

 vi

TABLE OF CONTENTS

Table of Contents

ABSTRACT .. II

ADMHÁLACHA .. III

ACKNOWLEDGEMENTS .. IV

TABLE OF FIGURES .. XI

TABLE OF TABLES ... XIV

LIST OF ABBREVIATIONS ... 1

1. INTRODUCTION ... 2

1.1 OVERVIEW OF PROJECT AREA ... 2

1.2 BACKGROUND TO IRISH TRADITIONAL DANCE MUSIC ... 3

1.2.1 Types of Irish traditional dance tune .. 3

1.2.2 Musical keys in Irish traditional music .. 4

1.2.3 Tune Structure .. 4

1.2.4 Traditional Music Collections .. 6

1.2.5 Electronic Collections .. 7

1.3 RESEARCH PROBLEM .. 7

1.4 INTELLECTUAL CHALLENGE ... 9

1.5 RESEARCH OBJECTIVES .. 10

1.6 RESEARCH METHODOLOGY .. 10

1.6.1 Phase one – Collection of tunes in ABC notation................................. 11

1.6.2 Phase two - Conduct programming experiments.................................. 11

1.6.3 Phase three – Survey of experts and non-experts 12

1.6.4 Phase four - Conclusions drawn from analysis of survey 12

1.6.5 Phase five – Construction of a Similarity Matrix 12

1.7 RESOURCES .. 12

1.7.1 Library Facilities .. 12

1.7.2 Programming Environment and Database Server 12

1.7.3 Access to a supervisor .. 13

1.7.4 Providers of databases of Irish tunes in ABC Notation 14

 11

 Interviews with a world expert, Dr. Bryan Duggan

The primary research consisted of the following;

 Conducting computerised experiments in order to compare ABC tune parts

using five string distance algorithms – Levenshtein (Levenshtein 1966), Jaro-

Winkler (W. E Winkler 1999), Semex (K Lemström & Perttu 2000) and two

new algorithms based on Parsons Code (Parsons 1975) and the Melodic

Indexing System developed by Breandán Breathnach (Brendan Breathnach

1982).

 Conducting two online surveys of experts and non-experts in Irish traditional

music to test if humans felt that computer selected pairs of tune parts were

similar or different.

 Conducting quantitative analysis of the survey.

By conducting experiments on transcribed tunes in ABC notation, a process was

formulated whereby computer algorithms could be used to identify similarities

between Irish traditional music tune parts. The process was further refined by altering

the string distance algorithms in order to take account of features unique to Irish music

and an hypothesis was formed. In order to prove or disprove this hypothesis the results

were tested on experts and non-experts in the field of Irish traditional music.

The following four phases were planned and carried out in order to complete the

project successfully;

1.6.1 Phase one – Collection of tunes in ABC notation

A number of ABC collections exist online and these are described in greater detail in

Section 1.7.4. These ABC files were processed automatically in order to separate them

into tune parts and imported into a relational database for further processing.

1.6.2 Phase two - Conduct programming experiments

Phase two involved the evaluation of various Integrated Development Environments

(IDE‟s) and short-listing them. This phase also involved the evaluation of string

 12

distance algorithms suitable for music comparison and implementing them within a

framework for conducting music comparison experiments.

1.6.3 Phase three – Survey of experts and non-experts

After tune pairs had been selected using Breathnach‟s Melodic Indexing System and

the Levenshtein (Levenshtein 1966) and Jaro-Winkler (W. E Winkler 1999)

algorithms, the original ABC tune pairs were converted from ABC text notation to

mp3 audio files and included in an online survey. Expert and non-expert participants

were invited to complete the survey and their choices were recorded.

1.6.4 Phase four - Conclusions drawn from analysis of survey

In order to evaluate the hypothesis it was necessary to analyse how the computer

selected tune pairs were viewed by experts and non-experts completing the survey.

