TABLE OF CONTENTS

Table of Contents
A B S T R A C T oo 1]
ADMHALACHA .ottt ettt ettt ettt ettt ee e, 11
ACKNOWLEDGEMENTS ...ttt v
TABLE OF FIGURES ...ttt ettt e e XI
TABLE OF TABLES ...ttt eesnesesesssenenenenennnnnnes X1V
LIST OF ABBREVIATIONS ... e 1
1. INTRODUCTION. ..ottt ettt e e e ereeeeeeeees 2
1.1 OVERVIEW OF PROJECT AREA ... citteeeeeee e et teee e e e e e eeeeeaaaseeeeeeeeennnanseeeeseeenns 2
1.2 BACKGROUND TO IRISH TRADITIONAL DANCE MUSIC ..ceevvveeeeeeeeeeeeeeiieeeeeeeeeaeeenns 3
1.2.1 Types of Irish traditional dance tune............ccccceevveieeiiiie e 3
1.2.2 Musical keys in Irish traditional MUSICccceeveiieviiie e 4
L1.2.3 TUNE SETUCTUIE oot e e e e e e e e e e e e e e e e e e e s 4
1.2.4 Traditional MUSIC COIECLIONSooeeeeeeee et 6
1.2.5 ElectroniC COlECLIONSveeeeeeee et 7
1.3 RESEARCH PROBLEM ...coevttttuiiteeettteeetteasseeseeseessssassessssseessssnnsesessseesssnnansesessseenns 7
1.4 INTELLECTUAL CHALLENGEuiteee ettt e et e e e e e e e e e e e e 9
1.5 RESEARCH OBJIECTIVES ...uieeeeeteeee et ee e e e e eeee e e e e e e e e e e e e e e e e ee e eeeennns 10
1.6 RESEARCH METHODOLOGY ...iieeeieeeeetunaieteeesseesssnsssseesseeesssnssssessseessssnssseeesseenns 10
1.6.1 Phase one — Collection of tunes in ABC notation............ccccceveennennn. 11
1.6.2 Phase two - Conduct programming eXperiments...........ccccooceevrerennnn. 11
1.6.3 Phase three — Survey of experts and NON-exXpertS..........ccocevvervrerennnn. 12
1.6.4 Phase four - Conclusions drawn from analysis of survey 12
1.6.5 Phase five — Construction of a Similarity Matrix............cccccovvveiieennnns 12
L7 RESOURCES ...cvn ettt ettt ettt ettt e et e e ettt e e e e e e e e e e er e eeeennnn 12
1.7.1 Library FACIlItieS......ccccoveiieie e 12
1.7.2 Programming Environment and Database Servercccccceevevvvenene. 12
1.7.3 ACCESS t0 @ SUPEIVISOL ...couvieuieiieiiieniestiesieeieseeesieesaessee st enae e sreesaesnee e 13
1.7.4 Providers of databases of Irish tunes in ABC Notation...........cccveeee.... 14

Vi

e Interviews with a world expert, Dr. Bryan Duggan

The primary research consisted of the following;

e Conducting computerised experiments in order to compare ABC tune parts
using five string distance algorithms — Levenshtein (Levenshtein 1966), Jaro-
Winkler (W. E Winkler 1999), Semex (K Lemstrom & Perttu 2000) and two
new algorithms based on Parsons Code (Parsons 1975) and the Melodic
Indexing System developed by Breandan Breathnach (Brendan Breathnach
1982).

e Conducting two online surveys of experts and non-experts in Irish traditional
music to test if humans felt that computer selected pairs of tune parts were
similar or different.

e Conducting quantitative analysis of the survey.

By conducting experiments on transcribed tunes in ABC notation, a process was
formulated whereby computer algorithms could be used to identify similarities
between Irish traditional music tune parts. The process was further refined by altering
the string distance algorithms in order to take account of features unique to Irish music
and an hypothesis was formed. In order to prove or disprove this hypothesis the results
were tested on experts and non-experts in the field of Irish traditional music.

The following four phases were planned and carried out in order to complete the

project successfully;

1.6.1 Phase one — Collection of tunes in ABC notation

A number of ABC collections exist online and these are described in greater detail in
Section 1.7.4. These ABC files were processed automatically in order to separate them

into tune parts and imported into a relational database for further processing.

1.6.2 Phase two - Conduct programming experiments

Phase two involved the evaluation of various Integrated Development Environments

(IDE’s) and short-listing them. This phase also involved the evaluation of string

11

distance algorithms suitable for music comparison and implementing them within a

framework for conducting music comparison experiments.

1.6.3 Phase three — Survey of experts and non-experts

After tune pairs had been selected using Breathnach’s Melodic Indexing System and
the Levenshtein (Levenshtein 1966) and Jaro-Winkler (W. E Winkler 1999)
algorithms, the original ABC tune pairs were converted from ABC text notation to
mp3 audio files and included in an online survey. Expert and non-expert participants

were invited to complete the survey and their choices were recorded.

1.6.4 Phase four - Conclusions drawn from analysis of survey

In order to evaluate the hypothesis it was necessary to analyse how the computer
selected tune pairs were viewed by experts and non-experts completing the survey.
Because music similarity can be very subjective, careful and empirical analysis of the

results was necessary.

1.6.5 Phase five — Construction of a Similarity Matrix

Once the analysis in phase four was completed a process was designed whereby strings
of musical notes could be compared by combining scores from multiple algorithms.
This process was tested on humans in a second online survey and then used to

construct the similarity matrix for Irish traditional music.

1.7 Resources

1.7.1 Library Facilities

An extensive literature review was carried out in order to complete this project. A
number of world experts have published relevant articles on music comparison and

their knowledge contributed greatly to the success of this project.

1.7.2 Programming Environment and Database Server

Various Integrated Development Environments (IDE’s) were obtained and a shortlist

of possible solutions was created;

12

1.7.4 Providers of databases of Irish tunes in ABC Notation

e The Irish Traditional Music Archive

e The Session.org (Keith 2010)

e Henrik Norbeck (Norbeck 1996)

e O’Neills Music of Ireland ("1850"), Dance Music of Ireland ("1001") and
Waifs and Strays of Gaelic Melody (Chambers 2010b)

e Ceol Rince na hEireann Cuid I, I, 11, 1V (Black 2010)

e Johnny O'Leary of Sliabh Luachra (Black 2010)

e Nigel Gatherers ABC Collection (Gatherer 2009)

e John Chambers Tune Finder (Chambers 2010a)

1.7.5 Two groups of survey participants

In order to test if computer selected traditional Irish tune parts sound similar, a survey
of non-experts and experts in the field of Irish music were surveyed and their

responses recorded.

