sessions, each forwarding node can 

determine the Child node with the worst link in the multicast branch and 
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dedicate a radio and channel to this Child. This would then allow the 

remainder of the multicast branch nodes to fully exploit the multicast 

advantage without being impeded by the poorest performing node (known as 

the “cry-baby” scenario). 

It is also worth noting that our power adaptation technique, although not 

designed for the purpose, can easily be adapted to suit sensor networks for 

energy conservation. Rather than having the network throughput as the 

optimising objective the transmit power, node coverage or any other relevant 

performance metric can easily be substituted in its place. Other, more novel 

approaches, use mobile robotics [MoR10] equipped with mesh nodes and 

GPS to dynamically transform the network topology [Mil09]. 

The work presented in this thesis has been separated into two distinct 

techniques for improving multicast communications, i.e. adding relay nodes 

and power control adaptation. Two journal papers have been written and 

submitted to IEEE journals for publication review. 

 

6.2 Conclusions 

The main findings from the simulations carried out can be summarised as 

follows: 

• A mean network throughput performance increase of 4-10 times over 

the single fixed line rate scenario is achieved when using the power 

adaptation algorithm. 

• Significant decrease in delay (33% - 69%) when compared to the single 

line rate scenario using the power adaptation algorithm. 
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• The power adaptation algorithm shows a significant improvement in 

throughput performance when the node density is low. 

• The power adaptation algorithm can improve the throughput 

performance at higher node densities by decreasing the transmit power. 

• The performance, in terms of the network throughput and delay, is 

largely dependent on the network topology, density and transmit power. 

• The power adaptation algorithm improves the node coverage by 

extending the range and increasing the rate to Leaf nodes. 

• The throughput performance of the power adaptation algorithm is 

comparable to the throughput performance of the network using relay 

nodes to guarantee 11 Mbps line rates. 

• The power adaptation algorithm does not require the additional 

hardware resources required using relay nodes. 

• The number of relay nodes required to provide a 2.5 times throughput 

gain (typically less than 100 relay nodes) is significantly less than that 

suggested by [ABS08] and [GuK08] (greater than 800 relay nodes). 

 

The use of a single rate in multicast WMNs can be shown to be suboptimal. 

The use of strategically placed relay nodes in the network can provide 

throughput performance gains. However, the associated cost of equipment 

and additional hardware deployment makes this solution impractical. By tuning 

the power in a multirate multicast WMN the throughput can be increased 

significantly without any additional capital costs. 
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Appendix A 

PDF plots for grid positions 1 – 25. Folder: “\Appendix A\Grid Position 1 - 25 

Plots\” 

Basic Model results data and plot files. Folder: “\Appendix A\Basic Model 

Results\” 
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Appendix B 

Obsolete (Section moved to main text). 
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Appendix C 

Files containing PDF data (avgTPPDF-N-m.txt) for relay nodes mmin to mmax 

are located in, Folder: “\Appendix C\Appendix C1 – C4\”; 

 C1: ETT 1 Mbps midpoint optimised. 

C2: MinHop 1 Mbps midpoint optimised. 

C3: ETT 11 Mbps midpoint optimised. 

C4: MinHop 11 Mbps midpoint optimised. 

 

Perl script “processFreqDataForPDF.pl” can be used to generate PDF data for 

all node densities in files “TPFreq-<NODE DENSITY>.txt” 
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% Gain is calculated as ( (TP mmax / TP mmin) x 100 ) – 100 

 

ETT 1 Mbps 

 m TP Mbps Peak Probability 

mmin 0 0.16 0.106

mmax 14 0.27 0.98

% Gain  68.75  

    

Hop 1 Mbps 

 m TP Mbps Peak Probability 

mmin 0 0.07 0.44

mmax 63 0.09 0.5

% Gain  28.57  

    

ETT 11 Mbps 

 m TP Mbps Peak Probability 

mmin 0 0.15 0.116

mmax 90 0.4 0.98

% Gain  166.67  

    

Hop 11 Mbps 

 m TP Mbps Peak Probability 

mmin 0 0.07 0.446

mmax 219 0.25 0.90

% Gain  257.14  

Figure C-1: Summary of peak probability values. 
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Appendix D 

Complete set of plot files for transmit (Tx) power settings 0 dBm to 18 dBm are 

located in; 

Folder: “\Appendix D\Power Plots\” 

Folder: “\Appendix D\3D Plots \” 

Folder: “\Appendix D\Contention\” 

Folder: “\Appendix D\Coverage Gain Plots\” 

Folder: “\Appendix D\Throughput and Delay\” 
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Appendix E 

 

All source code and scripts for processing data are located in “\Appendix E\”. 

Source code for Basic Model simulations located in Folder: “\Appendix E1 - 

Basic Model\”. The Basic Model contains all of the core functionality of the 

simulator but does not incorporate any of the optimisation techniques. 

Parameters are hard coded as global variables. Log and plot files are 

generated as “*.txt” and “*.plt” respectively. See file header comments for 

further details. 

Source code for Midpoint Optimised simulations located in Folder: “\Appendix 

E2 - Relay Nodes\”. This program operates using the basic model with the 

midpoint optimisation. Simulations will optimise the network for a specified 

“optRate” set by the user. Parameters are hard coded as global variables. Log 

and plot files are generated as “*.txt” and “*.plt” respectively. See file header 

comments for further details. 

Source code for Power Optimised simulations located in Folder: “\Appendix E3 

- Power Adaptation\”.Simulations will optimise a network by tuning the power 

for each node. Parameters are hard coded as global variables. Log and plot 

files are generated as “*.txt” and “*.plt” respectively. See file header comments 

for further details. 
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Appendix F 

Frequency distribution plots of random node placement using Mersenne 

Twister PRBS (MT). The working plane of 650m x 650m was divided into a 5 x 

5 grid. Plots for distributions for each grid position are given below. 

 

Figure F-1: 10 iterations of MT using 1000 nodes. 
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Figure F-2: 100 iterations of MT using 1000 nodes. 

 

 

Figure F-3: 1000 iterations of MT using 1000 nodes. 
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Figure F-4: 10,000 iterations of MT using 1000 nodes. 
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Appendix G 

Diagrams and plots for each chapter are located in; 

Folder: “\Appendix G1\Chapter 1\” 

Folder: “\Appendix G2\Chapter 2\” 

Folder: “\Appendix G3\Chapter 3\” 

Folder: “\Appendix G4\Chapter 4\” 

Folder: “\Appendix G5\Chapter 5\” 

Folder: “\Appendix G6\Chapter 6\” 

 

 