Because music similarity can be very subjective, careful and empirical analysis of the

results was necessary.

1.6.5 Phase five – Construction of a Similarity Matrix

Once the analysis in phase four was completed a process was designed whereby strings

of musical notes could be compared by combining scores from multiple algorithms.

This process was tested on humans in a second online survey and then used to

construct the similarity matrix for Irish traditional music.

1.7 Resources

1.7.1 Library Facilit ies

An extensive literature review was carried out in order to complete this project. A

number of world experts have published relevant articles on music comparison and

their knowledge contributed greatly to the success of this project.

1.7.2 Programming Environment and Database Server

Various Integrated Development Environments (IDE‟s) were obtained and a shortlist

of possible solutions was created;

 14

1.7.4 Providers of databases of Irish tunes in ABC Notation

 The Irish Traditional Music Archive

 The Session.org (Keith 2010)

 Henrik Norbeck (Norbeck 1996)

 O‟Neills Music of Ireland ("1850"), Dance Music of Ireland ("1001") and

Waifs and Strays of Gaelic Melody (Chambers 2010b)

 Ceol Rince na hÉireann Cuid I, II, III, IV (Black 2010)

 Johnny O'Leary of Sliabh Luachra (Black 2010)

 Nigel Gatherers ABC Collection (Gatherer 2009)

 John Chambers Tune Finder (Chambers 2010a)

1.7.5 Two groups of survey participants

In order to test if computer selected traditional Irish tune parts sound similar, a survey

of non-experts and experts in the field of Irish music were surveyed and their

responses recorded.

1.8 Scope and limitations

The source ABC data contains melody, time signature, musical key, tune title and

other pertinent information. No information on playing style exists in the ABC files.

This project will therefore be limited to assessing similarity based primarily on

melody.

A large percentage of ABC files used as the source data for this project were

transcribed by humans of differing musical ability and did not conform absolutely to

the ABC notation specification. Resource constraints limited the amount of data that

could be corrected manually and as a result most of the problematic data was discarded

as it was unreliable.

The corpus of Irish traditional music contains “exact melody matches” where the

names are different but the melodies identical. It also contains “exact name matches”

where the dance tunes have identical names but different melodies. ABC notation

already supports multiple tune titles in its specification (Walshaw 1995). Although

exact name and melody matches would form part of a music similarity matrix this

aspect of the matrix was not focussed on as identifying them does not present a

significant challenge.

 Music Comparison Techniques

 23

This method of music comparison is easily understood by non-musicians and allows

people to express a piece of music by contour relatively easily regardless of musical

ability and without the need to recognise notes, musical key or time signature.

In order to normalise Parsons Code it was necessary to calculate the Parsons Code for

the whole corpus of tune parts and sort them alphabetically (by Parsons Code) as

follows;

Figure 6: Parsons Code Calculation and Distance

2.3.1 Normalised Parsons Code Scores

Once the corpus has been converted to Parsons Code a match to the search term can be

identified. The search term in this case was the Parsons Code of the tune with ID 9253

– “Down the Hill” in Figure 6 above. This exact match is given a distance of 0 with the

next closest match in either direction given distances in ascending order. In the case of

a closest match (as opposed to an exact match) a distance of 0 from the search term is

also given. Figure 6 shows that the tune “Down the Hill”, ID 9253 is an exact match

and has a distance of 0 from itself. The next closest match in each direction is given a

distance of 1 greater than the preceding row i.e. tunes with ID 17437 and 19520 have a

distance of 1, tunes with ID 16752 and 19092 have a distance of 2 and so on. This

method of ranking rows of results has been termed MICRank for the purposes of this

project.

 String Distance Algorithms

 37

The Jaro distance is therefore 0.885 (correct to three decimal places). In order to

calculate the Jaro-Winkler distance we substitute appropriate values into the formula in

Figure 10. Figure 11 shows how the Jaro distance is calculated for the strings in Table

10. Winkler suggests a maximum of 4 for the length of the common prefix l and a

default value of 0.1 (up to a maximum 0.25) for the weight p (W. E Winkler 1999).