1.8 Scope and limitations

The source ABC data contains melody, time signature, musical key, tune title and
other pertinent information. No information on playing style exists in the ABC files.
This project will therefore be limited to assessing similarity based primarily on

melody.

A large percentage of ABC files used as the source data for this project were
transcribed by humans of differing musical ability and did not conform absolutely to
the ABC notation specification. Resource constraints limited the amount of data that
could be corrected manually and as a result most of the problematic data was discarded

as it was unreliable.

The corpus of Irish traditional music contains “exact melody matches” where the
names are different but the melodies identical. It also contains “exact name matches”
where the dance tunes have identical names but different melodies. ABC notation
already supports multiple tune titles in its specification (Walshaw 1995). Although
exact name and melody matches would form part of a music similarity matrix this
aspect of the matrix was not focussed on as identifying them does not present a

significant challenge.

14

Music Comparison Techniques

This method of music comparison is easily understood by non-musicians and allows
people to express a piece of music by contour relatively easily regardless of musical

ability and without the need to recognise notes, musical key or time signature.

In order to normalise Parsons Code it was necessary to calculate the Parsons Code for

the whole corpus of tune parts and sort them alphabetically (by Parsons Code) as

follows;

1D Name
15351 Colonel Robertson
9323 Langstrom"s Pony
11283 Langstrom"s Pony
18139 Palm Sunday
9738 Palm Sunday
18553 Pendle Witches, The
8657 Glassan
19092 Roddie C"s
19520 Gan Ainm
9253 Down the Hill
17437 Each Little Thing
16752 Harbourview, The
3848 Biddy Martin
13601 An Dro
17147 Girls Of The Town
11186 Castle Kelly
16278 Kathleen"s Wedding

13404 Jackson"s Morning Brush

16604 North Sydney Bar

Notes Parsons Code
AFEDAADBGBAAAFEDAADCCEEEAFEDAADI *DDDURDUDUDRRDDDURDDRURRUDDD
FEDCAAEAACAAFEDCAABGBDCBFEDCAAEL *DDDURDURDURDDDDURUDUDDUDDDL
FEDCAAEAACAAFEDCAABGBDCBFEDCAAEL *DDDURDURDURDDDDURUDUDDUDDDL
BAGEGGEGGEGGEAABCCDEEDEFGEEEDBAB *DDDURDURDURDURUDRUURDUUUDRR
BAGEGGEGGEGGEAABCCDEEDEFGEEEDBAR *DDDURDURDURDURUDRUURDUUUDRR
BAFDAADEEAEEFGBEDCCADBGBCDBEEABG *DDDURDURUDRUUUDDDRUDUDUDUUL
BAFDFFDEEFGGBAFDFFDEEEBBBAFDFFDEE/ *DDDURDURUURUDDDURDURRURRDDD
AFECAAACDBCABGGBAFECFBBCECBCAAAL *DDDURRDUUDUUDRUDDDDUURDUDUL
FEDCAAMAACEAFEFGAAABCAAAFAAGFFFGC *DDDURRRDUUDDUUURRUDURRDURDD
BAGEAAAAAEABCBABCABAGABGAGEDEFG *DDDURRRRDUUDUDUDUUDDUUDUDDL
BGFEGGGGGBGFEEEBCEGFFFFFGFEBCEEEEF *DDDURRRRUDDDRRUDUUDRRRRUDDUI
GFEDEEEFEDEEFBABDCDAFDDDGFEDEEEFEl *DDDURRUDDURUUDUDDUUDDRRUDDL
FEDCEEFEDFEDCEEADD *DDDURUDDUDDDURUDR
FEDCDDADBAGBAAAGFFFGAABAGABGEEE *DDDURUDUDDUDRRDDRRUURUDDUUL
BAFEAABCFFECBAFEAABCCCBAFAFEAABCE *DDDURUDURDDUDDDURUDRRUDDUDL
AGECDFEDCAGEGGEGAGECDDCDEAAGAAB *DDDUUDDDUDDURDUUDDDURDUUURL
AGFEFAGFEFDDDDDDEGACAAAAFFEFDCAF *DDDUUDDDUDRRRRRUVUDURRRDRDU
GFEDFAFEDEFDBAFADEFGFGEEGFEDFAFED *DDDUUDDDUUDUDDUDUUUDUDRUDDI
AGECGADCAGECEDCACGECGABCAGAGECC *DDDUUDDUDDDUDDUDUDDUUUDUDU

Distance

=T - T B = T R s o I el — Tl T TR R R B = I - IR Y -

Figure 6: Parsons Code Calculation and Distance

2.3.1 Normalised Parsons Code Scores

Once the corpus has been converted to Parsons Code a match to the search term can be
identified. The search term in this case was the Parsons Code of the tune with 1D 9253
— “Down the Hill” in Figure 6 above. This exact match is given a distance of 0 with the
next closest match in either direction given distances in ascending order. In the case of
a closest match (as opposed to an exact match) a distance of 0 from the search term is
also given. Figure 6 shows that the tune “Down the Hill”, ID 9253 is an exact match
and has a distance of 0 from itself. The next closest match in each direction is given a
distance of 1 greater than the preceding row i.e. tunes with 1D 17437 and 19520 have a
distance of 1, tunes with ID 16752 and 19092 have a distance of 2 and so on. This
method of ranking rows of results has been termed MICRank for the purposes of this
project.

23

String Distance Algorithms

The Jaro distance is therefore 0.885 (correct to three decimal places). In order to
calculate the Jaro-Winkler distance we substitute appropriate values into the formula in
Figure 10. Figure 11 shows how the Jaro distance is calculated for the strings in Table
10. Winkler suggests a maximum of 4 for the length of the common prefix | and a
default value of 0.1 (up to a maximum 0.25) for the weight p (W. E Winkler 1999).

dw = 0.885 + (4 x 0.1(1—0.885))

Figure 12: Jaro-Winkler distance calculation

The Jaro-Winkler distance d,, is therefore 0.931 (correct to three decimal places).

