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ABSTRACT

This paper proposes a novel solution to querying image databases by matching raster features to imagery completely in
the raster/spatial domain using the shape of single features together with their spatial relations as the matching
primitives. The core feature-based matching module combines a revised least-squares matching algorithm, to
accomplish the matching process on binary images, with a unique implementation of a feature library that organizes and
links query objects with their images in the database, thus enabling fast and efficient real-time retrieval of relevant
imagery. The purpose is to extend this previous work of ours, which matches on the shape of single features only, to
include querying configurations of image objects. As such, both spatial reasoning, e.g. the topological (disjoint,
touching, overlapping, etc.), directional (north, south, east, etc.), and metric (distance) relationships between individual
features, together with feature shape matching are requirements for proper image retrieval. More specifically, we will
define a methodology to evaluate similarity between a user-defined query scene and the retrieved images. To do this, it
is required to define a functidBne: that assesses tlsemilarity metricbetween a query configurati@hand an imagé

in the database. Such a function will combine different similarity functions for individual object shapes, and the spatial
relations between them. The result of this investigation will be a proposal for solving the problem of scene similarity
guerying in image databases that will provide the basis for future work on implementation and act as the framework for
further extensions into temporal reasoning.

1 INTRODUCTION

Since the advent of digital scanners and sensors, beginning in the late 1970’s, image database querying has become &
major area of research. Most of the efforts during this time have focused on analyzing and comparing the more general
properties of digital imagery. These include: color, in the form of histogram matching; texture, in the form of image
coarseness and contrast matching and; composition, where an image is divided into homogeneous regions of color or
texture and the relative positions of these regions analyzed [Carson et al., 1997; Flickner et al., 1995; Forsyth et al.,
1996; Frankel et al., 1996; Pentland et al., 1996; Sclaroff et al., 1997].

The expression “image retrieval by content” in this paper means to retrieve images matching the higher level image
characteristics, more specifically, actual shape information (synonymous with outlines or edges) of features and their
configurations contained within the imagery, e.g. the outlines of a building or a particular arrangement of buildings.
Furthermore, we are interested in doing so completely in the raster/spatial domains. This distinction is important as
both the query sketch and the database images are stored in the same raw raster format without any vectorizing of the
image-objects (feature digitizing) performed or other such image-object information known beforehand. The spatial
component also implies that there has not been any processing applied to the imagery (such as Fast Fourier Transforms)
that transforms the raster image into the frequency domain before further operations begin.

Our purpose is to extend the recently completed work on Image Query-by-Sketch [Agouris et al., 1999b], designed to
match on single features completely in the raster domain, to include matching configurations of image objects. Thus we
provide a comprehensive solution that fully describes the similarity between a given query scene and an image in the
database.

2  MATCHING CONFIGURATIONS OF IMAGE-OBJECTS

An image is composed of spatial objects and their relations with the similarity between scenes described as a function of
object similarity plus relation similarity [Goyal and Egenhofer, 2000]. But before scenes can be compared for their
similarity properly, they have to be “normalized” so that all comparisons can begin from the same basic starting point.
For example, for each “raw” image, one must find its “computational” counterpart; the ultimate “goal” in image
understanding research. Therefore, the basic problem is to determine a methodology that will automatically enumerate
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all the possible spatial relationships between image objects, or in other words, automatically transform each raw image
into its computational image before their similarity can be properly compared.

A typical query of an image database consists of metadata, semantic data, and a sketched configuration of image-objects
[Agouris et al., 1999a]. The metadata criterion could include information on image scale or location, etc., the semantic
criterion could specify what type (or purpose, etc.) of objects should be contained within the images returned from the
guery, and the sketched configuration of image-objects will determine scene matching similarity (Figure 1).

For example, if the user decided to retrieve all images with airplanes, airplane hangers and runways that match to a
particular configuration, the query would:

Process the metadata library and retrieve all images that match to the specified metadata criterion (e.g. scale, or
location, etc.).

Follow the links from this subset of images to the semantic library where it would identify which of these
images contained airplanes, hangers, and runways of any size and shape;

Use the semantic input criteria to further narrow down the list of images to search within for the required query
shapes;

Use this further subset of imagery to select, through feature linking, a refined subset of features within the
feature library to match individual objects in the query sketch against;

Retrieve all the imagery linked to the best matched features in this refined subset from the feature library;
Determine which of these images were returned more than once, i.e. which images contain all of the objects in
the query configuration;

Process the spatial relations of the query scene on this final subset of imagery and return a prioritized list of
imagery as the query result.

Configurations can be matched within the query environment proposed in [Carswell, 2000] by adding an extension to
the query building interface. What is required is that the individual objects within the sketch are recognized as such,
and the pixels that make up their respective edges stored independently.