 885.011.04885.0dw

Figure 12: Jaro-Winkler distance calculation

The Jaro-Winkler distance dw is therefore 0.931 (correct to three decimal places).

The freely available Java implementation of the Jaro-Winkler algorithm by Lingpipe

(Carpenter 2010) was used to conduct experiments in Section 6.2.5.

3.4 The Lemström Semex algorithm

In their paper SEMEX - An Efficient Music Retrieval Prototype, Kjell Lemström and

Sami Perttu introduced fast and efficient bit-parallel algorithms for retrieving music

that were transposition invariant (K Lemström & Perttu 2000).

The Lemström Semex (Search Engine for Melodic Excerpts) algorithm accepts two

parameters, a pattern to search for and a large string within which the search is

performed. Both parameters accept arrays of integers which represent musical notes.

The purpose of this algorithm is to find the longest common subsequence between a

pair of musical sequences. This subsequence could be an exact match, a transposed

match or an approximate match. According to Lemström and Ukkonen (K Lemström

& Ukkonen 2000, sec.6), the longer a common subsequence is, the greater the

similarity between both sequences.

Table 11: Lemström Semex Java method by Dr. Bryan Duggan

public static float minEdSemex(int[] pattern, int[] text)

 {

 int pLength = pattern.length;

 Improved algorithms and a ranking system

 42

4.1.2 Contribution 1: Weighting melodic sequence variation

The transposition feature of the Jaro-Winkler algorithm can be adapted to recognise

certain melodic variations that McCullough writes about. Specifically, the algorithm

was adapted to give weight to out of sequence notes within a distance calculated with

respect to the time signature of the piece of music. Consider the following example, a

jig called “Wallop the Spot” available on an audio recording of the group Osna (Osna

1999, Track.12). The opening phrase of the jig is normally played as follows;

Table 13: Standard opening phrase of the Wallop the Spot jig

FEF DFA BAF DDD

On track 12, the whistle player swaps notes 1 & 2 and notes 7 & 8, reshaping the

standard phrase so that it becomes;

Table 14: Reshaped opening phrase of the Wallop the Spot jig (Osna 1999)

EEF DFA ABF DDD

The Jaro-Winkler algorithm was altered so that the proximity method accepted an

extra parameter – searchRange. Specific values related to the time signature of the

comparison strings were passed to this parameter, for example, 3 was passed for jigs

and 4 for reels.

Table 15: Adapted Jaro-Winkler method with searchRange parameter

public double proximity(CharSequence cSeq1, CharSequence cSeq2, int

searchRange) {

 int len1 = cSeq1.length();

 int len2 = cSeq2.length();

 if (len1 == 0)

 return len2 == 0 ? 1.0 : 0.0;

 boolean[] matched1 = new boolean[len1];

 Arrays.fill(matched1,false);

 boolean[] matched2 = new boolean[len2];

 Arrays.fill(matched2,false);

 int numCommon = 0;

 Improved algorithms and a ranking system

 48

The conclusions drawn from examining any possible improvements to the Levenshtein

algorithm were as follows;

 Required features such as horizontal and vertical transpositions were already

available in the Jaro-Winkler and Lemström algorithms.

 A time signature invariant feature would be better performed outside of the

algorithm. For example, data would be pre-processed before performing a

Levenshtein comparison between two strings of notes.

 The unaltered Levenshtein edit distance algorithm has value and remains a

popular method for music comparison.

4.3 Prototype for a Combined Ranking System

Having identified the strengths and weaknesses of each of the string distance

algorithms and after implementing a framework for generating metrics regarding tune

parts held in a corpus the author felt that combining multiple methods and algorithms

could be used to define a combined similarity scoring system.