The freely available Java implementation of the Jaro-Winkler algorithm by Lingpipe

(Carpenter 2010) was used to conduct experiments in Section 6.2.5.

3.4 The Lemstrom Semex algorithm

In their paper SEMEX - An Efficient Music Retrieval Prototype, Kjell Lemstrom and
Sami Perttu introduced fast and efficient bit-parallel algorithms for retrieving music
that were transposition invariant (K Lemstrom & Perttu 2000).

The Lemstrom Semex (Search Engine for Melodic Excerpts) algorithm accepts two
parameters, a pattern to search for and a large string within which the search is
performed. Both parameters accept arrays of integers which represent musical notes.
The purpose of this algorithm is to find the longest common subsequence between a
pair of musical sequences. This subsequence could be an exact match, a transposed
match or an approximate match. According to Lemstrom and Ukkonen (K Lemstrom
& Ukkonen 2000, sec.6), the longer a common subsequence is, the greater the

similarity between both sequences.

Table 11: Lemstrém Semex Java method by Dr. Bryan Duggan

public static float minEdSemex (int[] pattern, int[] text)

{
int plength = pattern.length;

37

Improved algorithms and a ranking system

4.1.2 Contribution 1: Weighting melodic sequence variation

The transposition feature of the Jaro-Winkler algorithm can be adapted to recognise
certain melodic variations that McCullough writes about. Specifically, the algorithm
was adapted to give weight to out of sequence notes within a distance calculated with
respect to the time signature of the piece of music. Consider the following example, a
jig called “Wallop the Spot” available on an audio recording of the group Osna (Osna

1999, Track.12). The opening phrase of the jig is normally played as follows;

Table 13: Standard opening phrase of the Wallop the Spot jig

FEF DFA BAF DDD

On track 12, the whistle player swaps notes 1 & 2 and notes 7 & 8, reshaping the

standard phrase so that it becomes;

Table 14: Reshaped opening phrase of the Wallop the Spot jig (Osna 1999)

EEF DFA ABF DDD

The Jaro-Winkler algorithm was altered so that the proximity method accepted an
extra parameter — searchRange. Specific values related to the time signature of the
comparison strings were passed to this parameter, for example, 3 was passed for jigs

and 4 for reels.

Table 15: Adapted Jaro-Winkler method with searchRange parameter

public double proximity(CharSequence cSeqgl, CharSequence cSeqg2, int
searchRange) {

int lenl cSeqgl.length();

int len2 = cSeg2.length();

if (lenl == 0)
return len2 == 0 2 1.0 : 0.0;
boolean[] matchedl = new boolean[lenl];

Arrays.fill (matchedl, false);
boolean[] matched2 = new boolean[len2];

Arrays.fill (matched2, false);

int numCommon = 0;

42

Improved algorithms and a ranking system

The conclusions drawn from examining any possible improvements to the Levenshtein

algorithm were as follows;

e Required features such as horizontal and vertical transpositions were already
available in the Jaro-Winkler and Lemstrém algorithms.

e A time signature invariant feature would be better performed outside of the
algorithm. For example, data would be pre-processed before performing a
Levenshtein comparison between two strings of notes.

e The unaltered Levenshtein edit distance algorithm has value and remains a

popular method for music comparison.

4.3 Prototype for a Combined Ranking System

Having identified the strengths and weaknesses of each of the string distance
algorithms and after implementing a framework for generating metrics regarding tune
parts held in a corpus the author felt that combining multiple methods and algorithms

could be used to define a combined similarity scoring system.

4.3.1 Contribution 3: Combined Ranking Scores

In order to combine various algorithms a ranking system was first developed. This
involved running four separate SQL queries and ordering the results in descending
order by algorithm. The Levenshtein and Jaro-Winkler algorithms were run on the
unaltered notes of the tune parts and sequences with non-dominant notes removed
(referred to as 2/4, 24 or TWOFOUR data in this project). The results were stored in a
relational database.

Figure 14 shows the first twenty rows of tune comparisons between tune id 8425 and
various others along with the algorithm scores abbreviated as LEVEN, JARO,
LEVEN24 and JARO24. These rows are sorted by Levenshtein score in descending
order.

48

Computerising the Melodic Indexing System and Parsons Code

5.2.1 Melodic Sequence Variation Anomalies

As seen in Section 2.2 Melodic Index Codes are calculated by discarding non-
dominant notes and calculating absolute intervals with reference to a fundamental note.
In Section 4.1.2 a disadvantage was identified where an Irish musician reshaped the
opening phrase of a tune by playing the notes EEF DFA ABF DDD instead of FEF
DFA BAF DDD. These phrases translate to MIC index codes 23155311 and 33156311
respectively. In the corpus of 11,944 tune parts used for this project these versions of
the same tune would be stored 1,387 rows apart. In other words, the index cards would

not be physically proximate and the duplicate version would not be detected.

5.2.2 Limited Comparisons can be made

Breanddn Breathnach’s indexing system compared only the very beginnings of each
tune. Because ABC data is available for the complete tune, the beginnings of each part
of each tune can be compared and indexed. Indeed, the sequence of notes in the whole
tune could be converted to a Melodic Index Code and compared. Tunes of the same
type were stored with each other. This did not facilitate the easy comparison between

jigs, reels, hornpipes, slip jigs and other types of tune.

Figure 17: Storage of Melodic Indexing System. Source: Author

54

Computerising the Melodic Indexing System and Parsons Code

Figure 17 shows how the Melodic Indexing System was stored in the Irish Traditional
Music Archive. From top left — Jigs, Reels, Slip jigs/Hornpipes. From bottom left —

Jigs2, Reels 2, Polkas/Set Dances/Miscellaneous

5.3 Proposed improvements

Although Brendéan Breathnach probably had little computing resources at his disposal
in the 1960’s when editing his first publication, Ceol Rince na hEireann Cuid |
(Breandan Breathnach 1963) his system of Melodic Index Cards lends itself to being

converted into a computer algorithm.