Comprehensive
Query Interface Digital Image
Database
On-line
Query
_» Metadata
Mﬁ:;d?ta Library
u
Criteria @ |
Semantic > Image
Input Library
Criteria @ |
Object 1 id Semantic e
o > oy
I
—@——} Feature < e
Library (&)
—/
(9)
—/
(10)
®

Figure 1 : The Query Scene Similarity Matching Workflow

When a feature gets matched to an image, its centroid coordinates within the image are recorded as well as the top left
and bottom right coordinates of the query feature’s minimum bounding rectangle, after scaling and rotation have taken
place. Spatial relations on the image are determined through the use of the matched query features MBRs instead of the
actual image-objects because the image is in raster (non-vectorized) format and therefore no a-priori information is
known about any image-object (in particular, their boundaries). Also, it is straight forward to determine the MBR
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containing the pixels composing the translated/rotated/scaled query object and using their MBRs allows for spatial
relations to be built and queried in real-time.

Once the query scene has been built, the individual component objects that comprise the scene are separable and the ¢
intersection matrix [Egenhofer and Franzosa, 1991] can be determined for each pair of objects in the scene.
Determining the position relation matrix and the distance ratio matrix for the query scene follows this. Next, the search
will commence by first retrieving all the images that match to the individual objects of the query scene. From this
subset of images, only those images that have a match above a given threshold for all of the objects in the query scene
will be further considered. From these remaining images, the topological/directional/distance relations between the
matched objects will be computed and compared to that of the query scene.

2.1 Position Relation Matrix

To overcome the lack of exterior orientation information in the query and image scenes, we propose to use an intrinsic
reference frame where the query/image-object orientation is in respéft-tf" or "right-of" the features themselves.

To do this, a position relation matrix is built for each query/image scene. Since a scene comprised of two (or less)

objects is trivial to discern, i.e. a scene could be rotated to suit any orientation, our approach assumes three (or more)
objects in the scene (Figure 2).

> A B C D
ABOO 0 1 10

ACO0 -1 0 10
A ADOO -1 -1 0O

BCOL 0 0 10

BDO1 0 -1 0O
. CDHL 1 0 Of

Figure 2 : Example Image Scene and Corresponding Position Relation Matrix

To build the position relation matrix for the scene depicted in Figure 2, an extended, imaginary line connecting the
centroid of Feature A to the centroid of Feature B is drawn. Feature A is arbitrarily consideredogs feature and

Feature B thébottom"feature, and for every other feature (Features C thropghthe scene it is determined whether

they lie left-of or right-of this line. Fixing the same features in both the query and image scenes to be either top or
bottom renders any rotations in the scenes immaterial. The calculation of left-of or right-of is a simple matter
considering we know (from the feature matching algorithm) the pixel coordinates of each feature's MBR in the image
scene and each features actual boundary outline in the query scene. For example, if the MBR of Feature C in the image
scene lies left-of this line, a -1 (negative 1) is placed in the position relation matrix. If Feature C's MBR lies right-of
this line, a 1 is placed in the matrix and if Feature C's MBR lies somewhere along this extended line, a 0 is placed in the
matrix.

After the remaining features of the scene are likewise added to the matrix, the imaginary line between Feature A and
Feature B is deleted and redrawn between Feature A and Feature C with the process of determining left-of and right-of
for the remaining features in the scene repeated. This entire procedure is repeated for every combination of features in
the scene, i.e. there afgh-1)/2 combinations of extended, imaginary lines that need to be tested against. For example,

in the image scene of Figure 2, with 4 image-objects, there are 6 combinations of imaginary lines to be tested against,
resulting in a 6x4 position relation matrix.

A position relation matrix is constructed for the query scene and each image scene returned from the initial query. A
normalized correlation coefficient for each query/image scene is then calculated using Equation 1, describing their
respective similarities. This coefficient is then scaled between 0 and 1 to give a total scene position matching
percentage between the query and image-object configurations independent of any arbitrary scene rotations.

I-NQ-Q
ne=—2(0-DR-Q
JS -2y Q@-Q)2
wherel andQ are the position relation matrices for the image and query scenes respectively. Similar to the extrinsic

reference frame approach, distance is also required in order to distinguish properly between these configurations of
spatial entities.

(1)
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2.2 Distance Ratio Matrix

For the purpose of this research, where no scale information on the query/image scene is provided a-priori, it is
necessary to analyze the relative distances between image-objects. For example, a square matrixnef)rank

(wheren is the number of objects in the scene) can be built for every query/image scene. Each combination of image-
object connection is set to a distance of 1 unit and the distances to the other objects in the scene determined relative to
this unit distance. Assuming an example scene of 3 objects, a 3x3 distiémoeatrix would be built (Figure 3).