4.3.1 Contribution 3: Combined Ranking Scores

In order to combine various algorithms a ranking system was first developed. This

involved running four separate SQL queries and ordering the results in descending

order by algorithm. The Levenshtein and Jaro-Winkler algorithms were run on the

unaltered notes of the tune parts and sequences with non-dominant notes removed

(referred to as 2/4, 24 or TWOFOUR data in this project). The results were stored in a

relational database.

Figure 14 shows the first twenty rows of tune comparisons between tune id 8425 and

various others along with the algorithm scores abbreviated as LEVEN, JARO,

LEVEN24 and JARO24. These rows are sorted by Levenshtein score in descending

order.

 Computerising the Melodic Indexing System and Parsons Code

 54

5.2.1 Melodic Sequence Variation Anomalies

As seen in Section 2.2 Melodic Index Codes are calculated by discarding non-

dominant notes and calculating absolute intervals with reference to a fundamental note.

In Section 4.1.2 a disadvantage was identified where an Irish musician reshaped the

opening phrase of a tune by playing the notes EEF DFA ABF DDD instead of FEF

DFA BAF DDD. These phrases translate to MIC index codes 23155311 and 33156311

respectively. In the corpus of 11,944 tune parts used for this project these versions of

the same tune would be stored 1,387 rows apart. In other words, the index cards would

not be physically proximate and the duplicate version would not be detected.

5.2.2 Limited Comparisons can be made

Breandán Breathnach‟s indexing system compared only the very beginnings of each

tune. Because ABC data is available for the complete tune, the beginnings of each part

of each tune can be compared and indexed. Indeed, the sequence of notes in the whole

tune could be converted to a Melodic Index Code and compared. Tunes of the same

type were stored with each other. This did not facilitate the easy comparison between

jigs, reels, hornpipes, slip jigs and other types of tune.

Figure 17: Storage of Melodic Indexing System. Source: Author

 Computerising the Melodic Indexing System and Parsons Code

 55

Figure 17 shows how the Melodic Indexing System was stored in the Irish Traditional

Music Archive. From top left – Jigs, Reels, Slip jigs/Hornpipes. From bottom left –

Jigs2, Reels 2, Polkas/Set Dances/Miscellaneous

5.3 Proposed improvements

Although Brendán Breathnach probably had little computing resources at his disposal

in the 1960‟s when editing his first publication, Ceol Rince na hÉireann Cuid I

(Breandán Breathnach 1963) his system of Melodic Index Cards lends itself to being

converted into a computer algorithm.

5.3.1 Contribution 4: Computerisation of the Melodic Indexing System

The implementation of a computerised version of Breandán Breathnach‟s Melodic

Indexing System was constructed in the following manner;

 Irish traditional dance music parts were imported and stored in a relational

database. Invalid ABC notation was discarded.

 Parts in ABC notation were converted from various time signatures to a

common time signature of 2/4 by programming the Java algorithm in Table 21.

The results were stored in the relational database.

 A second Java algorithm (see Table 22) was programmed in order to calculate

intervals based on Breathnach‟s concept of a “fundamental note”. Because the

tune key is available in each of the ABC tune transcriptions it was used to

calculate the fundamental note. Absolute intervals were stored in the same

relational database as the corpus of ABC data.

Table 21: Java algorithm to reduce ABC notation to 2/4 time signature. Source: Author

public String reduceToTwoFour(String abc, String measure) {

 String two4 = "";

 int counter = 0;

 if (measure.startsWith("6") || measure.startsWith("9") ||

measure.startsWith("12")) {

 counter = 3;

 }

 Computerising the Melodic Indexing System and Parsons Code

 56

 if (measure.startsWith("4")) {

 counter = 4;

 }

 if (measure.startsWith("2")) {

 return abc; // already in 2/4 time signature

 }

 for (int i = 0; i < abc.length(); i += counter) {

 try {

 two4 += abc.substring(i, i + 1);

 two4 += abc.substring(i + counter - 1, i + counter);