5.3.1 Contribution 4: Computerisation of the Melodic Indexing System

The implementation of a computerised version of Breandan Breathnach’s Melodic

Indexing System was constructed in the following manner;

e lIrish traditional dance music parts were imported and stored in a relational
database. Invalid ABC notation was discarded.

e Parts in ABC notation were converted from various time signatures to a
common time signature of 2/4 by programming the Java algorithm in Table 21.
The results were stored in the relational database.

e A second Java algorithm (see Table 22) was programmed in order to calculate
intervals based on Breathnach’s concept of a “fundamental note”. Because the
tune key is available in each of the ABC tune transcriptions it was used to
calculate the fundamental note. Absolute intervals were stored in the same

relational database as the corpus of ABC data.

Table 21: Java algorithm to reduce ABC notation to 2/4 time signature. Source: Author

public String reduceToTwoFour (String abc, String measure) {

String twod = "";
int counter = 0;
if (measure.startsWith ("6") | measure.startsWith ("9") |
measure.startsWith ("12")) {
counter = 3;

55

Computerising the Melodic Indexing System and Parsons Code

if (measure.startsWith("4")) {
counter = 4;

}

if (measure.startsWith("2")) {

return abc; // already in 2/4 time signature

for (int i = 0; i < abc.length(); 1 += counter) {
try {
two4d += abc.substring(i, i + 1);
twod += abc.substring(i + counter - 1, i + counter);
} catch (Exception e) {
System.out.println(e.toString());

}

return two4;

Table 22: Java method for calculating Melodic Index Intervals. Source: Author

public String calculate BB Intervals(String input, String key)

key = key.substring (0, 1).toUpperCase();

input = (input) .toUpperCase();
String control = "CDEFGABR";
String temp = "";

int charl, interval, fundamental;

fundamental = control.indexOf (key);
for (int 1 = 0; i < input.length() - 1; i++) {
try {
charl = control.indexOf (input.charAt(i));
interval = (charl - fundamental + 1);

if (interval < 1) {
interval += 7; }

temp += "" + interval;
} catch (Exception e) {

System.out.println(e.toString())

}

return temp;

56

Computerising the Melodic Indexing System and Parsons Code

5.3.2 Contribution 5: Compare MIC index codes alphabetically

Breathnach stored the melodic index cards in numerical order using the eight digit
code to sort them appropriately. This had the effect of limiting the comparisons that
could be done to sequences of notes that were at least sixteen notes long. Sequences of
less than 16 notes would result in a melodic index code of less than eight digits

meaning that they would not appear in the correct order if sorted numerically.

A simple solution would be to right pad index codes with sufficient 1’s to make them

eight digits long as in Table 23 below.

Table 23: Index codes with right padded 1's

Index Code
12111111
12121353
14524117
64571156
75441111
17447277

A better solution is to calculate Melodic Index Codes for the whole length of each tune
part and storing the results in a database. Sorting the rows alphabetically instead of

numerically allows the comparison of incipits of different lengths.

The SQL query in Table 24 sorts rows of tune parts alphabetically, regardless of length

as seen in Figure 18.

Table 24: SQL Query to sort tune parts alphabetically

select NAME, NOTES, MEASURE, TUNEKEY, BB_INTERVALS from APP.ABC
where BB_INTERVALS is not null order by BB_INTERVALS asc

S7

Computerising the Melodic Indexing System and Parsons Code

= MNAME MOTES MEASURE TUMEKEY BB_INTERVALS

1 Tantan"s EBFEGBEF... &/3 Emin 12551327125555421266 13273344521

2 Millbrze AAGBEGEE... 4/4 Ama] 12557137554327221255713755425311125571....
3 Tullochgorum CBGDGCFA... 4/4 Cmaj 125612525256125

4 Copenhagen, The DEEECCDD... 4/4 Dmaj 12715233127155411171523426221451

5 Jolly Tinker, The AAABGGGE... 4/4 Ador 1272167211724242127216721172424

o Wild Swans at Coole DECEDCDA... 2/2 Dirnix 127217157 77423421555355532167776533232. ..
7 Long Mate, The DDDECADE... 4/4 Dirnix 12722272517715421115112542311541

3 Butcher"s March (D) GFAFGEAE... /3 Gmaj 1276253211216651

E False Proof, The BOCACAGF... 6/3 Bmin 1277545544044637 1277645944443271

10 Peeler"s Pocket GGDBGEDG... 4/4 Gmaj 13111167131764311176532255546511

11 Paidin O"Rafferty GBBGGGGEE... 6/3 Gmaj 13111342131211151312134235332216

12 Da Birlie DDDFDODD... 4/4 Dmaj 13113777 7713112347611111727 723476126
13 Wild One, The DEFDGDAG... &/3 Dimin 1311575213113322131157551574521

14 Father Kelly"s DEFFDFED... 4/4 Dmaj 1311611234232223431161123535327

15 Connie The Soldier DEFDDEDE... /3 Dmaj 13121311132127555231223154145221

16 Strike the Gay Harp DEFDFEDA... 6/3 Dmaj 1312131513121325136155321113522

17 Lord Mounteagle"s DDAFDGFE... 4/4 Dmaj 131213431316523113121343131652

18 Stay A Wee BitBonny Lad DFAFDFEE... 4/4 Dmaj 131215614122116

19 Old Dudeen, The BCODBCDC,.. 4/4 Bmin 13123115411231743112311755117557

20 Donald, Wilie And His Dog AACABBCC... 9/8 Amix 13123213132213123231171

Figure 18: Tune parts sorted alphabetically by Melodic Index Code

5.4 Advantages of computerising the Melodic Indexing System

Computerisation of the Breathnach Melodic Indexing System would result in a far

superior similarity comparison system for the following reasons;

5.4.1 Larger database of tunes available

Websites like The Session (Keith 2010) allow for members to submit transcriptions of
traditional Irish tunes and also many other forms of music. The addition of genre,
country of origin or geo-location data could allow for the comparison of tunes across
genres or between each country’s traditional folk music. For example, relationships or
similarities between Irish, English, Scottish, Breton, Galician and Asturian folk music

could be identified and explored.