The ratio approach to calculating the relative distances between objects does not require absolute scale information and
is possible of course because the pixel coordinates of the image-object centroids are returned from the feature matching
algorithm. The similarity between various query and image scenes, or more specifically their respective distance ratio
matrices, is then determined through analysis of their normalized correlation coefficients (Equation 1) scaled between 0

and 1.
@ AB AC BC
ABO1 174 230
ACO57 1 1323

. BCH44 .76 1

Figure 3 : Example Image Scene and Corresponding Distance Ratio Matrix

3 Suer - ASCENE SIMILARITY METRIC

The next step will be to provide an evaluation of the percentage of similarities to allow for a ranking of the retrieved
images. To do this, it is required to define a functyg, that assesses the similarity metric between a query
configurationQ and an imagd in the database. Such a function will combine different similarity functions for
individual object shapes, and the topological, orientation and distance relations between them. More si&gifically
defined as follows (Equation 2):

Smet(Q' )= Ssh(Q’ ) EWsh * Stop Q.1 )Ewtop * Sor Q.1 )H’Vor * Sdist Qi )m’dist (2)

where:

+ S, is a function measuring the degree/percentage of shape similarity between the obfgctanih the
corresponding objects in For example, assuming thalbj; , ...,0bj, indicate the objects iQ,,

Ematcr%( oby)

ssh(Q,|):i:1T ,wherematch( obj) is the matching percentage between obit in Q and the
corresponding object ih. We might further constrain this formula by imposing that for eed...,n
match( obj) > €, with € a given threshold value; for example, we only consider an objgctin Q as
“found” in | if the corresponding object inmatches to it more than 50%;

* W, is a given weight value establishing the “importance” of shape similarity with respect to the other
similarity criteria considered,;

* Sgp is a function measuring the degree/percentage of similarity between the set of topological relations
characterizing the set of objects@nand the topological relations among the corresponding objects in

* Wy, is agiven weight value establishing the “importance’imilarity in topological relations with respect to
the other similarity criteria considered,;

« S, is a function measuring the degree/percentage of similarity between the set of orientation relations
characterizing the set of objects@nand the orientation relations among the corresponding objects in

* W, is a given weight value establishing the “importance’imilarity in orientation relations with respect to

the other similarity criteria considered,;
* St is a function measuring the degree/percentage of similarity between the set of distance relations

characterizing the set of objects@nand the distance relations among the corresponding objérts in
* Wy IS a given weight value establishing the “importance”imifilarity in distance relations with respect to

the other similarity criteria considered, and;
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. ij =1, J={sh top or dist

jjuu)
4 A WORKING EXAMPLE

In this section we show an example of how four different query scenes (Figure 4), sketched by the user, match to a
given imagd (Figure 5). A summary of the results of the similarity metric calculations for this example can be found

in Table 1. The query scenes comprise differing configurations of the same three object shapes; i.e. an outline of an
airplane, airplane hanger, and runway.

More specifically, let:

» obj; = airplane,
» obj,= airplane hanger,
* objz=runway.

_\/\I_,

Q1 Q2 Q3 Q4

Figure 4 : Four Sample Query Scenes

For each of the four query scen€s,Q, Q; andQ, we calculate the value &, using Equation 2. First we calculate
the value ofS,, (which is the same for all query scenes). For these three objects, the feature matching algorithm
returned the following matching percentages:

» match%(obj) = 87
* match%(obj) = 70
» match%(ohj) = 90

Thus the value for shape similarity is the foIIowirﬁgs'h(Qi )= SY%CHQO: 823%,i=1...4

Figure 5 : Sample Edge-Image with Superimposed MBRs
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4.1 Spatial Relations for the Image Scene

For the imagé, spatial relations are derived using minimum bounding rectangles (MBRs), while for user-defined query
objects, more accurate methods are used. Spatial relatibtienefore are characterized as follows.

Topological relations between objectd:in

» all objects arelisjoint,

» Pixel coordinates (row,cobbj; = (44,105)
» Pixelcoordinateqrow,col)obj, = (106,105)
» Pixelcoordinateqrow,col)obj; = (71,22)

Direction relations between objectslin
» Position Relation Matrix ~ obj, obj, obj;

1200 0 -1O
1300 1 0O
23F1 0 OfF

Metric relations between objectslin

+ Distance Ratio Matrix 12 13 23

1201 141 145
13071 1 103
23069 .97 1R

In the following sections, we calculate the valuessgf, S, , and S for all four query scene®;, Q,, Qs, andQ.