 } catch (Exception e) {

 System.out.println(e.toString());

 }

 }

 return two4;

 }

Table 22: Java method for calculating Melodic Index Intervals. Source: Author

 public String calculate_BB_Intervals(String input, String key)

{

 key = key.substring(0, 1).toUpperCase();

 input = (input).toUpperCase();

 String control = "CDEFGAB";

 String temp = "";

 int char1, interval, fundamental;

 fundamental = control.indexOf(key);

 for (int i = 0; i < input.length() - 1; i++) {

 try {

 char1 = control.indexOf(input.charAt(i));

 interval = (char1 - fundamental + 1);

 if (interval < 1) {

 interval += 7; }

 temp += "" + interval;

 } catch (Exception e) {

 System.out.println(e.toString());

 }

 }

 return temp;

 }

 Computerising the Melodic Indexing System and Parsons Code

 57

5.3.2 Contribution 5: Compare MIC index codes alphabetically

Breathnach stored the melodic index cards in numerical order using the eight digit

code to sort them appropriately. This had the effect of limiting the comparisons that

could be done to sequences of notes that were at least sixteen notes long. Sequences of

less than 16 notes would result in a melodic index code of less than eight digits

meaning that they would not appear in the correct order if sorted numerically.

A simple solution would be to right pad index codes with sufficient 1‟s to make them

eight digits long as in Table 23 below.

Table 23: Index codes with right padded 1's

Index Code

12111111

12121353

14524117

64571156

75441111

77447277

A better solution is to calculate Melodic Index Codes for the whole length of each tune

part and storing the results in a database. Sorting the rows alphabetically instead of

numerically allows the comparison of incipits of different lengths.

The SQL query in Table 24 sorts rows of tune parts alphabetically, regardless of length

as seen in Figure 18.

Table 24: SQL Query to sort tune parts alphabetically

select NAME, NOTES, MEASURE, TUNEKEY, BB_INTERVALS from APP.ABC

where BB_INTERVALS is not null order by BB_INTERVALS asc

 Computerising the Melodic Indexing System and Parsons Code

 58

Figure 18: Tune parts sorted alphabetically by Melodic Index Code

5.4 Advantages of computerising the Melodic Indexing System

Computerisation of the Breathnach Melodic Indexing System would result in a far

superior similarity comparison system for the following reasons;

5.4.1 Larger database of tunes available

Websites like The Session (Keith 2010) allow for members to submit transcriptions of

traditional Irish tunes and also many other forms of music. The addition of genre,

country of origin or geo-location data could allow for the comparison of tunes across

genres or between each country‟s traditional folk music. For example, relationships or

similarities between Irish, English, Scottish, Breton, Galician and Asturian folk music

could be identified and explored.

5.4.2 Greater Accuracy

Because computerisation allows for Melodic Index Codes greater than eight digits long

as in the original system, the accuracy of the similarity matrix can be increased

considerably. Absolute intervals for whole tune parts were calculated and compared

instead of comparing 8 digit codes derived from 16 note incipits.

 Computerising the Melodic Indexing System and Parsons Code

 59

5.4.3 Integration in a Combined Ranking System

In Section 4.3 a confidence scoring system based on the ranking of the results of four

string distance algorithms was proposed as Contribution 3. As part of the

experimentation and research carried out in Section 6 an algorithm was developed for

the calculation of metrics related to the Melodic Indexing System. These metrics

included;

 The calculation of the number of rows that separate a pair of tune parts along

with the total number of tune parts in the corpus.

 The proximity expressed in the same format as suggested by Muellensiefen &

Frieler (Muellensiefen & Frieler 2003) i.e. 0 being perfectly different and 1

being an exact match.

Figure 19 shows how Melodic Indexing System metrics were calculated for the tune

parts with id‟s 8425 and 17825.