5.4.2 Greater Accuracy

Because computerisation allows for Melodic Index Codes greater than eight digits long
as in the original system, the accuracy of the similarity matrix can be increased
considerably. Absolute intervals for whole tune parts were calculated and compared

instead of comparing 8 digit codes derived from 16 note incipits.

58

Computerising the Melodic Indexing System and Parsons Code

5.4.3 Integration in a Combined Ranking System

In Section 4.3 a confidence scoring system based on the ranking of the results of four
string distance algorithms was proposed as Contribution 3. As part of the
experimentation and research carried out in Section 6 an algorithm was developed for
the calculation of metrics related to the Melodic Indexing System. These metrics
included,;

e The calculation of the number of rows that separate a pair of tune parts along
with the total number of tune parts in the corpus.

e The proximity expressed in the same format as suggested by Muellensiefen &
Frieler (Muellensiefen & Frieler 2003) i.e. 0 being perfectly different and 1
being an exact match.

Figure 19 shows how Melodic Indexing System metrics were calculated for the tune
parts with id’s 8425 and 17825.

59

Computerising the Melodic Indexing System and Parsons Code

-

|| Irish Music Similarity Matrix =NEC X

File Run Algorithrn Show Results Help

8425 17525 RESULTSSTRICT - [

*Melodic Index Code Calculations#® A

MIC Tune A Location: 5338 of 11944

MIC Tune B Location: 7050 of 11944

il |MIC Score: 1712 tunes apart in a corpus of 11944 (lower
means more similar) i

MIC Tune & Intervals: 3321755231212554312175567672211

MIC Tune B Intervals: 4321765531317122432176553357111
Tune A Notes: FFEDCAAEFDEDEAAGFDEDCAARCERCEEDDD

Tune B Notes: GFEDCEAAFDFDCDEEGFEDCEAAFFACDDDD

HMIC Hormalised Proximity: 0.8566644 (where 0 is perfectl
v different and 1 i=s an exact match)

m

1

| Breanach H Valid ABC H Intervals][Compare

Figure 19: Calculation of Melodic Indexing Metrics

Although the normalised score could be considered high at 0.857 (1 being an exact
match and 0 being completely different) it represents a distance of 1712 tune parts in a
corpus of 11944. In other words, there are 1711 tune parts more similar to tune part
8425 ascending the matrix to tune part 17825 and possibly others descending from
8425 as can be seen in the following table.

60

Computerising the Melodic Indexing System and Parsons Code

Table 25: Portion of the Melodic Index Code Matrix

ID Melodic Index Code

----- (MIC codes similar to 8425 removed)
8424 33216221542.......

8425 33217552312.......

8426 33222421421.......

----- (MIC codes similar to 8425 removed)
17824 43216123412.......
17825 43217655313.......
17826 44213213211.......

The inclusion of the Melodic Index Code metrics into the confidence / ranking scoring

system was completed as part of an experiment in Section 6.4.3.

5.5 Conclusion

The advantages, disadvantages and tradeoffs of Breandan Breathnach’s Melodic
Indexing System were presented in this chapter. A proposal for the computerisation of
the system was presented as contribution 4. Contribution 5 suggests improvements to
the system. The use of an alphabetical index rather than a numeric one was suggested

in order to overcome the problem of different length melodic index codes.

61

Experimentation and evaluation

6. EXPERIMENTATION AND EVALUATION

6 Introduction

The purpose of this chapter is to describe the string distance experiments that were
carried out on ABC notation data. Once clean ABC data had been extracted from ABC
files contained within music collections referred to in Section 1.7.4 it was stored in a
relational database. Java versions of string distance algorithms were obtained and
integrated into a programming framework that had been built in order to facilitate the
running of experiments. This chapter also describes how two online surveys were
carried out and how the hypothesis formed in Section 4.3 was tested. The chapter
concludes with a description of how similarity matrices of Irish traditional dance music

were constructed.

6.1 Design of experiments

Careful planning went into the design of each experiment. The purpose of carrying out
experiments on string distance algorithms was to be able to draw conclusions from
analysis of the results. Great care was taken to prevent bias of any kind in the

experiments and in the online surveys.

A series of goals in line with the research objectives of this dissertation were
formulated and a strategy was formed in order to achieve these goals. The goals were

as follows;

e To identify string distance algorithms suitable for Irish traditional music
comparison.

e To identify possible areas where string distance algorithms could be improved
with respect to music theory.

e To test if humans agreed with the results of string distance algorithm
comparisons of Irish music.

e To identify and define a process whereby a Music Similarity Matrix could be

constructed for Irish Traditional Music (ITM).

62

Experimentation and evaluation

Levenshtein Distribution - Levenshtein 2/4 Distribution

9000 14000

8000 12000

7000

_ 10000

G000

5000 8000

4000 6000

3000

? 4000

2000 A

1000 A l ”AM 2000

() 1l H'\'\\HHH LLLL LLLLLLRLLALE \Iﬂ\l\'\'\\\'\'\\uu T T T T, “ gt e e
1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100
Figure 24: Levenshtein distribution Figure 25: Levenshtein 2/4 distribution

As Figure 24 and Figure 25 show, the shapes of both distributions are almost identical.
Both distributions show an off centre bell curve with the majority of the results in the
12% to 64% area. Similar to the distribution Mullensiefen & Frieler found in Figure 26
(Mullensiefen & Frieler 2007, p.196) the distribution of a Levenshtein comparison of
the whole corpus looks much like an off centre normal distribution. In this experiment

results below 12% and above 64% were very rare.

12000 4

10000

=
=
8

Frequency
o
5
8

Mean=0152428
2y =0,
0 0778971
N=171405
02000 00000 02000 04000 D600 0000 10000 12000

Similarity_opti3

Figure 26: Frequency distribution by M&F of all melodies in their database. Source:
(Mullensiefen & Frieler 2007, p.196)

6.2.5 Jaro-Winkler Experiments

The Jaro-Winkler experiments were carried out in parallel with the Levenshtein

experiments as both experiments required iteration over the same data.

68

Experimentation and evaluation

The tune pairs selected by the computer algorithm agreed with the experts at least 60%
of the time. Question 2 was voted similar by a margin of 8 to 7 in both groups
suggesting that opinion in humans was narrowly divided. The voting from both groups
for questions 7, 8 and 10 suggests that the computer algorithm made a significant error

selecting these pairs.