4.2 Spatial Relations for Query Scene 1

Topological relations between objectsQn

All objects inQ, are disjoint, i.e., topological relations@ are 100% similar to topological relations among the
corresponding objects Intherefore:

Siop(Qu: 1) =100%

» Pixel coordinates (row,cobbj; = (40,59)
» Pixel coordinates (row,cobbj, = (180,117)
» Pixel coordinates (row,cofbj; = (152,305)

Direction relations between objectsQn:

» Position Relation Matrix ~ obj; obj, obj,

1200 0 10
1300 -1 00O
231 0 OHF

Therefore, the value d§,, for Q, is the following:

SO-DQ-Q) _  -26447 _
* NC:lOI‘ - p— — - - =
JS(-1)25 @Q-Q)> V24489128889
-99+1
08, (@ 1) = o =5%
Metric relations between objects@ are calculated similarly to above:
+ Distance Ratio Matrix 12 13 23

1201 178 12§
13056 1 .700
23H80 142 1H

Therefore, the value c$d for Qq is the following:

ist
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S(0-DQR-Q 6288 _
VS -1y Q-Q? 887111421

* NCldist =

6247+ 1
O Sdlst(Ql, I) = > =812%

Finally, assuming equal weighting, i.e. that the value ofwall(with j O{sh top or dis} ) is .25, the value de for
Q. becomes:

* Se(Q,1)=82.3*.25+100*.25+ .5*.25 +81.2 * .256%
4.3 Spatial Relations for Query Scene 2

Topological relations between objectsQp

All objects inQ, are disjoint, i.e., all topological relations@ are 100% similar to the topological relations among the
corresponding objects Intherefore:

" Sip(Qe: 1) =100%

» Pixel coordinates (row,cobbj; = (239,82)
» Pixel coordinates (row,cofbj, = (103,113)
» Pixel coordinates (row,cofbj; = (153,305)

Direction relations between objectsQa:
» Position Relation Matrix ~ obj, obj, obj

1200 0 -1J
1300 1 0O
2331 0 OfF

Therefore, the value &8, for Q, is the following:

1+1
Sor(Qz, I):TZIOO%

SinceQ, is a 180 rotation ofl, all position relations are 100% similar to the position relations among the
corresponding objects in

Metric relations between objects@:
+ Distance Ratio Matrix 12 13 23

1201 171 142
13058 1 .83
23070 120 1H

Thus,

7337+ 1
Sdist(QZ' )= > =86.7%

Finally, assuming equal weighting, i.e. that the value ofwll(with j O{sh top or dis} ) is .25, the value de for
Q, becomes:

* Snef(Q21)=82.3*.25+100* .25+ 100 * .25 + 86.7 * .2®2.3%

The spatial relations for the remaining query scenes (i.e. 3 and 4) were calculated similarly to the first two scenes and
due to space limitations are not detailed here. The results of all the similarity metric calculations can be seen in Table 1.

From these results it can be seen that Query Scene 2 is the best-matched configuration for the given image. This agrees
with what a human observer would choose as the best matched configuration since Query Scene 2 is plainly a
180 rotation of the image, sketched at a significantly reduced scale. This result demonstrates the abilByof the
approach to differentiate between arbitrary rotations and scaling of varying query/image scenes in addition to the
capacity to distinguish between configurations and shapes of individual image-objects.
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Query Scene 1 Query Scene 2 Query Scene 3 Query Scene 4
Sih 82.3 82.3 82.3 82.3
Sop 100 100 100 66.7
Sor .5 100 79 81
Sist 81.2 86.7 33.7 35
Shet 66 92.3 73.8 66.3

Table 1 : SyetResults for the Four Query Scenes
5 CONCLUSIONS

In this paper we propose a novel solution to querying image databases by matching configurations of raster features to
imagery completely in the raster/spatial domain using the shape of single features together with their spatial relations as
the matching primitives. We defined a methodology to evaluate similarity (both of objects and relations) between a
user-defined query scene and the retrieved images that is insensitive to both scene/image scale and rotation. To do this,
we introduced the functioBme that assesses tlsenilarity metricbetween a query configurati@® and an imagé in

the database. Such a function combined the different similarity functions describing individual object shapes and the
topological, orientation and distance relations between them.

A working example presented a practical illustration of howShefunction calculated the similarity metric between

four query scenes and a given image. The results of this example showed how each of the spatial relations between
objects comprising a query scene affects the assessment of scene similarity. Depending on the method used for
determining topology, (e.g. using rotated MBRSs), or direction (e.g. intrinsic vs. extrinsic reference frames), different
results forSyneccan be obtained. Also, by modifying the weights assigned to each of the relations independently, another
set of results could be returned. Furthermore, by loosening up object/relation constraints and by analyzing matching
percentages, we can detect temporal changes in some areas, such as: the elimination of some objects, changes in objec
shape, and change in location.
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