 Computerising the Melodic Indexing System and Parsons Code

 60

Figure 19: Calculation of Melodic Indexing Metrics

Although the normalised score could be considered high at 0.857 (1 being an exact

match and 0 being completely different) it represents a distance of 1712 tune parts in a

corpus of 11944. In other words, there are 1711 tune parts more similar to tune part

8425 ascending the matrix to tune part 17825 and possibly others descending from

8425 as can be seen in the following table.

 Computerising the Melodic Indexing System and Parsons Code

 61

Table 25: Portion of the Melodic Index Code Matrix

ID Melodic Index Code

----- (MIC codes similar to 8425 removed)

8424 33216221542.......

8425 33217552312.......

8426 33222421421.......

----- (MIC codes similar to 8425 removed)

17824 43216123412.......

17825 43217655313.......

17826 44213213211.......

The inclusion of the Melodic Index Code metrics into the confidence / ranking scoring

system was completed as part of an experiment in Section 6.4.3.

5.5 Conclusion

The advantages, disadvantages and tradeoffs of Breandán Breathnach‟s Melodic

Indexing System were presented in this chapter. A proposal for the computerisation of

the system was presented as contribution 4. Contribution 5 suggests improvements to

the system. The use of an alphabetical index rather than a numeric one was suggested

in order to overcome the problem of different length melodic index codes.

 Experimentation and evaluation

 62

6. EXPERIMENTATION AND EVALUATION

6 Introduction

The purpose of this chapter is to describe the string distance experiments that were

carried out on ABC notation data. Once clean ABC data had been extracted from ABC

files contained within music collections referred to in Section 1.7.4 it was stored in a

relational database. Java versions of string distance algorithms were obtained and

integrated into a programming framework that had been built in order to facilitate the

running of experiments. This chapter also describes how two online surveys were

carried out and how the hypothesis formed in Section 4.3 was tested. The chapter

concludes with a description of how similarity matrices of Irish traditional dance music

were constructed.

6.1 Design of experiments

Careful planning went into the design of each experiment. The purpose of carrying out

experiments on string distance algorithms was to be able to draw conclusions from

analysis of the results. Great care was taken to prevent bias of any kind in the

experiments and in the online surveys.

A series of goals in line with the research objectives of this dissertation were

formulated and a strategy was formed in order to achieve these goals. The goals were

as follows;

 To identify string distance algorithms suitable for Irish traditional music

comparison.

 To identify possible areas where string distance algorithms could be improved

with respect to music theory.

 To test if humans agreed with the results of string distance algorithm

comparisons of Irish music.

 To identify and define a process whereby a Music Similarity Matrix could be

constructed for Irish Traditional Music (ITM).

 Experimentation and evaluation

 68

Figure 24: Levenshtein distribution

Figure 25: Levenshtein 2/4 distribution

As Figure 24 and Figure 25 show, the shapes of both distributions are almost identical.

Both distributions show an off centre bell curve with the majority of the results in the

12% to 64% area. Similar to the distribution Müllensiefen & Frieler found in Figure 26

(Mullensiefen & Frieler 2007, p.196) the distribution of a Levenshtein comparison of

the whole corpus looks much like an off centre normal distribution. In this experiment

results below 12% and above 64% were very rare.

Figure 26: Frequency distribution by M&F of all melodies in their database. Source:

(Mullensiefen & Frieler 2007, p.196)

6.2.5 Jaro-Winkler Experiments

The Jaro-Winkler experiments were carried out in parallel with the Levenshtein

experiments as both experiments required iteration over the same data.

 Experimentation and evaluation

 82

The tune pairs selected by the computer algorithm agreed with the experts at least 60%

of the time. Question 2 was voted similar by a margin of 8 to 7 in both groups

suggesting that opinion in humans was narrowly divided. The voting from both groups

for questions 7, 8 and 10 suggests that the computer algorithm made a significant error

selecting these pairs.