6.4 Constructing a Similarity Matrix for Irish Traditional Music

Using the process defined in Section 4.3 an experiment was designed in order to
construct four similarity matrices. These matrices were constructed using the Jaro-
Winkler algorithm, Parsons Code, Melodic Indexing System and the Combined
Ranking System described in Section 4.3. Construction was carried out over four

phases.

6.4.1 Phase 1 — Importing data and extending MS SQL 2008

The first phase involved importing the corpus of tunes from the Derby database server
into the MS SQL 2008 database server. As this data had already been cleaned and
processed numerous times in other experiments it made sense to use it for experiments
on the Microsoft platform. Comparisons between both platforms may also be made
possible in the future. This phase also involved extending the MS SQL 2008 database
server by writing implementations of the Lemstrom Semex, Breathnach Melodic
Indexing System, Parsons Code and a standard deviation function in the C# language.

These implementations are available in Appendix D.

82

Experimentation and evaluation

= | Programmability

- [Stored Procedures

+ [System Stored Procedures

El dbo.calculateMatrix
E dbo.getFrequency
£ dbo.getRanks
E dbo.getRanksID
El dbo.getRanksIDVerbose
- 1 Functions

+ [Table-valued Functions

H FH OFEOFEE

- [Scalar-valued Functions
7 B dbo.Breathnach

f-{i dbo.Jaro

B dboJaroWinkler

W dbo.Levenstein

B dbo.NermalisedRank

f-{i dbo.Parsons

B dbo.Semex
+ B dbo.stdevmusic

+ [Aggregate Functions

HHEE B ®E

+ [System Functions

Figure 33: Stored Procedures and custom functions in MS SQL 2008

Figure 33 shows a screenshot of Microsoft Management Studio (the application used
to administer MS SQL 2008). This screenshot shows how MS SQL Server 2008 has
been extended by using custom stored procedures getRanks, getRanksID and custom
functions Breathnach, Jaro-Winkler, Levenshtein, Parsons, stdevmusic and

NormalisedRank.

6.4.2 Phase 2 - Testing custom function SQL queries

The purpose of creating custom functions using Microsoft Visual Studio 2010
Professional to extend MS SQL 2008 was to enable the use of string distance functions
within SQL queries. Two Visual Studio projects were used; the first to extend the
SimMetrics string distance library to include implementations of the Semex, Parsons,
Breathnach MIC and improved Jaro-Winkler algorithms and the second to create a
private dotnet assembly that could be imported into MS SQL 2008. In order to test if
these custom functions worked as planned in MS SQL 2008 the following SQL query

was executed.

Table 35: SQL query using a custom string distance function

select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES, 'ABCC') as
JW Score

83

Experimentation and evaluation

from Test.dbo.corpus
order by JW Score desc

B BN =2 EE
x

5QLQuery5.sql - PODGE-PCT\...... (58))° | installZ.sql - PODGE-PCT\..\P...ge (57)) | 5QLQueryd.sql - PODGE-PCT\..ne (53)) =

b4
_E| select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES, 'ABCC') as JW_Score =
T 2%Llfr0rr. Test.dbo.corpus i
3 order by JW_Score desc 1
4 : I 3
I Results 3 Messages
NAME NOTES JW_Score -
B[1 {12627 : Blackbind, The ABCCCBAGADEDEBGGEEGGGEDBABGGEEEE 0.325000001738469
2 12769 Ballydesmond, The ABCCBBAAGABDEDGGEDEAGEDBGBCEDBAA 0.325000001738469
3 12171 BagOflee, The ABCCBCCDEFGBEEGABDCCBCCDEFGEDBGG 0.325000001738469
4 18351 Greenslesves ABCCCCDEDGGGABCAAABCBEEEABCCCCDEDGGGABCAABCEBAARA 0.81666666848752
5 9334 Earlthe Breakfast Boiler ABCCBABEEEFABEEDEEFEDDEFABCCBABEEEFABEEDEEAGFFED 0.31666666848792
6 9385 Earlthe Breakfast Boiler ABCCBABEEEDBFFEDEEDBFFEDABCCBABEEEDBFFEDFGFEAAFD 0.31666666848752
7 9485 Gilfrom the Big House, The ABCCAAGFGGGGFGADBCAGADCDFGFEDCAGFFFGECDCAGEADDDD 0.31666666848752
8 9483 Gilfromthe Big House, The ABCCAAGFDGGDGGADBCAGADCDDEFEDCAGFFAGECDDAGEADDDD 0.B1666666848792
9 13633 Ear The Breakfast Boler ABCCBABEEEFGBEEDEEAGFFEDABCCBABEEEFABEEDEEAGFFED 0.31666666848792
10 13634 Ear The Breakfast Boiler ABCCBABEEEDBFFEDEEDBFFEDABCCBABEEEDBFFEDFGFEAAFD 0.31666666848792
11 19197 Shan Van Vocht, The ABCCCDEEFGDBAGAAGABDABGFEDEEAAAADCEGABGEDEGGGGGG 0.81666666848792
12 20080 Wals OF Liscamol, The ABCCCDCDECAAGECCADCAAGFGABCCCDCDEFEDEAGEDCABCBAGA 0.8163265324362877
13 15573 Peeler And The Goat, The ABCCABAGAABCCDEFEDDCBBGGABCCABAGAABCCDEFGFEDEEAAA 0.816326532436877
14 8387 \'Eireann go Brach ABCCCECADADDAACCCECADCDBBBCCCECADADDAACDECBABCAAAA 0.816000001827876
15 14351 Light And Aly ABCCCACAFACFCACCCACAGGABBDCCCACAFACFCABGBAFAGGABED 0.816000001827876
[|L18 13695 Caheistrane ABCCCBAFEAFEEEFECACEFAABBBCCCBAFEAFEEEFECACEFAAAAR 0.816000001827876
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (100 SP1) | Podge-PC7\Podge (58) | Test | 00:00:00 | 11944 rows

[~—t e LIV

Figure 34: Result of a SQL query using a custom string distance function

Figure 34 shows the following columns returned by the SQL query;

e D of the tune

e NAME of the tune

e NOTES of the tune

e JW _Score represents the similarity between the string ‘ABCC” and each of the

rows in the NOTES column in descending order

The bottom right of the screenshot shows that the corpus of 11944 rows was processed
in less than 1 second. Table 36 shows how a more complex query was then executed. It
compared the notes from the tune “The Humours of Tulla” to the corpus of 11944

tunes using the Jaro-Winkler, Levenshtein and Semex custom functions.