6.4 Constructing a Similarity Matrix for Irish Traditional Music

Using the process defined in Section 4.3 an experiment was designed in order to

construct four similarity matrices. These matrices were constructed using the Jaro-

Winkler algorithm, Parsons Code, Melodic Indexing System and the Combined

Ranking System described in Section 4.3. Construction was carried out over four

phases.

6.4.1 Phase 1 – Importing data and extending MS SQL 2008

The first phase involved importing the corpus of tunes from the Derby database server

into the MS SQL 2008 database server. As this data had already been cleaned and

processed numerous times in other experiments it made sense to use it for experiments

on the Microsoft platform. Comparisons between both platforms may also be made

possible in the future. This phase also involved extending the MS SQL 2008 database

server by writing implementations of the Lemström Semex, Breathnach Melodic

Indexing System, Parsons Code and a standard deviation function in the C# language.

These implementations are available in Appendix D.

 Experimentation and evaluation

 83

Figure 33: Stored Procedures and custom functions in MS SQL 2008

Figure 33 shows a screenshot of Microsoft Management Studio (the application used

to administer MS SQL 2008). This screenshot shows how MS SQL Server 2008 has

been extended by using custom stored procedures getRanks, getRanksID and custom

functions Breathnach, Jaro-Winkler, Levenshtein, Parsons, stdevmusic and

NormalisedRank.

6.4.2 Phase 2 - Testing custom function SQL queries

The purpose of creating custom functions using Microsoft Visual Studio 2010

Professional to extend MS SQL 2008 was to enable the use of string distance functions

within SQL queries. Two Visual Studio projects were used; the first to extend the

SimMetrics string distance library to include implementations of the Semex, Parsons,

Breathnach MIC and improved Jaro-Winkler algorithms and the second to create a

private dotnet assembly that could be imported into MS SQL 2008. In order to test if

these custom functions worked as planned in MS SQL 2008 the following SQL query

was executed.

Table 35: SQL query using a custom string distance function

select ID, NAME, NOTES, [Test].dbo.JaroWinkler(NOTES, 'ABCC') as

JW_Score

 Experimentation and evaluation

 84

from Test.dbo.corpus

order by JW_Score desc

Figure 34: Result of a SQL query using a custom string distance function

Figure 34 shows the following columns returned by the SQL query;

 ID of the tune

 NAME of the tune

 NOTES of the tune

 JW_Score represents the similarity between the string „ABCC‟ and each of the

rows in the NOTES column in descending order

The bottom right of the screenshot shows that the corpus of 11944 rows was processed

in less than 1 second. Table 36 shows how a more complex query was then executed. It

compared the notes from the tune “The Humours of Tulla” to the corpus of 11944

tunes using the Jaro-Winkler, Levenshtein and Semex custom functions.

Table 36: Jaro-Winkler, Levenshtein and Semex SQL for the “Humours of Tulla”

select ID, NAME, NOTES, [Test].dbo.JaroWinkler(NOTES,

'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as JW_Score,

[Test].dbo.Levenstein(NOTES, 'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as

Leven_Score,

[Test].dbo.Semex('GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA', NOTES) as

Semex_Score

from Test.dbo.corpus

 Experimentation and evaluation

 85

order by Semex_Score desc

Figure 35: Jaro-Winkler, Levenshtein and Semex SQL query combined

Figure 35 shows how the SQL query in Table 36 was executed, comparing the notes of

the “Humours of Tulla” against the whole corpus of tunes using the Levenshtein, Jaro-

Winkler and Semex custom functions in just 2 seconds.

Custom functions that returned Parsons Code and Breathnach‟s Melodic Indexing

Code were also created. These two functions return the Parsons Code and MIC Code

rather than a similarity score between 0 and 1. In order to calculate how proximate two

strings of notes are, their positions in the corpus must first be known. A custom

function in MS SQL Server 2008 is only aware of the two strings of notes passed to it

as arguments and not aware of the entire corpus of tunes. It was decided that it would

be more appropriate to perform this type of calculation within a stored procedure that

would have access to both custom string distance functions and the whole corpus. The

following SQL example shows how it is possible to convert a whole corpus of tunes to

Melodic Indexing Code and Parsons Code in a few seconds.

Table 37: SQL query to convert a corpus into MIC Code and Parsons Code

select ID, NAme, [Test].dbo.Breathnach(NOTES) as MIC,

[Test].dbo.Parsons(NOTES) as PIC

from Test.dbo.corpus

order by MIC asc

 Experimentation and evaluation

 86

Figure 36 shows how the SQL query above converts a corpus of 11944 tunes into MIC

Code and Parsons code in one second.

Figure 36: Corpus of tunes in MIC Code and Parsons Code

Temporary tables in stored procedures were used to dynamically create corpi so that

positions of tunes within them could be ascertained. Once the position of the match

was known it was possible to calculate proximity and distance from this match as

described in Figure 6. Both MIC Code and Parsons Code were calculated in tandem as

the systems are virtually identical (apart from the generated MIC and Parsons Code).

Following is code that creates a temporary table, calculates MIC and Parsons Code for

an entire corpus of tunes, identifies the closest match using both Melodic Index Code

and Parsons Code, calculates distance and then normalises the MIC and Parsons

distances so that a score between 0 and 1 is returned.

Table 38: Code snippet that calculates and normalises MIC & Parsons Code ranks

-- Create temp table for Breathnach and Parsons Rank and populate it

 SELECT ID,

 dbo.Breathnach(NOTES) as MIC,

 dbo.Parsons(NOTES) as PIC,

 row_number() over (order by dbo.Breathnach(NOTES) asc) as

rowID,

 (row_number() over (order by dbo.Breathnach(NOTES)))/1.0 as

MICScore,

 (row_number() over (order by dbo.Parsons(NOTES)))/1.0 as

PICScore

 into #TEMP

 from corpus

 order by MIC;

 Experimentation and evaluation

 87

 -- Find nearest match for @notes - Breathnach

 Select top 1 @rowID = MICScore from #TEMP where

dbo.Breathnach(@notes) <= MIC order by MIC asc

 Select @MaxRank = MAX(MICScore) from #TEMP

 -- Find nearest match for @notes - Parsons

 Select top 1 @prowID = PICScore from #TEMP where

dbo.Parsons(@notes) <= PIC order by PIC asc

 Select @PMaxRank = MAX(PICScore) from #TEMP

 Update #TEMP set MICScore = 1-((abs(MICScore -

@rowID))/@MaxRank)

 Update #TEMP set PICScore = 1-((abs(PICScore -

@prowID))/@PMaxRank)

The complete stored procedure is available in Appendix D.

6.4.3 A Combined Ranking System

MS SQL 2008 supports four ranking functions, one of which, RANK() was used to

generate ranks for results returned by string distance functions. Table 39 shows a SQL

query that utilises the RANK() function in conjunction with the Jaro-Winkler and

Semex string distance custom functions.

Table 39: SQL query for Semex & Jaro-Winkler scores with ranks

select ID, NAME, Notes,

[Test].[dbo].Semex('CDEEEDEGGA', dbo.corpus.NOTES) as Semex,

RANK() OVER(ORDER BY [Test].[dbo].Semex('CDEEEDEGGA',

dbo.corpus.[NOTES]) DESC) AS [SemexRank],

[Test].[dbo].JaroWinkler('CDEEEDEGGA', dbo.corpus.NOTES) as Jaro,

RANK() OVER(ORDER BY [Test].[dbo].JaroWinkler('CDEEEDEGGA',

dbo.corpus.[NOTES]) DESC) AS [JaroRank]

from dbo.corpus

order by SemexRank asc, JaroRank asc