Table 36: Jaro-Winkler, Levenshtein and Semex SQL for the “Humours of Tulla”

select ID, NAME, NOTES, [Test].dbo.JaroWinkler (NOTES,

' GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA') as JW_Score,

[Test] .dbo.Levenstein (NOTES, 'GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCRBA') as
Leven Score,

[Test] .dbo.Semex (' GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCBA',
Semex Score

from Test.dbo.corpus

NOTES) as

84

Experimentation and evaluation

order by Semex Score desc

7 == T e | g % 5
: SQLQuery5.sql - PODGE-PCT\..... (38))* | install2.sql - PODGE-PCT\.A\P..ge (57]) | SQLQueryd.sql - PODGE-PCT e (53)) - X
1@ select ID, NAME, NOTES, [Test].dbo. kler (NOTES, * GEGLGEFGGDGEGDGEFGRBCCBA') as JW Score, —|
il 2 [Test] .dbo.Levenstein (NOTES, FG | as Leven_Score, - it
3 [Test] .dbo.Semex (' GGDGEGDEGG , HOTES) as Semex Score E
4:| from Test.dbo.corpus
5 -order by Semex_Score desc i
] [b
[Resutts _'j Messages
1] NAME NOTES JW_Score Leven_Score Semex_Score -
1 Humours Of Tulla, The GGDGEGDEGGBGAGEFGGDGEGDGEFGABCCEA 1 1 0.96965696363657
2 11433 Glen Allen DEGGDGEGDEGGBGAGEGAAEAFAEAABCDEDBAGGDG... 0 0.46875 0.787878787878788
3 10215 Bushin Bloom, The GGDGEGDEGGBGAGEFGGDGEGDBAGEFGGGABGGGA... 0.858347337667117 0484375 0.757575757575758
4 8963 Mossy Banks b) GGDGEGDGGGBGAGEFGGDGEGDBABGABAAAGGDGE... 0.844238691362685 0.446153846153846 0.757575757575758
5 11434 Glen Allen BDGGDGEGDEGGBGAGEGAAEAFAEGAABGAGEFGGDG... 0.689643409505507 0.46875 0.727272727272727
6 12458 Mossy Banks, The GGDGEGDEGABGADEFGGDGEGDBABGABGEDGGDGE... 0.848301516652544 0421875 0.636363636363636
7 14584 Peter Flanagan”s AMAAEAAGEGAGBGAGEFGGDGEGDGGGAFGEDDAAEA. .. 0.650867511320097 0.375 0.636363636363636
3 8785 Mrs Crehan's GGDGEGDGGGDGADBAGGDGEGDGEGABCEDBGGDDE. .. 0.828301516851226 0.40625 0.606060606060606
] 11437 Traveller, The GGDGBGDGGGEGAGEFGGDGBGDECEAGFADDGGDGE... 0.814339828684195 0.40625 0.606060606060606
10 13120 Mike Fannagan’s GGDGEGDGGGDBAFDEFGGDGEGDGEFDBAFDEFGGDG... 0.836656893118263 0.454545454545455 0.575757575757576
11 16736 Mad Dan DEFGGDGEGDGGDBCDEDBAGGDGEGDGAGABCDEDG... 0.692217065016361 0.380281630140845 0.575757575757576
12 16653 Jemy's EAAAEAFAEFGAGEDBGGDGEGDGCCECFCECEAAAEAF.. 0.582733585058586 0.328125 0.545454545454545
13 16990 Dicky Deegan’s Wasabi FEBBFEDEFAAGFBBBEAAAEAFAEFFECAAAFBBBFEDEF.. 0 0.21875 0.545454545454545
14 15779 Farewell To Miltown DGGFGGGABCAFGFDEFFCFDFCFDFFFFDCFDGGFGGGA... 0.596066919191919 0.265625 0.545454545454545
15 15877 Le Reel Des Voyageurs BDGGDGEGDFGABGAGEFGGDGEGDECBAGFADFGGDG... 0.648322241605824 0.388059701492537 0.545454545454545 -
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (100 SP1) | Podge-PC7\Podge (58) | Test | 00:00:02 | 11944 rows

Figure 35: Jaro-Winkler, Levenshtein and Semex SQL query combined

Figure 35 shows how the SQL query in Table 36 was executed, comparing the notes of
the “Humours of Tulla” against the whole corpus of tunes using the Levenshtein, Jaro-

Winkler and Semex custom functions in just 2 seconds.

Custom functions that returned Parsons Code and Breathnach’s Melodic Indexing
Code were also created. These two functions return the Parsons Code and MIC Code
rather than a similarity score between 0 and 1. In order to calculate how proximate two
strings of notes are, their positions in the corpus must first be known. A custom
function in MS SQL Server 2008 is only aware of the two strings of notes passed to it
as arguments and not aware of the entire corpus of tunes. It was decided that it would
be more appropriate to perform this type of calculation within a stored procedure that
would have access to both custom string distance functions and the whole corpus. The
following SQL example shows how it is possible to convert a whole corpus of tunes to

Melodic Indexing Code and Parsons Code in a few seconds.

Table 37: SQL query to convert a corpus into MIC Code and Parsons Code

select ID, NAme, [Test].dbo.Breathnach (NOTES) as MIC,
[Test] .dbo.Parsons (NOTES) as PIC

from Test.dbo.corpus

order by MIC asc

85

Experimentation and evaluation

Figure 36 shows how the SQL query above converts a corpus of 11944 tunes into MIC

Code and Parsons code in one second.

v
o
=
o
15
-
3
I
-l
Il
[=]
(2]
m
b
=]
a
3
v
©
=
o
c
m
2
i
)
o
(=]
L=
(5]
i
o
9
7l
b
G
=
L
re
=
o
&
3
in
4
o
(=]
o
o
m
o
4
T
G
L=
=
]

>
14 select ID, NAme, [Te=st].dbo.Breathnach NOTES) as MIC, —
[Test] .dbo.Parsons (HOTES) as PIC i
from Test.dbo.corpus
~] order by MIC asc -
] T s
[Resutts _Iﬁ Messages
NAme MIC PIC -
1 Up South IRRR AR AR RN R AR RRARRRREE “*RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
2 19546 Drunken Hussar. The TTITINN232117127511111111111111232156711 “RRRRRRRRRRRRRUUDDROUUDDURRRRRRRRRRRRRUUDDDU
3 16203 Kilkelly, Ireland 111111111122333333332211222222211771111111111551... . “RRRRRRRRRURURRRRRRRDRDRURRRRRRDRCRURRRRRRRR
4 15554 Wolves A-Howlin™ 11111111116655444564541246542211 “RRRRRRRRRORURDRRUDUUDDUUDUDDRDR
i 18792 Ailiu Eanai 111111116535555566666666653555555533112233221111 “"RRRRRRRUDDURRRRIURRRRRRRRDDURRRRRRDRDRURURDR
& 11349 Pride Of Petravore, The 111111117534555654234445431711571111323175345534. *RRRRRRROUDUURRDUDDUURRUDDDDURUDURRRUDUDDUDU
7 11001 Smuggler’s Reel. The 111111123234545677777771212454571111111232345456... “RRRRRRUUDUUUDUDURRRRRRUUDUUUDUDURRRRRRUUDUL
8 12681 Whistle Ower The Lave 0% 111111123322355555671155331117771111111233223555... *RRRRRRUDRURDURRRRUUURDRDRURRDRRURRRRRRUDRUR
] 19585 Miss Galvin™s 111111124576754217656777231271756712172112457675... “RRRRRRUDUUDUDDUDDDDUURRUDUUDUDDUUUUDDUDRUDU
10 13518 Morgan Rattler 111111135275111135642345111111135275111753665671... "RRRRRRUUDUDDRRRUUUDDUUUDRRRRRRUUDUDDRRUDDUR
il 17905 Love And Hospitality 111111154277756551115424211111111542777671567645. *RRRRRRUDDODRRUUDRDRRUDDUDDRRRRRRRUDDDRRUDUUL
12 17724 Indian Summer 111111156546511111111115654655511112333215465111... “RRRRRRUUDDUDDRRRRRRRRRUUDCUDRRDRRRUURRDDUDU
13 20101 Traditional Gaslic Melody 111111171111111177754445334455771111111711111111... . “RRRRRRDURRRRRRRDRRCDRRUDRURURURURRRRRAROURRR
14 12831 Hogties 111111176545677675111155765457211111111117654567... “RRRRRRDDUDUDURDUUDRRRURDDUDUDUDRRRRRRRRRODU
15 20236 Leslie™ March 111111176567176543553221 222212321254332115123221 “RRRRRROUDUDUDUDDDURDDRDURRROUUDDUUDDRODRUDU. _
T e e = — e
(@ Query executed successfully. | PODGE-PCT\DEVELOPER (10.0 SP1) | Podge-PC7\Podge (55) | Test | 00:00:01 | 11944 rows

Figure 36: Corpus of tunes in MIC Code and Parsons Code

Temporary tables in stored procedures were used to dynamically create corpi so that
positions of tunes within them could be ascertained. Once the position of the match
was known it was possible to calculate proximity and distance from this match as
described in Figure 6. Both MIC Code and Parsons Code were calculated in tandem as

the systems are virtually identical (apart from the generated MIC and Parsons Code).

Following is code that creates a temporary table, calculates MIC and Parsons Code for
an entire corpus of tunes, identifies the closest match using both Melodic Index Code
and Parsons Code, calculates distance and then normalises the MIC and Parsons

distances so that a score between 0 and 1 is returned.

Table 38: Code snippet that calculates and normalises MIC & Parsons Code ranks

-- Create temp table for Breathnach and Parsons Rank and populate it
SELECT 1D,
dbo.Breathnach (NOTES)
dbo.Parsons (NOTES)

as MIC,
as PIC,

row number () over (order by dbo.Breathnach (NOTES) asc) as
rowlD,

(row _number () over (order by dbo.Breathnach (NOTES))) /1.0 as
MICScore,

(row_number () over (order by dbo.Parsons (NOTES)))/1.0 as
PICScore

into #TEMP
from corpus
order by MIC;

86

Experimentation and evaluation

-—- Find nearest match for @notes - Breathnach

Select top 1 @rowID = MICScore from #TEMP where
dbo.Breathnach (@notes) <= MIC order by MIC asc

Select @MaxRank = MAX (MICScore) from #TEMP

-— Find nearest match for @notes - Parsons

Select top 1 @prowID = PICScore from #TEMP where
dbo.Parsons (@notes) <= PIC order by PIC asc

Select @PMaxRank = MAX (PICScore) from #TEMP

Update #TEMP set MICScore = 1-((abs(MICScore -
@rowID)) /@MaxRank)
Update #TEMP set PICScore = 1-((abs (PICScore -

@prowID)) /@PMaxRank)

The complete stored procedure is available in Appendix D.

6.4.3 A Combined Ranking System

MS SQL 2008 supports four ranking functions, one of which, RANK() was used to
generate ranks for results returned by string distance functions. Table 39 shows a SQL
query that utilises the RANK() function in conjunction with the Jaro-Winkler and

Semex string distance custom functions.

Table 39: SQL query for Semex & Jaro-Winkler scores with ranks

select ID, NAME, Notes,

[Test].[dbo].Semex ('CDEEEDEGGA', dbo.corpus.NOTES) as Semex,
RANK () OVER (ORDER BY [Test].[dbo].Semex ('CDEEEDEGGA',

dbo.corpus. [NOTES]) DESC) AS [SemexRank],

[Test]. [dbo].JaroWinkler ('CDEEEDEGGA', dbo.corpus.NOTES) as Jaro,
RANK () OVER (ORDER BY [Test].[dbo].JaroWinkler ('CDEEEDEGGA',
dbo.corpus. [NOTES]) DESC) AS [JaroRank]

from dbo.corpus

order by SemexRank asc, JaroRank asc

(
[
]
(

87

